生态环境学报 ›› 2023, Vol. 32 ›› Issue (1): 47-55.DOI: 10.16258/j.cnki.1674-5906.2023.01.006
李威闻1(), 黄金权1,2,3,*(
), 齐瑜洁1, 刘小岚1, 刘纪根2,3, 毛治超1, 高绣纺1
收稿日期:
2022-08-02
出版日期:
2023-01-18
发布日期:
2023-04-06
通讯作者:
*黄金权,高级工程师。E-mail: jinquan_cky@163.com作者简介:
李威闻(1996年生),女,硕士研究生,研究方向为土壤侵蚀与碳循环。E-mail: 13080128997@163.com
基金资助:
LI Weiwen1(), HUANG Jinquan1,2,3,*(
), QI Yujie1, LIU Xiaolan1, LIU Jigen2,3, MAO Zhichao1, GAO Xiufang1
Received:
2022-08-02
Online:
2023-01-18
Published:
2023-04-06
摘要:
土壤侵蚀是碳流失的重要驱动力,分析土壤侵蚀条件下土壤微生物生物量碳(SMBC)含量变化及其相关影响因素,对理解土壤侵蚀对土壤养分周转与碳循环机制具有重要意义。以未发生侵蚀为对照,基于2003—2022年间相关学者在中国区域内开展的有关土壤侵蚀对SMBC影响研究已公开发表的35篇学术论文的230组试验数据,按照土壤类型(紫色土、黑土、黄土和红壤)、土壤容重(高容重和低容重)、土地利用方式(林地、农田、草地和坡耕地)、水力侵蚀类型区(东北黑土区、西北黄土高原区、西南土石山区和南方红壤丘陵区)、年平均降雨量(1000—2000 mm、500—1000 mm和≤500 mm)和年平均温度(≥20 ℃、10—20 ℃、5—10 ℃和<5 ℃)进行分组,采用Meta分析对土壤侵蚀条件下SMBC含量变化的特征进行综合分析,并通过亚组分析探讨了侵蚀对SMBC的影响。研究发现,与未发生土壤侵蚀相比,(1)土壤侵蚀导致SMBC含量显著降低(下降程度为35.39%,置信区间为-0.4074— -0.3005);(2)紫色土、黑土、黄土和红壤中,土壤侵蚀对SMBC含量的影响均表现出显著的负效应,下降幅度分别为78.72%、43.49%、42.52%和18.48%。不同土壤容重条件下,土壤侵蚀使SMBC含量显著下降,SMBC下降程度在高容重条件下是低容重的2.12倍。同时不同土地利用类型中林地(33.26%)SMBC下降最少,草地(39.73%)下降最多。SMBC含量的下降程度在东北黑土区(43.55%)最高,西北黄土高原区(42.57%)和西南土石山区(33.68%)次之,在南方红壤丘陵区(27.51%)最低;不同年均降雨量和不同年均温条件下的SMBC含量下降程度在年均降雨量1000—2000 mm、500—1000 mm和≤500 mm的地区分别为29.91%、43.15%和37.52%,在年均温为10—20 ℃、5—10 ℃和<5 ℃的地区分别为40%、37.25%和43.58%。由此可见,土壤侵蚀显著降低SMBC含量;不同土壤类型、不同土地利用方式、不同土壤容重、不同水力侵蚀类型区、不同年均降雨量等条件下,土壤侵蚀对SMBC下降的作用程度不同。
中图分类号:
李威闻, 黄金权, 齐瑜洁, 刘小岚, 刘纪根, 毛治超, 高绣纺. 土壤侵蚀条件下土壤微生物生物量碳含量变化及其影响因素的Meta分析[J]. 生态环境学报, 2023, 32(1): 47-55.
LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion[J]. Ecology and Environment, 2023, 32(1): 47-55.
