生态环境学报 ›› 2025, Vol. 34 ›› Issue (3): 380-390.DOI: 10.16258/j.cnki.1674-5906.2025.03.005
徐飞1(), 贾沁琦1, 郭娜2, 胡嘉豪1, 方双喜1,2,*(
)
收稿日期:
2024-09-18
出版日期:
2025-03-18
发布日期:
2025-03-24
通讯作者:
*方双喜。E-mail: fangsx@zjut.edu.cn作者简介:
徐飞(1996年生),男,硕士研究生,研究方向为温室气体监测。E-mail: 221122270088@zjut.edu.cn
基金资助:
XU Fei1(), JIA Qinqi1, GUO Na2, HU Jiahao1, FANG Shuangxi1,2,*(
)
Received:
2024-09-18
Online:
2025-03-18
Published:
2025-03-24
摘要:
毛竹(Phyllostachys edulis)林是长江三角洲地区典型的森林类型,在缓解温室效应、维持碳平衡等方面具有重要作用。林地凋落物层可能是影响二氧化碳(CO2)和氧化亚氮(N2O)在土壤与大气之间交换的重要因素。以浙江省安吉县毛竹林为对象,采用静态箱-气相色谱法,分析清除凋落物(S)和保留凋落物(SL)处理对土壤CO2和N2O通量的影响及调控因素。结果表明,观测期内毛竹林土壤为CO2的源,夏季排放最强;S处理的毛竹林土壤由夏秋季的N2O排放源转变为冬春季的N2O吸收汇;而SL处理的土壤则始终表现为N2O的排放源。凋落物显著影响毛竹林地土壤CO2和N2O通量。S处理下的CO2年均排放通量(779.27 mg∙m−2∙h−1)高于SL处理(520.07 mg∙m−2∙h−1),凋落物对土壤CO2通量的平均抑制贡献率为33.26%;相反,S处理下的N2O年均排放通量(2.95 μg∙m−2∙h−1)则低于SL处理(16.42 μg∙m−2∙h−1)。土壤温度是决定竹林土壤CO2通量的重要因素,其次为土壤有机碳;清除凋落物处理下的土壤温度是影响N2O通量变化的主要因素,而保留凋落物处理下全氮则是改变N2O通量的关键因子。总体而言,毛竹林地以竹叶为主的凋落物层会抑制土壤CO2的排放,促进N2O的排放。该研究为深入理解竹林土壤地气交换的调控机制提供了重要依据,建议在评估林地温室气体收支时考虑凋落物层的影响。
中图分类号:
徐飞, 贾沁琦, 郭娜, 胡嘉豪, 方双喜. 凋落物去除对长三角典型毛竹林土壤CO2和N2O通量的影响[J]. 生态环境学报, 2025, 34(3): 380-390.
XU Fei, JIA Qinqi, GUO Na, HU Jiahao, FANG Shuangxi. The Impact of Litter Removal on Soil CO2 and N2O Fluxes in Typical Moso Bamboo Forests in the Yangtze River Delta, China[J]. Ecology and Environment, 2025, 34(3): 380-390.
季节 | CO2通量/(mg∙m−2∙h−1) | N2O通量/(μg∙m−2∙h−1) | |||
---|---|---|---|---|---|
S | SL | S | SL | ||
春 | 481.12±297.15b | 335.54±140.98b | −11.62±25.29b | 25.43±9.21a | |
夏 | 1102.18±241.85a | 759.75±190.13a | 16.37±5.22a | 20.64±6.27a | |
秋 | 983.67±391.47a | 604.99±162.71a | 11.40±8.64a | 12.10±7.04b | |
冬 | 215.51±42.03b | 174.99±98.17c | −20.75±4.43b | 10.78±3.35b |
表1 CO2和N2O季节通量情况
Table 1 Seasonal CO2 and N2O fluxes
季节 | CO2通量/(mg∙m−2∙h−1) | N2O通量/(μg∙m−2∙h−1) | |||
---|---|---|---|---|---|
S | SL | S | SL | ||
春 | 481.12±297.15b | 335.54±140.98b | −11.62±25.29b | 25.43±9.21a | |
夏 | 1102.18±241.85a | 759.75±190.13a | 16.37±5.22a | 20.64±6.27a | |
秋 | 983.67±391.47a | 604.99±162.71a | 11.40±8.64a | 12.10±7.04b | |
冬 | 215.51±42.03b | 174.99±98.17c | −20.75±4.43b | 10.78±3.35b |
处理 | 土壤温度/ ℃ | 土壤湿度/ % | 孔隙度/ % | 有机碳质量分数/ (g∙kg−1) | 全氮质量分数/ (g∙kg−1) |
---|---|---|---|---|---|
S | 19.68±a | 25.32±a | 61±a | 29.61±a | 2.38±b |
SL | 18.82±a | 24.43±b | 58±a | 31.20±a | 2.77±a |
表2 凋落物对土壤理化性质的影响
Table 2 The effect of litter on soil physicochemical properties
处理 | 土壤温度/ ℃ | 土壤湿度/ % | 孔隙度/ % | 有机碳质量分数/ (g∙kg−1) | 全氮质量分数/ (g∙kg−1) |
---|---|---|---|---|---|
S | 19.68±a | 25.32±a | 61±a | 29.61±a | 2.38±b |
SL | 18.82±a | 24.43±b | 58±a | 31.20±a | 2.77±a |
