生态环境学报 ›› 2022, Vol. 31 ›› Issue (1): 160-169.DOI: 10.16258/j.cnki.1674-5906.2022.01.018
收稿日期:
2021-09-23
出版日期:
2022-01-18
发布日期:
2022-03-10
通讯作者:
*作者简介:
王飞(1980年生),男,副教授,博士,主要研究方向为生态环境保护与治理。E-mail: nemo@sxu.edu.cn
基金资助:
Received:
2021-09-23
Online:
2022-01-18
Published:
2022-03-10
摘要:
通过对污灌区农田土壤多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)的分布特征、污染程度及来源进行解析,深入了解污水灌溉引发的土壤污染问题,实现污水灌溉农田土壤的污染预警和科学合理利用。在太原污灌农田共采集110个土壤样品,使用气相色谱-质谱仪(Gas Chromatography-Mass Spectrometery,GC-MS)分析美国环境保护署(U.S. Environmental Protection Agency,USEPA)优控的16种PAHs组成与质量分数,运用主成分分析/多元线性回归法(Principal Component Analysis and Multiple Linear Regression,PCA/MLR)定量分析农田土壤中PAHs的来源。结果表明,污灌区农田土壤中16种PAHs质量分数平均值为3197.57 μg∙kg-1(质量分数范围为214.50—13511.50 µg∙kg-1),以4—6环PAHs为主。PAHs来源分析表明,小店区农田土壤中PAHs主要来源及其贡献率分别为化石燃料和炼焦66.9%、焦炭源33.1%,晋源区分别为化石燃料53.2%、煤燃烧和炼焦的混合源46.8%,清徐县分别为化石燃料88%、煤木材燃烧和炼焦的混合源12%。平均效应区间中值商法(Mean Effect Range Median-Quotient,QMERM)生态风险评价结果表明,研究区农田土壤中PAHs为低毒性或中低毒性。毒性当量法(Toxic Equivalent Quantity,QTE)进一步分析指出,污灌区农田土壤PAHs的QTE值排序为小店区>晋源区>清徐县,其中7种致癌多环芳烃的QTE值占多环芳烃总量的95%以上,是PAHs毒性风险的主要来源;苯并a芘(Benzo-a-Pyrene,BaP)作为毒性最强的单体之一,其QTE的贡献值为44%—48%,应重点关注。
中图分类号:
王飞, 赵颖. 太原市污灌区农田土壤中多环芳烃污染特征及生态风险评价[J]. 生态环境学报, 2022, 31(1): 160-169.
WANG Fei, ZHAO Ying. Pollution Characteristics and Risk Assessment of PAHs in Agricultural Soil from Sewage Irrigation Area of Taiyuan City, Shanxi Province[J]. Ecology and Environment, 2022, 31(1): 160-169.
化合物 Compounds | 缩写 Abbreviation | 化合物 Compounds | 缩写 Abbreviation |
---|---|---|---|
萘 | NaP | 苯并[a]蒽 | BaA |
苊烯 | Acy | 䓛 | Chr |
苊 | Ace | 苯并[b]荧蒽 | BbF |
芴 | Flu | 苯并[k]荧蒽 | BkF |
菲 | Phe | 苯并[a]芘 | BaP |
蒽 | Ant | 茚并[1, 2, 3]芘 | InP |
荧蒽 | Flt | 二苯并[a, h]蒽 | BA |
芘 | Pyr | 苯并[ghi]苝 | BP |
表1 PAHs标样成分
Table 1 Standard sample composition of PAHs
化合物 Compounds | 缩写 Abbreviation | 化合物 Compounds | 缩写 Abbreviation |
---|---|---|---|
萘 | NaP | 苯并[a]蒽 | BaA |
苊烯 | Acy | 䓛 | Chr |
苊 | Ace | 苯并[b]荧蒽 | BbF |
芴 | Flu | 苯并[k]荧蒽 | BkF |
菲 | Phe | 苯并[a]芘 | BaP |
蒽 | Ant | 茚并[1, 2, 3]芘 | InP |
荧蒽 | Flt | 二苯并[a, h]蒽 | BA |
芘 | Pyr | 苯并[ghi]苝 | BP |
化合物 Compounds | 环数 Ring | 最小值 Min. | 最大值 Max. | 平均值 Average | 中位数 Median |
---|---|---|---|---|---|
NaP | 2 | 14.00 | 1358.40 | 131.86 | 99.30 |
Acy | 3 | 3.10 | 784.34 | 49.55 | 18.60 |
Ace | 3 | 1.50 | 476.35 | 36.84 | 14.46 |
Flu | 3 | 8.10 | 1100.88 | 97.72 | 33.22 |
Phe | 3 | 56.90 | 2864.50 | 366.67 | 223.85 |
Ant | 3 | 3.50 | 980.00 | 96.83 | 31.30 |
Flt | 4 | 21.90 | 2234.90 | 414.13 | 255.90 |
Pyr | 4 | 17.10 | 1805.50 | 302.05 | 171.19 |
BaA | 4 | 6.80 | 1236.40 | 198.00 | 113.25 |
Chr | 4 | 15.50 | 1407.30 | 320.07 | 199.03 |
BbF | 5 | 15.20 | 1525.60 | 376.12 | 236.15 |
BkF | 5 | 7.00 | 532.00 | 120.37 | 68.98 |
BaP | 5 | 9.10 | 531.40 | 178.97 | 117.20 |