土壤类型 | 土壤容重 | 土地利用方式 | 水力侵蚀类型区 | 年均降雨量 | 年均温度 |
---|---|---|---|---|---|
紫色土 | ≥1.3 (高容重) | 坡耕地 | 西南土石山区 | 1000-2000 mm | ≥20 ℃ |
黑土 | <1.3 (低容重) | 草地 | 东北黑土区 | 500-1000 mm | 10-20 ℃ |
黄土 | 农田 | 南方红壤丘陵区 | ≤500 mm | 5-10 ℃ | |
红壤 | 林地 | 西北黄土高原区 | <5 ℃ |
表1 数据分组情况
Table1 Data grouping
土壤类型 | 土壤容重 | 土地利用方式 | 水力侵蚀类型区 | 年均降雨量 | 年均温度 |
---|---|---|---|---|---|
紫色土 | ≥1.3 (高容重) | 坡耕地 | 西南土石山区 | 1000-2000 mm | ≥20 ℃ |
黑土 | <1.3 (低容重) | 草地 | 东北黑土区 | 500-1000 mm | 10-20 ℃ |
黄土 | 农田 | 南方红壤丘陵区 | ≤500 mm | 5-10 ℃ | |
红壤 | 林地 | 西北黄土高原区 | <5 ℃ |
[1] |
ACOSTA-MARTÍNEZ V, MIKHA M M, VIGIL M F, 2007. Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat-fallow for the Central Great Plains[J]. Applied Soil Ecology, 37(1-2): 41-52.
DOI URL |
[2] |
BERGSTROM D W, MONREAL C M, KING D J, 1998. Sensitivity of soil enzyme activities to conservation practices[J]. Soil Science Society of America, 62(5): 1286-1295.
DOI URL |
[3] |
CHEN X Y, HUANG Y H, ZHAO Y, et al., 2015. Comparison of loess and purple rill erosions measured with volume replacement method[J]. Journal of Hydrology, 530: 476-483.
DOI URL |
[4] |
CHU H Y, GROGAN P, 2009. Soil microbial biomass, nutrient availability and nitrogen mineralization potential among vegetation-types in a low arctic tundra landscape[J]. Plant and Soil, 329(1): 411-420.
DOI URL |
[5] |
DOMISCH T, FINER L, LEHTO T, et al., 2002. Effect of soil temperature on nutrient allocation and mycorrhizas in scots pine seedlings[J]. Plant and Soil, 239(2): 173-185.
DOI URL |
[6] |
FANG X M, WANG Q L, ZHOU W M, et al., 2014. Land use effects on soil organic carbon, microbial biomass and microbial activity in Changbai Mountains of northeast China[J]. Chinese Geographical Science, 24(3): 297-306.
DOI URL |
[7] |
GUO W, LI Z W, SHEN W P, et al., 2012. Effects of soil and water conservation and its interactions with soil properties on soil productivity[J]. Journal of Central South University, 19(8): 2279-2285.
DOI URL |
[8] |
HEDGES L V, GUREVITCH J, CURTIS P S, 1999. The meta-analysis of response ratios in experimental ecology[J]. Ecology, 80(4): 1150-1156.
DOI URL |
[9] |
HERAS M D L, 2009. Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-Continental environment[J]. Geoderma, 149(3-4): 249-256.
DOI URL |
[10] |
HOU S, XIN M X, WANG L, et al., 2014. The effects of erosion on the microbial populations and enzyme activity in black soil of northeastern China[J]. Acta Ecologica Sinica, 34(6): 295-301.
DOI URL |
[11] |
HUANG J Q, LI Z W, ZENG G M, et al., 2013. Microbial responses to simulated water erosion in relation to organic carbon dynamics on a hilly cropland in subtropical China[J]. Ecological Engineering, 60: 67-75.
DOI URL |
[12] |
JOERGENSEN R G, BROOKES P C, JENKINSON D S, 1990. Survival of the soil microbial biomass at elevated temperatures[J]. Soil Biology & Biochemistry, 22(8): 1129-1136.
DOI URL |
[13] |
LAJEUNESSE M J, 2011. On the meta-analysis of response ratios for studies with correlated and multi-group designs[J]. Ecology, 92(11): 2049-2055.
PMID |
[14] |
LAL, 2019. Accelerated Soil erosion as a source of atmospheric CO2[J]. Soil and Tillage Research, 188: 35-40.
DOI |
[15] |
LEGOUT C, LEGU DOIS S, BISSONNAIS Y L, et al., 2005. Splash distance and size distributions for various soils[J]. Geoderma, 124(3-4): 279-292.
DOI URL |
[16] |
LEPCHA N T, DEVI N B, 2020. Effect of land use, season, and soil depth on soil microbial biomass carbon of eastern Himalayas[J]. Ecological Processes, 9(1): 1-14.
DOI |
[17] |
MA W M, LI Z W, DING K Y, et al., 2014. Effect of soil erosion on dissolved organic carbon redistribution in subtropical red soil under rainfall simulation[J]. Geomorphology, 226(1): 217-225.