季节 | 凋落物贡献率/% | |
---|---|---|
CO2 | N2O | |
春 | −30.26 | 318.92 |
夏 | −31.07 | 26.11 |
秋 | −38.50 | 6.09 |
冬 | −18.80 | 151.93 |
表3 凋落物在不同季节对CO2和N2O通量的贡献率
Table 3 Seasonal contribution rates of litter to CO2 and N2O fluxes
季节 | 凋落物贡献率/% | |
---|---|---|
CO2 | N2O | |
春 | −30.26 | 318.92 |
夏 | −31.07 | 26.11 |
秋 | −38.50 | 6.09 |
冬 | −18.80 | 151.93 |
土壤理化性质 | 处理 | CO2 | N2O |
---|---|---|---|
温度 | S | 0.654** | 0.758** |
SL | 0.644** | 0.159 | |
湿度 | S | 0.179 | 0.359** |
SL | 0.358** | 0.309** | |
孔隙度 | S | −0.271 | −0.192 |
SL | −0.332 | −0.469 | |
有机碳 | S | −0.046 | 0.321 |
SL | −0.113 | −0.550 | |
全氮 | S | 0.234 | 0.500 |
SL | 0.137 | 0.204 |
表4 CO2和N2O通量与土壤理化性质线性关系相关性分析
Table 4 Correlation analysis of the linear relationship between CO2 and N2O fluxes and soil physicochemical properties
土壤理化性质 | 处理 | CO2 | N2O |
---|---|---|---|
温度 | S | 0.654** | 0.758** |
SL | 0.644** | 0.159 | |
湿度 | S | 0.179 | 0.359** |
SL | 0.358** | 0.309** | |
孔隙度 | S | −0.271 | −0.192 |
SL | −0.332 | −0.469 | |
有机碳 | S | −0.046 | 0.321 |
SL | −0.113 | −0.550 | |
全氮 | S | 0.234 | 0.500 |
SL | 0.137 | 0.204 |
图5 不同处理下土壤理化性质与CO2和N2O通量之间的冗余分析 t、M、POR、SOC和TN分别代表该处理下的土壤温度、湿度、孔隙度、有机碳和全氮含量:S和SL分别代表清除凋落物处理和保留凋落物处理
Figure 5 Redundancy Analysis of Soil Physicochemical Properties and CO2 and N2O Fluxes under Different Treatments
温室气体 | 处理 | 土壤理化性质 | 解释度/% | 贡献率/% | F | p |
---|---|---|---|---|---|---|
CO2 | S | 温度 | 97.1 | 98.1 | 231 | 0.004 |
有机碳 | 1.7 | 1.7 | 8.6 | 0.030 | ||
全氮 | <0.1 | <0.1 | 0.3 | 0.718 | ||
湿度 | <0.1 | <0.1 | 0.2 | 0.820 | ||
孔隙度 | <0.1 | <0.1 | <0.1 | 0.906 | ||
SL | 温度 | 91.9 | 92.3 | 79.6 | 0.004 | |
有机碳 | 4.0 | 4.0 | 5.8 | 0.050 | ||
全氮 | 3.6 | 3.6 | 37.2 | 0.002 | ||
孔隙度 | <0.1 | <0.1 | 0.5 | 0.630 | ||
湿度 | <0.1 | <0.1 | 0.3 | 0.788 | ||
N2O | S | 温度 | 73.3 | 77.7 | 19.2 | 0.016 |
有机碳 | 20.9 | 22.2 | 21.7 | 0.012 | ||
湿度 | <0.1 | <0.1 | <0.1 | 0.870 | ||
孔隙度 | <0.1 | <0.1 | <0.1 | 0.912 | ||
全氮 | <0.1 | <0.1 | <0.1 | 0.942 | ||
SL | 全氮 | 46.1 | 47.6 | 37.9 | 0.002 | |
有机碳 | 42.5 | 43.9 | 5.2 | 0.054 | ||
湿度 | 5.4 | 5.6 | 0.6 | 0.460 | ||
温度 | 2.0 | 2.0 | 1.9 | 0.226 | ||
孔隙度 | 0.8 | 0.8 | 0.7 | 0.494 |
表5 RDA中土壤理化性质对CO2和N2O通量的解释结果
Table 5 Explanation of soil physicochemical properties on CO2 and N2O fluxes in RDA
温室气体 | 处理 | 土壤理化性质 | 解释度/% | 贡献率/% | F | p |
---|---|---|---|---|---|---|
CO2 | S | 温度 | 97.1 | 98.1 | 231 | 0.004 |
有机碳 | 1.7 | 1.7 | 8.6 | 0.030 | ||
全氮 | <0.1 | <0.1 | 0.3 | 0.718 | ||
湿度 | <0.1 | <0.1 | 0.2 | 0.820 | ||
孔隙度 | <0.1 | <0.1 | <0.1 | 0.906 | ||
SL | 温度 | 91.9 | 92.3 | 79.6 | 0.004 | |
有机碳 | 4.0 | 4.0 | 5.8 | 0.050 | ||