BA | 5 | 4.60 | 833.10 | 112.10 | 65.93 |
InP | 6 | 10.30 | 969.50 | 190.13 | 126.63 |
BP | 6 | 10.20 | 813.90 | 196.70 | 133.70 |
ƩPAHs | — | 214.50 | 13511.50 | 3197.57 | 2127.75 |
表2 农田土壤中多环芳烃质量分数
Table 2 PAHs concentrations in farmland soil µg∙kg-1
化合物 Compounds | 环数 Ring | 最小值 Min. | 最大值 Max. | 平均值 Average | 中位数 Median |
---|---|---|---|---|---|
NaP | 2 | 14.00 | 1358.40 | 131.86 | 99.30 |
Acy | 3 | 3.10 | 784.34 | 49.55 | 18.60 |
Ace | 3 | 1.50 | 476.35 | 36.84 | 14.46 |
Flu | 3 | 8.10 | 1100.88 | 97.72 | 33.22 |
Phe | 3 | 56.90 | 2864.50 | 366.67 | 223.85 |
Ant | 3 | 3.50 | 980.00 | 96.83 | 31.30 |
Flt | 4 | 21.90 | 2234.90 | 414.13 | 255.90 |
Pyr | 4 | 17.10 | 1805.50 | 302.05 | 171.19 |
BaA | 4 | 6.80 | 1236.40 | 198.00 | 113.25 |
Chr | 4 | 15.50 | 1407.30 | 320.07 | 199.03 |
BbF | 5 | 15.20 | 1525.60 | 376.12 | 236.15 |
BkF | 5 | 7.00 | 532.00 | 120.37 | 68.98 |
BaP | 5 | 9.10 | 531.40 | 178.97 | 117.20 |
BA | 5 | 4.60 | 833.10 | 112.10 | 65.93 |
InP | 6 | 10.30 | 969.50 | 190.13 | 126.63 |
BP | 6 | 10.20 | 813.90 | 196.70 | 133.70 |
ƩPAHs | — | 214.50 | 13511.50 | 3197.57 | 2127.75 |
研究区域 Area | PAHs种类 Variaties of PAHs | 质量分数范围 Ranges of concentrations | 平均值 Averages | 参考文献 References |
---|---|---|---|---|
沈阳污灌区 | — | 950-2790 | 2133 | Song et al., |
沈抚石油类污灌区 | — | 787-24600 | 4950 | 曲健等, |
乌鲁木齐某污灌区 | 16 | 8720-10926 | 9992 | 王雪萍等, |
辽宁浑蒲灌区 | 16 | 620-1040 | 795 | 高昌源等, |
太原污灌区 | 16 | 214-13511 | 3198 | 本研究 |
表3 相关研究区域农田土壤中PAHs质量分数的对比分析
Table 3 PAHs concentrations in other sewage irrigation areas µg∙kg-1
研究区域 Area | PAHs种类 Variaties of PAHs | 质量分数范围 Ranges of concentrations | 平均值 Averages | 参考文献 References |
---|---|---|---|---|
沈阳污灌区 | — | 950-2790 | 2133 | Song et al., |
沈抚石油类污灌区 | — | 787-24600 | 4950 | 曲健等, |
乌鲁木齐某污灌区 | 16 | 8720-10926 | 9992 | 王雪萍等, |
辽宁浑蒲灌区 | 16 | 620-1040 | 795 | 高昌源等, |
太原污灌区 | 16 | 214-13511 | 3198 | 本研究 |
PAHs | 小店区 Xiaodian area | 晋源区 Jinyuan area | 清徐县 Qingxu area | |||||
---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |||
NaP | 0.414 | 0.135 | -0.057 | 0.897 | -0.257 | 0.25 | ||
Ace | -0.043 | 0.923 | 0.039 | 0.944 | 0.737 | 0.413 | ||
Acy | -0.04 | 0.889 | 0.844 | 0.333 | 0.09 | 0.92 | ||
Flu | -0.098 | 0.983 | 0.65 | 0.615 | 0.369 | 0.822 | ||
Phe | 0.553 | 0.784 | 0.322 | 0.876 | 0.893 | 0.156 | ||
Ant | 0.007 | 0.995 | 0.172 | 0.96 | 0.902 | 0.27 | ||
Flt | 0.817 | 0.542 | 0.466 | 0.841 | 0.965 | 0.078 | ||
Pyr | 0.954 | 0.244 | 0.477 | 0.819 | 0.944 | 0.17 | ||
BaA | 0.969 | -0.111 | 0.503 | 0.801 | 0.973 | 0.087 | ||
Chr | 0.979 | -0.172 | 0.68 | 0.561 | 0.932 | 0.08 | ||
BbF | 0.973 | -0.146 | 0.768 | 0.175 | 0.948 | 0.085 | ||
BkF | 0.986 | 0.012 | 0.892 | 0.079 | 0.968 | 0.118 | ||
BaP | 0.986 | 0.123 | 0.874 | 0.16 | 0.977 | 0.046 | ||