DOI URL |
[18] |
MABUHAY J A, NAKAGOSHI N, ISAGI Y, 2004. Influence of erosion on soil microbial biomass, abundance and community diversity[J]. Land Degradation & Development, 15(2): 183-195.
DOI URL |
[19] |
MANDAL D, CHANDRAKALA M, ALAM N M, et al., 2021. Assessment of soil quality and productivity in different phases of soil erosion with the focus on land degradation neutrality in tropical humid region of India[J]. Catena, 204(8): 105440.
DOI URL |
[20] |
MARINARI S, MANCINELLI R, CAMPIGLIA E, et al., 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy[J]. Ecological Indicators, 6(4): 701-711.
DOI URL |
[21] |
NACHIMUTHU G, KING K, KRISTIANSEN P, et al., 2007. Comparison of methods for measuring soil microbial activity using cotton strips and a respirometer[J]. Journal of Microbiological Methods, 69(2): 322-329.
PMID |
[22] |
NIE X J, ZHANG J H, SU Z G, 2013. Dynamics of soil organic carbon and microbial biomass carbon in relation to water erosion and tillage erosion[J]. Plos One, 8(5): e64059.
DOI URL |
[23] |
PATERSON E, THORNTON B, MIDWOOD A J, et al., 2008. Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources[J]. Soil Biology & Biochemistry, 40(9): 2434-2440.
DOI URL |
[24] |
QIU L P, ZHANG Q, ZHU H S, et al., 2021. Erosion reduces soil microbial diversity, network complexity and multifunctionality[J]. The ISME Journal, 15(8): 2474-2489.
DOI |
[25] |
SCHIETTECATTE W, JIN K, YAO Y, et al., 2005. Influence of simulated rainfall on physical properties of a conventionally tilled loess soil[J]. Catena, 64(2-3): 209-221.
DOI URL |
[26] |
SUN T T, WANG Y G, HUI D F, et al., 2020. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient[J]. Soil Biology and Biochemistry, 148(1): 107905.
DOI URL |
[27] |
WANG B W, ZHAO X L, WANG X, et al., 2020. Spatial and temporal variability of soil erosion in the black soil region of northeast China from 2000 to 2015[J]. Environmental Monitoring and Assessment, 192(6): 1-14.
DOI |
[28] | WANG X L, HU F, LI H X, et al., 2006. Effects of different land used patterns on soil microbial biomass carbon and nitrogen in small red soil watershed[J]. Journal of Agro-environment Science, 25(1): 143-147. |
[29] | WANG X Z, SHENG L X, 2012. Effect of grazing intensity on microorganisms quantity and microbial biomass of soil in grassland under protection forest of Songnen Plain[J]. Journal of Animal and Veterinary Advances, 11(24): 4549-4552. |
[30] |
WANG X, CAMMERAAT E, CERLI C, et al., 2014. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition[J]. Soil Biology & Biochemistry, 72: 55-65.
DOI URL |
[31] |
XIAO H B, SHI Z H, LI Z W, et al., 2020. Responses of soil respiration and its temperature sensitivity to nitrogen addition: A meta-analysis in China[J]. Applied Soil Ecology, 150: 103484.
DOI URL |
[32] |
ZELLER V, BARDGETT R D, TAPPEINER U, 2001. Site and management effects on soil microbial properties of subalpine meadows: A study of land abandonment along a north-south gradient in the European Alps[J]. Soil Biology & Biochemistry, 33(4-5): 639-649.