全氮 | 3.6 | 3.6 | 37.2 | 0.002 | ||
孔隙度 | <0.1 | <0.1 | 0.5 | 0.630 | ||
湿度 | <0.1 | <0.1 | 0.3 | 0.788 | ||
N2O | S | 温度 | 73.3 | 77.7 | 19.2 | 0.016 |
有机碳 | 20.9 | 22.2 | 21.7 | 0.012 | ||
湿度 | <0.1 | <0.1 | <0.1 | 0.870 | ||
孔隙度 | <0.1 | <0.1 | <0.1 | 0.912 | ||
全氮 | <0.1 | <0.1 | <0.1 | 0.942 | ||
SL | 全氮 | 46.1 | 47.6 | 37.9 | 0.002 | |
有机碳 | 42.5 | 43.9 | 5.2 | 0.054 | ||
湿度 | 5.4 | 5.6 | 0.6 | 0.460 | ||
温度 | 2.0 | 2.0 | 1.9 | 0.226 | ||
孔隙度 | 0.8 | 0.8 | 0.7 | 0.494 |
[1] | BALDRIAN P, SNAJDR J, MERHAUTOVA V, et al., 2013. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change[J]. Soil Biology and Biochemistry, 56: 60-68. |
[2] | CHEN D, ZHOU L, WU J, et al., 2012. Tree girdling affects the soil microbial community by modifying resource availability in two subtropical plantations[J]. Applied Soil Ecology, 53: 108-115. |
[3] | LEITNER S, SAE-TUN O, KRANZINGER L, et al., 2016. Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest[J]. Plant and Soil, 403(1-2): 455-469. |
[4] | LI Y Q, XU M, SUN O J, et al., 2004. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests[J]. Soil Biology and Biochemistry, 36(12): 2111-2114. |
[5] | OERTEL C, MATSCHULLAT J, ZURBA K, et al., 2016. Greenhouse gas emissions from soils: A review[J]. Geochemistry, 76(3): 327-352. |
[6] | RAICH J W, POTTER C S, BHAGAWATI D, 2002. Interannual variability in global soil respiration, 1980-94[J]. Global Change Biology, 8(8): 800-812. |
[7] | SONG X Z, YUAN H Y, KIMBERLEY M O, et al., 2013. Soil CO2 flux dynamics in the two main plantation forest types in subtropical China[J]. Science of the Total Environment, 444: 363-368. |
[8] | VALENTINI R, MATTEUCI G, DOLMAN A J, et al., 2000. Respiration as the main determinant of carbon balance in European forests[J]. Nature, 404(6780): 861-865. |
[9] | YAN W D, CHEN X Y, TIAN D L, et al., 2013. Impacts of changed litter inputs on soil CO2 efflux in three forest types in central south China[J]. Chinese Science Bulletin, 58(7): 750-757. |
[10] | 曹兴圆, 艾雯妍, 文思颖, 等, 2023. 有机酸提高土壤植酸生物有效性的机制、影响因素及应用[J]. 植物营养与肥料学报, 29(11): 2150-2171. |
CAO X Y, AI W Y, WEN S Y, et al., 2023. Mechanism, influencing factors and practical application of organic acids in improving soil phytate bioavailability[J]. Journal of Plant Nutrition and Fertilizers, 29(11): 2150-2171. | |
[11] | 陈碧辉, 2006. 温室气体源汇及其对气候影响的研究现状[J]. 气象科学, 26(5): 586-590. |
CHEN B H, 2006. The present situation of research on greenhouse gases[J]. Journal of the Meteorological Sciences, 26(5): 586-590. | |
[12] |
陈进, 肖以华, 陈步峰, 等, 2011. 珠江三角洲四种森林类型土壤CO2通量特征研究[J]. 生态环境学报, 20(5): 860-864.