BA | 0.967 | -0.201 | 0.908 | 0.227 | 0.968 | 0.085 | ||
InP | 0.99 | -0.078 | 0.887 | 0.233 | 0.976 | 0.069 | ||
BP | 0.963 | 0.236 | 0.909 | 0.139 | 0.955 | 0.087 | ||
特征值 | 9.698 | 4.767 | 7.018 | 6.395 | 11.596 | 1.944 | ||
方差贡献率% | 60.615 | 29.795 | 43.860 | 39.970 | 72.474 | 12.150 |
表4 PAHs的旋转成分矩阵
Table 4 Rotational component matrix of PAHs
PAHs | 小店区 Xiaodian area | 晋源区 Jinyuan area | 清徐县 Qingxu area | |||||
---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |||
NaP | 0.414 | 0.135 | -0.057 | 0.897 | -0.257 | 0.25 | ||
Ace | -0.043 | 0.923 | 0.039 | 0.944 | 0.737 | 0.413 | ||
Acy | -0.04 | 0.889 | 0.844 | 0.333 | 0.09 | 0.92 | ||
Flu | -0.098 | 0.983 | 0.65 | 0.615 | 0.369 | 0.822 | ||
Phe | 0.553 | 0.784 | 0.322 | 0.876 | 0.893 | 0.156 | ||
Ant | 0.007 | 0.995 | 0.172 | 0.96 | 0.902 | 0.27 | ||
Flt | 0.817 | 0.542 | 0.466 | 0.841 | 0.965 | 0.078 | ||
Pyr | 0.954 | 0.244 | 0.477 | 0.819 | 0.944 | 0.17 | ||
BaA | 0.969 | -0.111 | 0.503 | 0.801 | 0.973 | 0.087 | ||
Chr | 0.979 | -0.172 | 0.68 | 0.561 | 0.932 | 0.08 | ||
BbF | 0.973 | -0.146 | 0.768 | 0.175 | 0.948 | 0.085 | ||
BkF | 0.986 | 0.012 | 0.892 | 0.079 | 0.968 | 0.118 | ||
BaP | 0.986 | 0.123 | 0.874 | 0.16 | 0.977 | 0.046 | ||
BA | 0.967 | -0.201 | 0.908 | 0.227 | 0.968 | 0.085 | ||
InP | 0.99 | -0.078 | 0.887 | 0.233 | 0.976 | 0.069 | ||
BP | 0.963 | 0.236 | 0.909 | 0.139 | 0.955 | 0.087 | ||
特征值 | 9.698 | 4.767 | 7.018 | 6.395 | 11.596 | 1.944 | ||
方差贡献率% | 60.615 | 29.795 | 43.860 | 39.970 | 72.474 | 12.150 |
研究区 Study area | 模型 Model | 回归 Regression | 残差 Residual | 总计 Total |
---|---|---|---|---|
小店区 | 平方和 | 33.98 | 0.02 | 34 |
df | 2 | 32 | 34 | |
均方 | 16.99 | 0.001 | ||
F | 27796.467 | |||
Sig. | 0.000a | |||
晋源区 | 平方和 | 33.895 | 0.105 | 34 |
df | 2 | 32 | 34 | |
均方 | 16.948 | 0.003 | ||
F | 5176.184 | |||
Sig. | 0.000a | |||
清徐县 | 平方和 | 38.59 | 0.41 | 39 |
df | 2 | 37 | 39 | |
均方 | 19.295 | 0.011 | ||
F | 1741.227 | |||
Sig. | 0.000a |
表5 回归方程方差分析
Table 5 Variance analysis of regression equation
研究区 Study area | 模型 Model | 回归 Regression | 残差 Residual | 总计 Total |
---|---|---|---|---|
小店区 | 平方和 | 33.98 | 0.02 | 34 |
df | 2 | 32 | 34 | |
均方 | 16.99 | 0.001 | ||
F | 27796.467 | |||
Sig. | 0.000a | |||
晋源区 | 平方和 | 33.895 | 0.105 | 34 |
df | 2 | 32 | 34 | |
均方 | 16.948 | 0.003 | ||
F | 5176.184 | |||
Sig. | 0.000a | |||
清徐县 | 平方和 | 38.59 | 0.41 | 39 |
df | 2 | 37 | 39 | |
均方 | 19.295 | 0.011 | ||
F | 1741.227 | |||
Sig. | 0.000a |
研究区 Study area | 模型 Model | 常量 Constant | 回归因子得分REGR factor score 1 for analysis 2 | 回归因子得分REGR factor score 2 for analysis 2 | |
---|---|---|---|---|---|
小店区 | 非标准化系数 | B | 1.10×10-16 | 0.896 | 0.443 |
标准误差 | 0.006 | 0.004 | 0.004 | ||
标准系数 | Beta | 0.896 | 0.443 | ||