DOI URL |
[33] | 樊军, 郝明德, 2003. 长期轮作施肥对土壤微生物碳氮的影响[J]. 水土保持研究, 10(1): 85-87. |
FAN J, HAO M D, 2003. Effects of long-term rotations and fertilizations on soil microbial biomass carbon and nitrogen[J]. Research of Soil and Water Conversation, 10(1): 85-87. | |
[34] | 范如芹, 梁爱珍, 杨学明, 等, 2011. 耕作与轮作方式对黑土有机碳和全氮储量的影响[J]. 土壤学报, 48(4): 788-796. |
FAN R Q, LIANG A Z, YANG X M, et al., 2011. Effects of tillage and rotation on soil organic carbon and total nitrogen stocks of black soil[J]. Acta Pedologica Sinica, 48(4): 788-796. | |
[35] | 冯志珍, 郑粉莉, 易祎, 2017. 薄层黑土微生物生物量碳氮对土壤侵蚀——沉积的响应[J]. 土壤学报, 54(6): 1332-1344. |
FENG Z Z, ZHENG F L, YI Y, 2017. Response of microbial biomass carbon and nitrogen to erosion and deposition in black soil thin in depth[J]. Acta Pedologica Sinica, 54(6): 1332-1344. | |
[36] | 韩学坤, 吴伯志, 安瞳昕, 等, 2010. 溅蚀研究进展[J]. 水土保持研究, 17(4): 46-51. |
HAN X K, WU B Z, AN T X, et al., 2010. Advance of research for splash erosion[J]. Research of Soil and Water Conversation, 17(4): 46-51. | |
[37] | 郝燕芳, 刘宝元, 杨扬, 等, 2018. 中国5种典型土壤的侵蚀泥沙粒径分布特征[J]. 水土保持学报, 32(2): 150-159. |
HAO Y F, LIU B Y, YANG Y, et al., 2018. Size distribution characteristics of sediments eroded from five typical soils in China[J]. Journal of Soil and Water Conservation, 32(2): 150-159. | |
[38] | 胡婵娟, 刘国华, 郭雷, 等, 2014. 土壤侵蚀对土壤理化性质及土壤微生物的影响[J]. 干旱区研究, 31(4): 702-708. |
HU C J, LIU G H, GUO L, et al., 2014. Effects of soil erosion on soil physicochemical properties and soil microorganisms[J]. Arid Zone Research, 31(4): 702-708. | |
[39] | 景可, 焦菊英, 2011. 基于全球气候变暖的土壤侵蚀态势初见[J]. 中国水土保持, 7(6): 7-9. |
JING K, JIAO J Y, 2011. Soil erosion situation based on global warming[J]. Soil and Water Conservation in China, 7(6): 7-9. | |
[40] | 刘若馨, 2017. 粘土矿物含量对崩岗土体抗剪强度的影响[D]. 福州: 福建农林大学:24-38. |
LIU R X, 2017. Effects of clay mineral content on soil shear strength[D]. Fuzhou: Fujian Agriculture and Forestry University:24-38. | |
[41] | 刘文娜, 吴文良, 王秀斌, 等, 2006. 不同土壤类型和农业用地方式对土壤微生物量碳的影响[J]. 植物营养与肥料学报, 12(3): 406-411. |
LIU W N, WU W L, WANG X B, et al., 2006. Effects of soil type and land use pattern on microbial biomass carbon[J]. Plant Nutrition and Fertilizer Science, 12(3): 406-411. | |
[42] | 龙训建, 翁薛柔, 叶琰, 等, 2022. 近10年重庆市降雨侵蚀力时空分布特征[J]. 西南大学学报(自然科学版), 44(6): 171-184. |
LONG X J, WENG X R, YE Y, et al., 2022. Temporal and spatial distribution characteristics of rainfall erosivity in Chongqing in recent 10 years[J]. Journal of Southwset University (Natural Science Edition), 44(6): 171-184. | |
[43] | 卢茜, 陈晖, 许燕萍, 等, 2010. 武夷山不同类型土壤活性碳含量对比研究[J]. 安徽农业科学, 38(14): 7471-7473. |
LU Q, CHENG H, XU Y P, et al., 2010. Comparison of content of different types of soil labile carbon in Wuyi Mountain[J]. Journal of Anhui Agricultural Sciences, 38(14): 7471-7473. | |
[44] |
马志良, 赵文强, 刘美, 等, 2019. 增温对高寒灌丛根际和非根际土壤微生物生物量碳氮的影响[J]. 应用生态学报, 30(6): 1893-1900.
DOI |
MA Z L, ZHAO W Q, LIU M, et al., 2019. Effects of warming on microbial biomass carbon and nitrogen in the rhizosphere and bulk soil in an alpine scrub ecosystem[J]. Chinese Journal of Applied Ecology, 30(6): 1893-1900. | |
[45] | 钱秋颖, 秦富仓, 李龙, 等, 2021. 自然降雨条件下坡面侵蚀地表粗糙度的空间异质性[J]. 水土保持学报, 35(3): 46-52. |
QIAN Q Y, QIN F C, LI L, et al., 2021. Spatial heterogeneity of surface roughness of slope erosion under natural rainfall[J]. Journal of Soil and Water Conservation, 35(3): 46-52. | |
[46] |
任凤玲, 张旭博, 孙楠, 等, 2018. 施用有机肥对中国农田土壤微生物量影响的整合分析[J]. 中国农业科学, 51(1): 119-128.