DOI |
CHEN J, XIAO Y H, CHEN B F, et al., 2011. The study of soil CO2 flux of four forest types in Pearl River Delta[J]. Ecology and Environmental Sciences, 20(5): 860-864. | |
[13] | 陈玥萌, 花家嘉, 李卓远, 等, 2024. 城市绿地CO2浓度和通量的时间变化特征分析——以中科大校园为例[J/OL]. 大气与环境光学学报, 1-16[2024-10-31]. http://kns.cnki.net/kcms/detail/34.1298.O4.20240430.1656.002.html. |
CHEN Y M, HUA J J, LI Z Y, et al., 2024. Analysis of time variation characteristics of CO2concentration and flux in urban green space: take the campus of the University of Science and Technology of China as an example[J/OL]. Journal of Atmospheric and Environmental Optics, 1-16 [2024-10-31]. http://kns.cnki.net/kcms/detail/34.1298.O4.20240430.1656.002.html. | |
[14] | 程功, 刘廷玺, 王冠丽, 等, 2019. 降雨和凋落物对人工杨树林土壤温室气体通量的影响[J]. 农业环境科学学报, 38(6): 1398-1407. |
CHENG G, LIU T X, WANG G L, et al., 2019. Effects of rainfall and litter on soil greenhouse gas fluxes in artificial poplar forest[J]. Journal of Agro-Environment Science, 38(6): 1398-1407. | |
[15] | 崔鸿侠, 胡文杰, 潘磊, 等, 2024. 凋落物处理对华山松人工林土壤呼吸的影响[J]. 中南林业科技大学学报, 44(2): 91-97. |
CUI H X, HU W J, PAN L, et al., 2024. Effects of litter treatments on soil respiration of Pinus armandii plantation[J]. Journal of Central South University of Forestry and Technology, 44(2): 91-97. | |
[16] |
邓琦, 刘世忠, 刘菊秀, 等, 2007. 南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J]. 地球科学进展, 22(9): 976-986.
DOI |
DENG Q, LIU S Z, LIU J X, et al., 2007. Contributions of Litter-fall to soil respiration and its affecting factors in southern subtropical forests of China[J]. Advances in Earth Science, 22(9): 976-986. | |
[17] | 董云社, 齐玉春, DOMROES M, 等, 2004. 内蒙古温带半干旱羊草草原N2O通量及其影响因素[J]. 地理研究, 23(6): 776-784. |
DONG Y S, QI Y C, DOMROES M, et al., 2004. The N2O fluxes in Leymus Chinense grassland of Inner Mongolia, China[J]. Geographical Research, 23(6): 776-784. | |
[18] | 杜睿, 王庚辰, 吕达仁, 等, 2001. 内蒙古大针茅草原的N2O和CH4通量变化特征[J]. 中国环境科学, 21(4): 289-292. |
DU R, WANG G C, LÜ D R, et al., 2001. The variation characters of N2O and CH4 fluxes in Stipa grandis grassland in Inner Mongolia[J]. China Environmental Science, 21(4): 289-292. | |
[19] | 段北星, 满秀玲, 宋浩, 等, 2018. 大兴安岭北部不同类型兴安落叶松林土壤呼吸及其组分特征[J]. 北京林业大学学报, 40(2): 40-50. |
DUAN B X, MAN X L, SONG H, et al., 2018. Soil respiration and its component characteristics under different types of Larix gmelinii forests in the north of Daxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 40(2): 40-50. | |
[20] | 高春, 胡杰龙, 颜葵, 等, 2017. 海南东寨港红树林土壤二氧化碳和甲烷排放通量研究[J]. 湿地科学, 15(3): 351-357. |
GAO C, HU J L, YAN K, et al., 2017. Carbon dioxide and methane emission fluxes from soil in Mangrove Forest in Dongzhaigang, Hainan[J]. Wetland Science, 15(3): 351-357. | |
[21] | 高明磊, 满秀玲, 段北星, 2021. 林下植被和凋落物对我国寒温带天然林土壤CO2通量的短期影响[J]. 北京林业大学学报, 43(3): 55-65. |
GAO M L, MAN X L, DUAN B X, 2021. Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China[J]. Journal of Beijing Forestry University, 43(3): 55-65. | |
[22] |
葛萍, 李昂, 王银柳, 等, 2023. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 47(11): 1483-1492.