t | 0 | 211.405 | 104.407 | ||
Sig. | 1 | 0 | 0 | ||
晋源区 | 非标准化系数 | B | -7.45×10-17 | 0.75 | 0.659 |
标准误差 | 0.01 | 0.01 | 0.01 | ||
标准系数 | Beta | 0.75 | 0.659 | ||
t | 0 | 76.463 | 67.125 | ||
Sig. | 1 | 0 | 0 | ||
清徐县 | 非标准化系数 | B | -3.15×10-16 | 0.986 | 0.134 |
标准误差 | 0.017 | 0.017 | 0.017 | ||
标准系数 | Beta | 0.986 | 0.134 | ||
t | 0 | 58.476 | 7.94 | ||
Sig. | 1 | 0 | 0 |
表6 回归方程系数
Table 6 Coefficients of the regression model
研究区 Study area | 模型 Model | 常量 Constant | 回归因子得分REGR factor score 1 for analysis 2 | 回归因子得分REGR factor score 2 for analysis 2 | |
---|---|---|---|---|---|
小店区 | 非标准化系数 | B | 1.10×10-16 | 0.896 | 0.443 |
标准误差 | 0.006 | 0.004 | 0.004 | ||
标准系数 | Beta | 0.896 | 0.443 | ||
t | 0 | 211.405 | 104.407 | ||
Sig. | 1 | 0 | 0 | ||
晋源区 | 非标准化系数 | B | -7.45×10-17 | 0.75 | 0.659 |
标准误差 | 0.01 | 0.01 | 0.01 | ||
标准系数 | Beta | 0.75 | 0.659 | ||
t | 0 | 76.463 | 67.125 | ||
Sig. | 1 | 0 | 0 | ||
清徐县 | 非标准化系数 | B | -3.15×10-16 | 0.986 | 0.134 |
标准误差 | 0.017 | 0.017 | 0.017 | ||
标准系数 | Beta | 0.986 | 0.134 | ||
t | 0 | 58.476 | 7.94 | ||
Sig. | 1 | 0 | 0 |
地区 Study area | QMERM | QMERM均值 Mean of QMERM | 污染程度 Pollution level | 样品比例 Sample proportion/% | |||
---|---|---|---|---|---|---|---|
<0.1 | 0.1<QMERM<0.5 | 0.5<QMERM <1.5 | QMERM>1.5 | ||||
小店区 | 0.05-0.40 | 0.2 | 中低毒性 | 25.71 | 74.29 | 0.00 | 0.00 |
晋源区 | 0.02-0.46 | 0.18 | 中低毒性 | 31.43 | 68.57 | 0.00 | 0.00 |
清徐县 | 0.01-0.26 | 0.04 | 低毒性 | 97.50 | 2.50 | 0.00 | 0.00 |
表7 15种PAHs潜在生态风险评估结果
Table 7 Potential ecological risk assessment of 15 PAHs
地区 Study area | QMERM | QMERM均值 Mean of QMERM | 污染程度 Pollution level | 样品比例 Sample proportion/% | |||
---|---|---|---|---|---|---|---|
<0.1 | 0.1<QMERM<0.5 | 0.5<QMERM <1.5 | QMERM>1.5 | ||||
小店区 | 0.05-0.40 | 0.2 | 中低毒性 | 25.71 | 74.29 | 0.00 | 0.00 |
晋源区 | 0.02-0.46 | 0.18 | 中低毒性 | 31.43 | 68.57 | 0.00 | 0.00 |
清徐县 | 0.01-0.26 | 0.04 | 低毒性 | 97.50 | 2.50 | 0.00 | 0.00 |
多环芳烃 PAHs | 小店区 Xiaodian area | 晋源区 Jinyuan area | 清徐县 Qingxu area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
最小值 Min. | 最大值 Max. | 平均值 Mean | 最小值 Min. | 最大值 Max. | 平均值 Mean | 最小值 Min. | 最大值 Max. | 平均值 Mean | |||
萘 | 0.03 | 0.35 | 0.15 | 0.05 | 1.36 | 0.2 | 0.01 | 0.22 | 0.05 | ||
苊 | 0 | 0.48 | 0.07 | 0 | 0.21 | 0.04 | 0 | 0.05 | 0.01 | ||
苊烯 | 0.01 | 0.78 | 0.11 | 0 | 0.28 | 0.04 | 0 | 0.04 | 0.01 | ||
芴 | 0.01 | 1.1 | 0.19 | 0.01 | 0.35 | 0.09 | 0.01 | 0.05 | 0.02 | ||
菲 | 0.13 | 1.2 | 0.44 | 0.06 | 2.86 | 0.56 | 0.06 | 0.52 | 0.13 | ||
蒽 | 0.18 | 7.28 | 1.63 | 0.05 | 9.8 | 1.24 | 0.04 | 0.87 | 0.15 | ||
荧蒽 | 0.12 | 1.54 | 0.63 | 0.04 | 2.23 | 0.54 | 0.02 | 0.99 | 0.11 | ||
芘 | 0.08 | 1.21 | 0.45 | 0.03 | 1.81 | 0.39 | 0.02 | 0.77 | 0.09 | ||
苯并(a)蒽 | 5.81 | 95.89 | 27.37 | 1.76 | 123.64 | 28.41 | 0.68 | 52.2 | 5.64 | ||