DOI |
REN F L, ZHANG X B, SUN N, et al., 2018. A meta-analysis of manure application impact on soil microbial biomass across China’s croplands[J]. Scientia Agricultura Sinica, 51(1): 119-128.
DOI |
|
[47] | 覃乾, 朱世硕, 夏彬, 等, 2019. 黄土丘陵区侵蚀坡面土壤微生物量碳时空动态及影响因素[J]. 环境科学, 40(4): 1973-1980. |
QIN Q, ZHU S S, XIA B, et al., 2019. Temporal and spatial dynamics of soil microbial biomass carbon and its influencing factors on an eroded slope in the Hilly Loess Plateau Region[J]. Environmental Science, 40(4): 1973-1980. | |
[48] | 王超华, 许明祥, 冉宜凡, 等, 2015. 黄土丘陵区不同有机碳水平侵蚀坡面土壤微生物量碳的分布特征[J]. 环境科学学报, 35(10): 3284-3291. |
WANG C H, XU M X, RAN Y F, et al., 2015. Distribution of soil microbial biomass on eroded sloping land with different organic carbon contents in the hilly loess plateau region[J]. Acta Scientiae Circumstantiae, 35(10): 3284-3291. | |
[49] | 王群, 尹飞, 郝四平, 等, 2009. 下层土壤容重对玉米根际土壤微生物数量及微生物量碳、氮的影响[J]. 生态学报, 29(6): 3096-3104. |
WANG Q, YIN F, HAO S P, et al., 2009. Effects of subsoil bulk density on rhizospheric soil microbial population,microbial biomass carbon and nitrogen of corn field[J]. Acta Ecologica Sinica, 29(6): 3096-3104. | |
[50] | 文小琴, 舒英格, 何欢, 2018. 喀斯特山区土地不同利用方式的土壤养分及微生物特征[J]. 西南农业学报, 31(6): 1227-1233. |
WEN X Q, SHU Y G, HE H, 2018. Soil nutrients and microbial characteristics under different land utilization patterns in karst mountainous area[J]. Southwest China Journal of Agricultural Sciences, 31(6): 1227-1233. | |
[51] | 吴洁玲, 查轩, 陈世发, 等, 2021. 1951—2018年韶关不同量级降雨侵蚀力变化[J]. 水土保持学报, 35(4): 21-26. |
WU J L, ZHA X, CHEN S F, et al., 2021. Variations of rainfall erosivity of different magnitudes in Shaoguan from 1951 to 2018[J]. Journal of Soil and Water Conservation, 35(4): 21-26. | |
[52] | 熊泳, 文星跃, 苟明忠, 等, 2022. 成都粘土可蚀性K值及其对土地利用的响应研究[J]. 西华师范大学学报 (自然科学版), 43(2): 202-209. |
XIONG Y, WEN X Y, GOU M Z, et al., 2022. Soil erodibility k value of Chengdu clay and its response to land utilization[J]. Journal of China West Normal University (Natural Sciences), 43(2): 202-209. | |
[53] | 徐华勤, 章家恩, 冯丽芳, 等, 2009. 广东省不同土地利用方式对土壤微生物量碳氮的影响[J]. 生态学报, 29(8): 4112-4118. |
XU H Q, ZHANG J E, FENG L F, et al., 2009. Effects of different land use patterns on microbial biomass carbon and nitrogen in Guangdong province[J]. Acta Ecologica Sinica, 29(8): 4112-4118. | |
[54] | 张光辉, 杨扬, 刘瑛娜, 等, 2022. 东北黑土区土壤侵蚀研究进展与展望[J]. 水土保持学报, 36(2): 1-12. |
ZHANG G H, YANG Y, LIU Y N, et al., 2022. Advances and prospects of soil erosion research in the black soil region of northeast China[J]. Journal of Soil and Water Conservation, 36(2): 1-12. | |
[55] |
张彦军, 党水纳, 任媛媛, 等, 2020. 基于Meta分析的土壤呼吸对凋落物输入的响应[J]. 生态环境学报, 29(3): 447-456.