DOI |
GE P, LI A, WANG Y L, et al., 2023. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe[J]. Chinese Journal of Plant Ecology, 47(11): 1483-1492.
DOI |
|
[23] | 耿元波, 罗光强, 袁国富, 2010. 内蒙古羊草草原生长旺季CH4吸收通量的影响因素分析[J]. 中国科学: 地球科学, 40(7): 933-940. |
GENG Y B, LUO G Q, YUAN G F, 2010. CH4 uptake flux of Leymus chinensis steppe during rapid growth season in Inner Mongolia, China[J]. Science China (Earth Sciences), 40(7): 933-940. | |
[24] | 韩晓荣, 2022. 凋落物去除对大青山油松人工林土壤温室气体通量的影响[D]. 呼和浩特: 内蒙古农业大学: 13-21. |
HAN X R, 2022. Effects of litter removal on soil greenhouse gas flux in Pinus tabulaeformis plantation of Daqing Mountains[D]. Hohhot: Inner Mongolia Agricultural University: 13-21. | |
[25] |
洪海祥, 臧昆鹏, 陈圆圆, 等, 2022. 三通道气相色谱法监测大气中CH4、CO、CO2、N2O和SF6[J]. 色谱, 40(8): 763-771.
DOI |
HONG H X, ZANG K P, CHEN Y Y, et al., 2022. Monitoring of atmospheric CH4, CO, CO2, N2O, and SF6 using three-channel gas chromatography[J]. Chinese Journal of Chromatography, 40(8): 763-771. | |
[26] | 黄赛凤, 吴永波, 茆安敏, 2024. 河岸缓冲带植被配置对径流水中磷的截留效果[J]. 林业科学研究, 37(1): 73-81. |
HUANG S F, WU Y B, MAO A M, 2024. Effect of vegetation configuration in riparian buffer strip on phosphorus retention in runoff water[J]. Forest Research, 37(1): 73-81. | |
[27] | 菅亚男, 张秋良, 杨競夫, 等, 2023. 兴安落叶松天然林土壤N2O通量对土壤温度和湿度的响应[J]. 西北农林科技大学学报(自然科学版), 51(9): 101-108, 118. |
JIAN Y N, ZHANG Q L, YANG J F, et al., 2023. Response of soil N2O flux of Larix gmelinii natural forest to soil temperature and moisture[J]. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 51(9): 101-108, 118. | |
[28] | 蒋跃平, 严洁如, 2018. 城市湿地毛竹林土壤二氧化碳通量研究[J]. 竹子学报, 37(1): 89-94. |
JIANG Y P, YAN J R, 2018. The soil CO2 flux in Phyllostachys edulis forest ecosystem of urban wetland[J]. Journal of Bamboo Research, 37(1): 89-94. | |
[29] | 李超, 2019. 模拟氮沉降下毛竹扩张对凋落物分解及土壤N2O和CO2排放的影响[D]. 南昌: 江西农业大学: 46-48. |
LI C, 2019. Effects of moso bamboo expansion on litter decomposition, soil N2O and CO2 emissions under simulated N deposition[D]. Nanchang: Jiangxi Agricultural University: 46-48. | |
[30] | 李化山, 汪金松, 赵秀海, 等, 2014. 模拟氮沉降下去除凋落物对太岳山油松林土壤呼吸的影响[J]. 生态学杂志, 33(4): 857-866. |
LI H S, WANG J S, ZHAO X H, et al., 2014. Effects of litter removal on soil respiration under simulated nitrogen deposition in a Pinus tabuliformis forest in Taiyue Mountain, China[J]. Chinese Journal of Ecology, 33(4): 857-866. | |
[31] | 李静凯, 朱丽琴, 黄荣珍, 等, 2024. 改变碳输入对亚热带针阔混交林土壤化学性质和微生物群落的影响[J/OL]. 农业环境科学学报, 1-11 [2024-05-08]. http://kns.cnki.net/kcms/detail/12.1347.S.20240507.1833.013.html. |