䓛 | 1.3 | 12.87 | 4.7 | 0.39 | 14.07 | 4.21 | 0.16 | 7.19 | 1 | ||
苯并(b)荧蒽 | 15.52 | 152.56 | 60.73 | 4.36 | 133 | 42.77 | 1.52 | 86.25 | 12.88 | ||
苯并(k)荧蒽 | 4.4 | 53.2 | 20.54 | 1.46 | 45.71 | 12.96 | 0.7 | 29.71 | 3.79 | ||
苯并(a)芘 | 62 | 522 | 290.36 | 20.4 | 531.4 | 207.09 | 9.1 | 498.5 | 56.89 | ||
茚并(123-c, d)芘 | 5.84 | 90.28 | 29.51 | 2.47 | 96.95 | 24.34 | 1.03 | 45.44 | 5.17 | ||
二苯并(a, h)蒽 | 34.2 | 534 | 159.66 | 14.3 | 833.1 | 150.46 | 4.6 | 255 | 31.91 | ||
苯并[g, h, i]苝 | 0.59 | 8.11 | 3.04 | 0.26 | 8.14 | 2.49 | 0.1 | 4.27 | 0.57 | ||
16PAHs | 130.54 | 1774.58 | 599.58 | 45.64 | 2022.37 | 475.83 | 18.08 | 981.83 | 118.43 | ||
7carPAHs | 129.07 | 1460.8 | 592.87 | 45.14 | 1777.87 | 470.24 | 17.79 | 974.29 | 117.28 |
表8 16种PAHs的毒性当量浓度
Table 8 Toxic equivalent concentration of 16 PAHs μg∙kg-1
多环芳烃 PAHs | 小店区 Xiaodian area | 晋源区 Jinyuan area | 清徐县 Qingxu area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
最小值 Min. | 最大值 Max. | 平均值 Mean | 最小值 Min. | 最大值 Max. | 平均值 Mean | 最小值 Min. | 最大值 Max. | 平均值 Mean | |||
萘 | 0.03 | 0.35 | 0.15 | 0.05 | 1.36 | 0.2 | 0.01 | 0.22 | 0.05 | ||
苊 | 0 | 0.48 | 0.07 | 0 | 0.21 | 0.04 | 0 | 0.05 | 0.01 | ||
苊烯 | 0.01 | 0.78 | 0.11 | 0 | 0.28 | 0.04 | 0 | 0.04 | 0.01 | ||
芴 | 0.01 | 1.1 | 0.19 | 0.01 | 0.35 | 0.09 | 0.01 | 0.05 | 0.02 | ||
菲 | 0.13 | 1.2 | 0.44 | 0.06 | 2.86 | 0.56 | 0.06 | 0.52 | 0.13 | ||
蒽 | 0.18 | 7.28 | 1.63 | 0.05 | 9.8 | 1.24 | 0.04 | 0.87 | 0.15 | ||
荧蒽 | 0.12 | 1.54 | 0.63 | 0.04 | 2.23 | 0.54 | 0.02 | 0.99 | 0.11 | ||
芘 | 0.08 | 1.21 | 0.45 | 0.03 | 1.81 | 0.39 | 0.02 | 0.77 | 0.09 | ||
苯并(a)蒽 | 5.81 | 95.89 | 27.37 | 1.76 | 123.64 | 28.41 | 0.68 | 52.2 | 5.64 | ||
䓛 | 1.3 | 12.87 | 4.7 | 0.39 | 14.07 | 4.21 | 0.16 | 7.19 | 1 | ||
苯并(b)荧蒽 | 15.52 | 152.56 | 60.73 | 4.36 | 133 | 42.77 | 1.52 | 86.25 | 12.88 | ||
苯并(k)荧蒽 | 4.4 | 53.2 | 20.54 | 1.46 | 45.71 | 12.96 | 0.7 | 29.71 | 3.79 | ||
苯并(a)芘 | 62 | 522 | 290.36 | 20.4 | 531.4 | 207.09 | 9.1 | 498.5 | 56.89 | ||
茚并(123-c, d)芘 | 5.84 | 90.28 | 29.51 | 2.47 | 96.95 | 24.34 | 1.03 | 45.44 | 5.17 | ||
二苯并(a, h)蒽 | 34.2 | 534 | 159.66 | 14.3 | 833.1 | 150.46 | 4.6 | 255 | 31.91 | ||
苯并[g, h, i]苝 | 0.59 | 8.11 | 3.04 | 0.26 | 8.14 | 2.49 | 0.1 | 4.27 | 0.57 | ||
16PAHs | 130.54 | 1774.58 | 599.58 | 45.64 | 2022.37 | 475.83 | 18.08 | 981.83 | 118.43 | ||
7carPAHs | 129.07 | 1460.8 | 592.87 | 45.14 | 1777.87 | 470.24 | 17.79 | 974.29 | 117.28 |
[1] |
AGARWAL T, KHILLARE P S, SHRIDHAR V, et al., 2008. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India[J]. Journal of Hazardous Materials, 163(2-3): 1033-1039.
DOI URL |
[2] |
ATHANASIOS V, KONSTANTINOS F, THOMAIS V, et al., 2006. Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece)[J]. Chemosphere, 65(5): 760-768.