DOI URL |
ZHANG Y J, DANG S N, REN Y Y, et al., 2020. Response of soil respiration to surface litter input based on a meta-analysis[J]. Ecology and Environmental Sciences, 29(3): 447-456. | |
[56] | 赵亚丽, 郭海斌, 薛志伟, 等, 2015. 耕作方式与秸秆还田对土壤微生物数量、酶活性及作物产量的影响[J]. 应用生态学报, 26(6): 1785-1792. |
ZHAO Y L, GUO H B, XUE Z W, et al., 2015. Effects of tillage and straw returning on microorganism quantity, enzyme activities in soils and grain yield[J]. Chinese Journal of Applied Ecology, 26(6): 1785-1792. | |
[57] |
郑海峰, 陈亚梅, 杨林, 等, 2017. 高山林线土壤微生物群落结构对模拟增温的响应[J]. 应用生态学报, 28(9): 2840-2848.
DOI |
ZHENG H F, CHEN Y M, YANG L, et al., 2017. Responses of soil microbial community structure to simulated warming in alpine timberline in western Sichuan, China[J]. Chinese Journal of Applied Ecology, 28(9): 2840-2848.
DOI |
|
[58] | 郑世清, 周佩华, 1988. 土壤容重和降雨强度与土壤侵蚀和入渗关系的定量分析[J]. 水土保持研究 (1): 53-56. |
ZHENG S Q, ZHOU P H, 1988. A quantitative study of relationship between soil density and soil erosion[J]. Research of Soil and Water Conversation (1): 53-56. | |
[59] | 朱世硕, 夏彬, 郝旺林, 等, 2020. 黄土区侵蚀坡面土壤微生物群落功能多样性研究[J]. 中国环境科学, 40(9): 4099-4105. |
ZHU S S, XIA B, HAO W L, et al., 2020. Functional diversity of soil microbial community on eroded slope in the Loess Plateau Region[J]. China Environmental Science, 40(9): 4099-4105. |
[1] | 王超, 杨倩楠, 张池, 刘同旭, 张晓龙, 陈静, 刘科学. 丹霞山不同土地利用方式土壤磷组分特征及其有效性[J]. 生态环境学报, 2023, 32(5): 889-897. |
[2] | 李建辉, 党争, 陈琳. 黄河几字弯都市圈PM2.5时空特征及影响因素分析[J]. 生态环境学报, 2023, 32(4): 697-705. |
[3] | 张林, 齐实, 周飘, 伍冰晨, 张岱, 张岩. 北京山区针阔混交林地土壤有机碳含量的影响因素研究[J]. 生态环境学报, 2023, 32(3): 450-458. |
[4] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[5] | 郝金虎, 韦玮, 李胜男, 马牧源, 李肖夏, 杨洪国, 姜琦宇, 柴沛东. 基于GEE平台的京津冀长时序水体时空格局及其影响因素[J]. 生态环境学报, 2023, 32(3): 556-566. |
[6] | 张莉, 李铖, 谭皓泽, 韦家怡, 程炯, 彭桂香. 广州典型城市林地对大气颗粒物的削减效应及影响因素[J]. 生态环境学报, 2023, 32(2): 341-350. |
[7] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[8] | 袁林江, 李梦博, 冷钢, 钟冰冰, 夏大朋, 王景华. 厌氧环境下硫酸盐还原与氨氧化的协同作用[J]. 生态环境学报, 2023, 32(1): 207-214. |
[9] | 刘希林, 卓瑞娜. 崩岗崩积体坡面初始产流时间影响因素及其临界阈值[J]. 生态环境学报, 2023, 32(1): 36-46. |
[10] | 苏泳松, 宋松, 陈叶, 叶子强, 钟润菲, 王昭尧. 珠江三角洲人类活动净氮输入时空特征及其影响因素[J]. 生态环境学报, 2022, 31(8): 1599-1609. |
[11] | 陈文裕, 夏丽华, 徐国良, 余世钦, 陈行, 陈金凤. 2000—2020年珠江流域NDVI动态变化及影响因素研究[J]. 生态环境学报, 2022, 31(7): 1306-1316. |
[12] | 柯奇画, 张科利. 基于文献计量的中国水土流失尺度效应研究进展[J]. 生态环境学报, 2022, 31(7): 1489-1498. |
[13] | 段文军, 李达, 李冲. 5种不同林龄尾巨桉人工林林下植物多样性及其影响因素分析[J]. 生态环境学报, 2022, 31(5): 857-864. |
[14] | 杜雪, 王海燕, 邹佳何, 孟海, 赵晗, 崔雪, 董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素[J]. 生态环境学报, 2022, 31(4): 663-669. |
[15] | 刘沙沙, 陈诺, 杨晓茵. 微塑料对有机污染物的吸附-解吸特性及其复合毒性效应研究进展[J]. 生态环境学报, 2022, 31(3): 610-620. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||