LI J K, ZHU L Q, HUANG R Z, et al., 2024. Effects of changing carbon input on soil chemical properties and microbial communities in subtropical coniferous and broad-leaved mixed forests[J/OL]. Journal of Agro-Environment Science, 1-11 [2024-05-08]. http://kns.cnki.net/kcms/detail/12.1347.S.20240507.1833.013.html. | |
[32] | 李世勇, 丁虎, 陈静, 等, 2023. 天津七里海湿地生长季土壤CO2通量及水热因子变化特征[J/OL]. 生态学杂志, 1-12 [2024-05-12]. http://kns.cnki.net/kcms/detail/21.1148.Q.20230712.1413.006.html. |
LI S Y, DING H, CHEN J, et al., 2023. Characteristics of soil CO2 flux and hydrothermal factors during the growing season in Qilihai wetland, Tianjin[J/OL]. Chinese Journal of Ecology, 1-12 [2024-05-12]. http://kns.cnki.net/kcms/detail/21.1148.Q.20230712.1413.006.html. | |
[33] | 林丽莎, 韩士杰, 王跃思, 等, 2004. 长白山四种林分土壤CO2释放通量的研究[J]. 生态学杂志, 23(5): 42-45. |
LIN L S, HAN S J, WANG Y S, et al., 2004. Soil CO2 flux in several typical forests of Mount Changbai[J]. Chinese Journal of Ecology, 23(5): 42-45. | |
[34] | 林伟, 2019. 有机肥添加对菜地N2O排放和同位素特征的影响及其驱动机制[D]. 北京: 中国农业科学院: 27-28. |
LIN W, 2019. Effect and driving mechanism of adding organic fertilizer on N2O emissons and isotopic signature from vegetable soil[D]. Beijing: Chinese Academy of Agricultural Sciences: 27-28. | |
[35] | 刘阳, 2018. 青藏高原高寒草甸放牧系统温室气体排放[D]. 兰州: 兰州大学: 26-27. |
LIU Y, 2018. Greenhouse gas emissions of alpine meadow grazing systems on the Qinghai-Tibet Plateau[D]. Lanzhou: Lanzhou University: 26-27. | |
[36] | 刘晔, 牟玉静, 钟晋贤, 等, 1997. 氧化亚氮在森林和草原中的地-气交换[J]. 环境科学, 18(5): 14-18. |
LIU Y, MU Y J, ZHONG J X, et al., 1997. N2O Exchanges between atmosphere and territory from forest and grassland[J]. Environmental Science, 18(5): 14-18. | |
[37] | 吕凤莲, 杨学云, 赵冉, 等, 2022. 静态箱/气相色谱法监测农田温室气体排放研究[J]. 实验技术与管理, 39(9): 15-24. |
LÜ F L, YANG X Y, ZHAO R, et al., 2022. Study on static chamber/gas chromatography method for monitoring greenhouse gas emission in field ecosystem[J]. Experimental Technology and Management, 39(9): 15-24. | |
[38] | 舒海燕, 江洪, 陈晓峰, 等, 2017. 安吉毛竹林非生长季CO2通量与其光合响应关系探究[J]. 生态科学, 36(2): 15-25. |
SHU H Y, JIANG H, CHEN X F, et al., 2017. Study on the response relationship between CO2 flux and photosynthesis of Phyllostachys edulis forest during non-growing season in Anji, Zhejiang[J]. Ecological Science, 36(2): 15-25. | |
[39] | 王金龙, 李艳红, 李发东, 2018. 博斯腾湖人工和天然芦苇湿地土壤CO2、CH4和N2O排放通量[J]. 生态学报, 38(2): 668-677. |
WANG J L, LI Y H, LI F D, 2018. Emission fluxes of CO2, CH4, and N2O from artificial and natural reed wetlands in Bosten Lake, China[J]. Acta Ecologica Sinica, 38(2): 668-677. | |
[40] | 王艳芬, 马秀枝, 纪宝明, 等, 2003. 内蒙古草甸草原CH4和N2O排放通量的时间变异[J]. 植物生态学报, 27(6): 792-796. |