DOI URL |
[3] | CHEN Y, ZHANG J Q, ZHANG F, et al., 2017. Polycyclic aromatic hydrocarbons in farmland soils around main reservoirs of Jilin Province, China: Occurrence, sources and potential human health risk[J]. Environmental Geochemistry & Health, 40(2-3): 1-12. |
[4] | FU X W, LI T Y, JI L, et al., 2018. Occurrence, sources and health risk of polycyclic aromatic hydrocarbons in soils around oil wells in the border regions between oil fields and suburbs[J]. Ecotoxicology & Environmental Safety, 157: 276-284. |
[5] |
GAO Y Z, ZENG Y C, SHEN Q, et al., 2009. Fractionation of polycyclic aromatic hydrocarbon residues in soils[J]. Journal of Hazardous Materials, 172(2-3): 897-903.
DOI URL |
[6] | GE W CHENG Q Q, CHAI C, et al., 2017. Pollution characteristics and source analysis of polycyclic aromatic hydrocarbons in agricultural soils from Shandong[J]. Environmental Science, 38(4): 1587-1596. |
[7] |
KAVOURAS I G, KOUTRAKIS P, TSAPAKIS M, et al., 2001. Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods[J]. Environmental Science & Technology, 35(11): 2288-2294.
DOI URL |
[8] |
KHALILI N R, SCHEFF P A, HOLSEN T M., 1995. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions[J]. Atmospheric Environment, 29(4): 533-542.
DOI URL |
[9] |
KOHLER M, KUNNIGER T, SCHMID P, et al., 2000. Inventory and emission factors of creosote, polycyclic aromatic hydrocarbons (PAHs), and phenols from railroad ties treated with creosote[J]. Environmental Science & Technology, 34(22): 4766-4772.
DOI URL |
[10] |
LARSEN R K, BAKER J E, 2003. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods[J]. Environmental Science Technology, 37(9): 1873-1881.
DOI URL |
[11] |
LEE Y N, LEE S, KIM J S, et al., 2019. Chemical analysis techniques and investigation of polycyclic aromatic hydrocarbons in fruit, vegetables and meats and their products[J]. Food Chemistry, 277: 156-161.
DOI URL |
[12] | LIN C, LIU J L, WANG R M, et al., 2013. Polycyclic aromatic hydrocarbons in surface soils of Kunming, China: Concentrations, distribution, sources, and potential risk[J]. Journal of Soil Contamination, 22(7): 753-766. |
[13] |
LONG E R, MACDONALD D, SMITH S L, 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments[J]. Environmental Management, 19(1): 81-97.
DOI URL |
[14] |
MCCREADY S, BIRCH G F, LONG E R, et al., 2006. Predictive abilities of numerical sediment quality guidelines in Sydney Harbour, Australia, and vicinity[J]. Environment International, 32(5): 638-649.
DOI URL |
[15] |
MEN B, HE M C, TAN L, et al., 2009. Distributions of polycyclic aromatic hydrocarbons in the Daliao River estuary of Liaodong Bay, Bohai Sea (China)[J]. Marine Pollution Bulletin, 58(6): 818-826.
DOI URL |
[16] |
RAVINDRA K, BENCS L, WAUTERS E, et al., 2006. Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities[J]. Atmospheric Environment, 40(4): 771-785.
DOI URL |
[17] |
REIKO K, ROBERT A O, RANDY L, et al., 2008. Polycyclic aromatic hydrocarbons in edible grain: A pilot study of agricultural crops as a human exposure pathway for environmental contaminants using wheat as a model crop[J]. Environmental Research, 107(2): 145-151.
DOI URL |
[18] |
SONG Y F, WILKE B M, SONG X Y, et al., 2006. Polycyclic aromatic hydrocarbons(PAHs), polychlorinated biphenyls (PCBs) and heavy metals(HMs) as well as their genotoxicity in soil after long-term wastewater irrigation[J]. Chemosphere, 65(10): 1859-1868.
DOI URL |
[19] |
WIT G T, TROST E, 1999. Polycyclic aromatic hydrocarbons (PAHs) in sediments of the Baltic sea and of the German Coastal Waters[J]. Chemosphere, 38(7): 1603-1614.
DOI URL |
[20] |
XU D C, ZHOU P, ZHAN J, et al., 2013. Assessment of trace metal bioavailability in garden soils and health risks via consumption of vegetables in the vicinity of Tongling mining area, China[J]. Ecotoxicology and Environmental Safety, 90: 103-111.
DOI URL |
[21] |
XU Y F, DAI S X, MENG K, et al., 2018. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils[J]. Science of the Total Environment, 630: 618-629.
DOI URL |
[22] |
YADAV I C, DEVI N L, LI J, et al., 2017. Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: Implication on source apportionment and toxicological effect[J]. Science of the Total Environment, 616-617: 223-235.
DOI URL |
[23] |
ZHOU J L, SIDDIQUI E, NGO H H, et al., 2014. Estimation of uncertainty in the sampling and analysis of polychlorinated biphenyls and polycyclic aromatic hydrocarbons from contaminated soil in Brighton, UK[J]. Science of the Total Environment, 497-498: 163-171.