WANG Y F, MA X Z, JI B M, et al., 2003. Diurnal and seasonal variation in methane and nitrous oxide fluxes in meadow steppe of Inner Mongolia[J]. Chinese Journal of Plant Ecology, 27(6): 792-796. | |
[41] | 卫芯宇, 倪祥银, 谌亚, 等, 2021. 三种不同类型亚高山森林凋落物输入对土壤腐殖化的影响[J]. 生态学报, 41(20): 8266-8275. |
WEI X Y, NI X Y, SHEN Y, et al., 2021. Effects of litterfall on soil humification in three subalpine forests[J]. Acta Ecologica Sinica, 41(20): 8266-8275. | |
[42] | 肖冬梅, 王淼, 姬兰柱, 等, 2004. 长白山阔叶红松林土壤N2O排放通量的变化特征[J]. 生态学杂志, 23(5): 46-52. |
XIAO D M, WANG M, JI L Z, et al., 2004. Variation characteristics of soil N2O emission flux in broad-leaved Korean pine forest of Changbai Mountain[J]. Chinese Journal of Ecology, 23(5): 46-52. | |
[43] | 闫恩荣, 2006. 常绿阔叶林退化过程中土壤的养分库动态及植物的养分利用策略[D]. 上海: 华东师范大学: 92-100. |
YAN E R, 2006. Dynamics of soil nutrient pools, nutrient use strategies of dominant trees in the typical and degraded evergreen broad-leaved forests[D]. Shanghai: East China Normal University: 92-100. | |
[44] | 杨传杰, 2023. 陇中黄土丘陵区典型人工植被对土壤碳通量的影响[D]. 兰州: 甘肃农业大学: 27-28. |
YANG C J, 2023. Effect of typical artificial vegetations on soil carbon fluxes in the Loess Hills of Central Gansu Province[D]. Lanzhou: Gansu Agricultural University: 27-28. | |
[45] | 杨琳, 2021. 兴安落叶松林土壤温室气体通量特征及其影响因子研究[D]. 呼和浩特: 内蒙古农业大学: 147-149. |
YANG L, 2021. Characteristics and environmental eontrollers of soil CO2 and CH4 fluxes of the Xing’an Larch (Larix gmelinii) Forest[D]. Hohhot: Inner Mongolia Agricultural University: 147-149. | |
[46] | 叶丹丹, 谢立勇, 郭李萍, 等, 2011. 华北平原典型农田CO2和N2O排放通量及其与土壤养分动态和施肥的关系[J]. 中国土壤与肥料 (3): 15-20. |
YE D D, XIE L Y, GUO L P, et al., 2011. The emission-flux of CO2 and N2O and its relationship with soil nutrient dynamic and fertilization in typical upland fields in North China plain[J]. Soil and Fertilizer Sciences in China (3): 15-20. | |
[47] | 叶耿平, 2010. 集约经营毛竹林土壤温室气体排放特征及其与施肥的关系[D]. 杭州: 浙江农林大学: 55-67. |
YE G P, 2010. Soil greenhouse gas emissions characteristies of intensive management Phyllostachys pubescens and the relationship with fertilizer[D]. Hangzhou: Zhejiang Agriculture and Forestry University: 55-67. | |
[48] | 岳环玉, 2024. 毛竹扩张对土壤氮矿化的影响及其微生物群落响应机制[D]. 长沙: 中南林业科技大学: 4-7. |
YUE H Y, 2024. Effects of moso bamboo expansion on soil nitrogen mineralisation and its microbial community response mechanisms[D]. Changsha: Central South University of Forestry and Technology: 4-7. | |
[49] | 张梦洁, 李艳红, 李发东, 等, 2023. 玛纳斯河流域不同灌区棉田土壤CO2和N2O排放通量[J]. 水土保持学报, 37(1): 304-312. |
ZHANG M J, LI Y H, LI F D, et al., 2023. CO2 and N2O emission fluxes from cotton fields in different irrigation district of Mannas River Basin[J]. Journal of Soil and Water Conservation, 37(1): 304-312. | |
[50] | 张敏霞, 江洪, 陈晓峰, 等, 2016. 亚热带毛竹林生态系统碳通量与土壤呼吸研究[J]. 东北农业大学学报, 47(6): 41-50. |
ZHANG M X, JIANG H, CHEN X F, et al., 2016. Study on the carbon flux and soil respiration of Phyllostachys edulis forest ecosystem in subtropic China[J]. Journal of Northeast Agricultural University, 47(6): 41-50. | |
[51] | 张荣涛, 倪红伟, 刘赢男, 等, 2020. 凋落物添加和去除处理对三江平原小叶章湿地生长季温室气体排放的影响[J]. 环境科学学报, 40(4): 1467-1475. |
ZHANG R T, NI H W, LIU Y N, et al., 2020. Response of greenhouse gas emission in the growing season to add andremove litter in Calamagrostis angustifolia Wetlands of Sanjiang Plain[J]. Acta Scientiae Circumstantiae, 40(4): 1467-1475. | |
[52] | 张秀君, 徐慧, 陈冠雄, 2002. 影响森林土壤N2O排放和CH4吸收的主要因素[J]. 环境科学, 23(5): 8-12. |
ZHANG X J, XU H, CHEN G X, 2002. Important factors controlling rates of N2O emission and CH4 oxidation from forest soil[J]. Environmental Science, 23(5): 8-12. |
[1] | 岳航宇, 郭成久, 苏芳莉, 魏超. 辽河口湿地不同植被类型根际土壤微生物群落结构及多样性分析[J]. 生态环境学报, 2025, 34(2): 222-232. |
[2] | 卢德浩, 郑峰霖, 古佳玮, 帅晓迈, 杨佳曼, 李程, 蔡梦真, 陈红跃. 不同林分类型凋落物和土壤水源涵养能力分析与评价[J]. 生态环境学报, 2025, 34(1): 26-35. |
[3] | 孙树娇, 王秀英, 陈奇, 赵全宁, 李甫. 植被光合呼吸模型在典型高寒荒漠草原生态系统的参数率定及验证[J]. 生态环境学报, 2025, 34(1): 36-45. |
[4] | 夏凡, 韩怡蒙, 周剑兴, 谢丹妮. 氮和硫在人为扰动的青藏高原高寒森林中的分布特征[J]. 生态环境学报, 2024, 33(5): 689-698. |
[5] | 陈弘杰, 廖洪凯, 龙健, 赵雨鑫, 湛凯翔, 冉泰山, 杨国梅. 强还原土壤灭菌对土壤原生生物群落的影响[J]. 生态环境学报, 2024, 33(4): 539-547. |
[6] | 梁燕, 刘家齐, 肖凡, 潘民萍, 韦凯文, 张楚雯, 段敏. 氮沉降形态对西南岩溶区森林土壤有效磷来源的影响[J]. 生态环境学报, 2024, 33(2): 192-201. |
[7] | 张杨, 徐永明, 卢响军, 莫亚萍, 吉蒙, 祝善友. 基于OCO-2遥感数据的新疆维吾尔自治区大气XCO2空间化研究[J]. 生态环境学报, 2024, 33(2): 231-241. |
[8] | 李天, 苗淑杰, 余洁, 赵玉蝶, 乔云发. 凋落物C/N对土壤有机碳矿化的影响[J]. 生态环境学报, 2024, 33(11): 1686-1695. |
[9] | 张传光, 沈艳, 张珊珊, 李玉文, 陈剑, 杨文忠. 原生与迁地毛枝五针松根际土壤微生物多样性分析[J]. 生态环境学报, 2024, 33(10): 1544-1553. |
[10] | 李勋, 张艳, 宋思梦, 周扬, 张健. 西南地区马尾松与乡土阔叶树种凋落叶混合分解过程中的细菌群落特征[J]. 生态环境学报, 2024, 33(1): 12-27. |
[11] | 袁茜, 傅开道, 陶雨晨, 张年, 杨丽莎. 澜沧江(云南段)水-气界面氧化亚氮释放通量时空分布特征及其影响因素研究[J]. 生态环境学报, 2024, 33(1): 54-61. |
[12] | 苗敬杰, 张开, 孟钰博, 王乃加, 李海楠, 郭康军, 张君, 高西宁, 王立为. 覆膜垄作对旱地雨养马铃薯田N2O排放的影响[J]. 生态环境学报, 2024, 33(1): 62-71. |
[13] | 顾美英, 唐光木, 张云舒, 黄建, 张志东, 张丽娟, 朱静, 唐琦勇, 楚敏, 徐万里. 有机肥与生物炭对新疆盐碱沙化土壤微生物群落特征的影响[J]. 生态环境学报, 2023, 32(8): 1392-1404. |
[14] | 杨凯, 杨靖睿, 曹培培, 吕春华, 孙文娟, 于凌飞, 邓希. CO2浓度升高下水稻株高、茎蘖与SPAD动态响应及其模拟[J]. 生态环境学报, 2023, 32(5): 933-942. |
[15] | 刘紫薇, 葛继稳, 王月环, 杨诗雨, 姚东, 谢金林. 大九湖泥炭湿地甲烷通量变异特征及影响因素[J]. 生态环境学报, 2023, 32(4): 706-714. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||