DOI URL |
[24] | 蔡杨, 李伟, 左雪燕, 等, 2021. 盐城滨海湿地土壤多环芳烃分布特征及影响因素[J]. 生态环境学报, 30(6): 1249-1259. |
CAI Y, LI W, ZUO X Y, et al., 2021. Distribution characteristics and influencing factors of PAHs in Yancheng coastal wetland soil[J]. Ecology and Environmental Sciences, 30(6): 1249-1259. | |
[25] | 陈庆锋, 马君健, 郭贝贝, 2016. 山东省农业典型地区土壤中PAHs分布特征、来源及生态风险评估[J]. 生态环境学报, 25(6): 1006-1013. |
CHEN Q F, MA J J, GUO B B, 2016. The distribution characterization/ sources and risk assessment of PAHs in different agriculture typical areas of Shandong Province[J]. Ecology and Environmental Sciences, 25(6): 1006-1013. | |
[26] | 高昌源, 刘丹, 郭美霞, 2016. 辽宁典型污灌区及公路沿线农田土壤多环芳烃污染特征及来源分析[J]. 环境保护与循环经济, 36(9): 46-51. |
GAO C Y, LIU D, GUO M X, 2016. Pollution characteristics and source analysis of PAHs in farmland soil from typical sewage irrigation area and Central Loop Highway of Liaoning province[J]. Environmental Protection and Circular Economy, 36(9): 46-51. | |
[27] | 葛蔚, 程琪琪, 柴超, 等, 2017. 山东省农田土壤多环芳烃的污染特征及源解析[J]. 环境科学, 38(4): 1587-1596. |
GE W, CHENG Q Q, CHAI C, et al., 2017. Pollution Characteristics and Source Analysis of Polycyclic Aromatic Hydrocarbons in Agricultural Soils from Shandong[J]. Environmental Science, 38(4): 1587-1596 | |
[28] | 韩文辉, 党晋华, 赵颖, 2016. 污灌区重金属和多环芳烃复合污染及其对农田土壤微生物数量的影响[J]. 生态环境学报, 25(9): 1562-1568. |
HAN W H, DANG J H, ZHAO Y, 2016. Compound pollution of heavy metals and polycyclic aromatic hydrocarbons in sewage irrigation area and its effect on soil microbial quantity[J]. Ecology and Environmental Sciences, 25(9): 1562-1568. | |
[29] | 环境保护部, 2016. 土壤和沉积物多环芳烃的测定气相色谱-质谱法:HJ 805-2016[S]. 北京: 中国环境科学出版社: 3-10. |
Ministry of Environmental Protection, 2016. Soil and sediment- determination of polycyclic aromatic hydrocarbon by gas chromatography-mass spectrometry method: HJ 805-2016[S]. publisher-loc: China Environmental Science Press: 3-10. | |
[30] | 李恭臣, 夏星辉, 王然, 等, 2006. 黄河中下游水体中多环芳烃的分布及来源[J]. 环境科学, 27(9): 1738-1743. |
LI G C, XIA X H, WANG R, et al., 2006. Pollution of polycyclic aromatic hydrocarbons (PAHs) in middle and lower reaches of the Yellow River[J]. Environmental Science, 27(9): 1738-1743. | |
[31] | 廖书林, 郎印海, 王延松, 2011. 辽河口湿地土壤多环芳烃的分布及来源研究[J]. 环境科学, 32(4): 1094-1100. |
LIAO S L, LANG Y H, WANG Y S, 2011. Distribution and Sources of PAHs in Soil from Liaohe Estuarine Wetland[J]. Environmental Science, 32(4): 1094-1100. | |
[32] | 刘庚, 牛俊杰, 王玲, 等, 2017. 污灌区农田土壤多环芳烃污染及风险评价[J]. 环境化学, 36(7): 1622-1629. |
LIU G, NIU J J, WANG L, et al., 2017. Contamination and risk assessment of PAHs in agricultural soil from wastewater irrigated area[J]. Environmental Chemistry, 36(7): 1622-1629. | |
[33] | 刘小娟, 2010. 太原污灌区土壤有效态及作物重金属含量分析[D]. 太原: 山西大学: 7-8. |
LIU X J, 2010. Analysis of Taiyuan sewage irrigation areas available heavy metals content in soils and crops[D]. Taiyuan: Shanxi University: 7-8. | |
[34] | 曲健, 宋云横, 苏娜. 沈抚灌区上游土壤中多环芳烃的含量分析[J]. 中国环境监测, 2006, 22(3): 29-31. |
QU J, SONG Y H, SU N, 2006. Analysis of polycyclic aromatic hydrocarbons in upriver soil of Shen-Fu irrigation area[J]. Environmental Monitoring in China, 22(3): 29-31. | |
[35] | 生态环境部, 2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618-2018[S]. 北京: 中国环境出版集团: 2-3. |
Ministry of Ecology Environment, 2018. Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618-2018[S]. Beijing: China Environmental Publishing Group: 2-3. | |
[36] | 孙海峰, 张勇, 解静芳, 2015. 正定矩阵因子分解模型在环境中多环芳烃源解析方面的应用[J]. 生态毒理学报, 10(4): 25-33. |
SUN H F, ZHANG Y, XIE J F, 2015. Applications of positive matrix factorization (PMF)for source apportionment of PAHs in the environment[J]. Asian Journal of Ecotoxicology, 10(4): 25-33. | |
[37] | 王雪萍, 王庆, 吴启豪, 等, 2020. 某污灌区土壤中多环芳烃形态分析及风险评价[J]. 环境科学与技术, 43(4): 192-198. |
[38] | WANG X P, WANG Q, WU Q H, et al., 2020. Species analysis and risk assessment of polycyclic aromatic hydrocarbons in soil of a sewage irrigation area[J]. Environmental Science & Technology, 43(4): 192-198. |
[39] | 张倩, 狄晓艳, 武冬梅, 等, 2014. 种植黑麦草对山西工矿区多环芳烃和重金属复合污染土壤微生物群落多样性的影响[J]. 山西师范大学学报 (自然科学版), 28(2): 82-88. |
ZHANG Q, DI X Y, WU D M, et al., 2014. Effect of ryegrass (Lolium multiflorum L.) on polycyclic aromatic hydrocarbons and heavy metal contaminated soil microbial community diversity in Shanxi Mining Areas[J]. Journal of Shanxi Normal University (Natural Science Edition), 28(2): 82-88. | |
[40] | 翟梦晓, 2011. 黄淮水系河南段表层沉积物中多环芳烃的赋存特征及来源解析[D]. 新乡: 河南师范大学: 32-35. |
ZHAI M X, 2011. Distribution and sources of polycyclic aromatic hydrocarbons in sediment from Henan reach of Huaihe, Huanghe water[D]. Xinxiang: Henan Normal University: 32-35. | |
[41] | 周洁, 张敬锁, 刘晓霞, 等, 2019. 北京市郊农田土壤中多环芳烃污染特征及风险评价[J]. 农业资源与环境学报, 36(4):534-540. |
ZHOU J, ZHANG J S, LIU X X, et al., 2019. Pollution characteristics and risk assessment of PAHs in agricultural soil in suburb of Beijing[J]. Journal of Agricultural Resources and Environment, 36(4): 534-540. |
[1] | 许肖云, 饶芝菡, 蒋红斌, 张巍, 陈超, 杨永安, 胡艳丽, 魏海川. 遂宁工业园区夏季VOCs污染特征及其对O3、SOA生成潜势研究[J]. 生态环境学报, 2023, 32(5): 956-968. |
[2] | 童银栋, 黄兰兰, 杨宁, 张奕妍, 李子芃, 邵波. 全球水体微囊藻毒素分布特征及其潜在环境风险分析[J]. 生态环境学报, 2023, 32(1): 129-138. |
[3] | 江明, 张子洋, 李婷婷, 林勃机, 张正恩, 廖彤, 袁鸾, 潘苏红, 李军, 张干. 基于氮同位素的珠三角典型地区大气PM2.5中NH4+来源解析[J]. 生态环境学报, 2022, 31(9): 1840-1848. |
[4] | 王默雷, 李智慧, 陈来国, 郭送军, 刘明, 王硕, 陆海涛. 城市垃圾焚烧厂烟气及周边土壤中多溴联苯醚的污染特征[J]. 生态环境学报, 2022, 31(8): 1582-1589. |
[5] | 樊珂宇, 高原, 赖子尼, 曾艳艺, 刘乾甫, 李海燕, 麦永湛, 杨婉玲, 魏敬欣, 孙金辉, 王超. 珠三角河网鱼类微塑料污染特征研究[J]. 生态环境学报, 2022, 31(8): 1590-1598. |
[6] | 石文静, 周翰鹏, 孙涛, 黄金涛, 杨文焕, 李卫平. 矿区周边土壤重金属污染优先控制因子及健康风险评价研究[J]. 生态环境学报, 2022, 31(8): 1616-1628. |
[7] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[8] | 朱丽, 闫怀忠, 孙友敏, 范晶, 刘光辉, 张桂芹. 山东典型重工业区降尘污染特征及成因分析[J]. 生态环境学报, 2022, 31(7): 1393-1399. |
[9] | 吉冰静, 刘艺, 吴杨, 高淑涛, 曾祥英, 于志强. 长江口及邻近东海沉积物中多环芳烃和含氧多环芳烃的分布特征、来源及生态风险[J]. 生态环境学报, 2022, 31(7): 1400-1408. |
[10] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[11] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
[12] | 施建飞, 靳正忠, 周智彬, 王鑫. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 2022, 31(5): 1015-1023. |
[13] | 陈雪泉, 孔彬, 兰青, 余志铨, 谢银斯, 黄俊毅. 胶黏剂生产行业VOCs组分特征及臭氧生成潜势分析[J]. 生态环境学报, 2022, 31(4): 750-758. |
[14] | 程文远, 李法云, 吕建华, 吝美霞, 王玮. 碱改性向日葵秸秆生物炭对多环芳烃菲吸附特性研究[J]. 生态环境学报, 2022, 31(4): 824-834. |
[15] | 刘娣, 苏超, 张红, 秦冠宇. 典型煤炭产业聚集区土壤重金属污染特征与风险评价[J]. 生态环境学报, 2022, 31(2): 391-399. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 259
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 252
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||