[1] |
AVERILL C, HAWKES C V, 2016. Ectomycorrhizal fungi slow soil carbon cycling[J]. Ecology Letters, 19(8): 937-947.
DOI
PMID
|
[2] |
BASTIDA F, ELDRIDGE D J, GARCIA C, et al., 2021. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes[J]. The ISME Journal, 15(7): 2081-2091.
|
[3] |
BLAGODATSKAYA E, KUZYAKOV Y, 2013. Active microorganisms in soil: Critical review of estimation criteria and approaches[J]. Soil Biology and Biochemistry, 67: 192-211.
|
[4] |
CHAO L, LIU Y, FRESCHET G T, et al., 2019. Litter carbon and nutrient chemistry control the magnitude of soil priming effect[J]. Functional Ecology, 33(5): 876-888.
|
[5] |
FONTAINE S, HENAULT C, AAMOR A, et al., 2011. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect[J]. Soil Biology and Biochemistry, 43(1): 86-96.
|
[6] |
GIARDINA C P, RYAN M G, HUBBARD R M, et al., 2001. Tree species and soil textural controls on carbon and nitrogen mineralization rates[J]. Soil Science Society of America Journal, 65(4): 1272-1279.
|
[7] |
HART S C, NASON G E, MYROLD D D, et al., 1994. Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection[J]. Ecology, 75(4): 880-891.
|
[8] |
KUZYAKOV Y, BOL R, 2006. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar[J]. Soil Biology and Biochemistry, 38(4): 747-758.
|
[9] |
LENKA S, TRIVEDI P, SINGH B, et al., 2019. Effect of crop residue addition on soil organic carbon priming as influenced by temperature and soil properties[J]. Geoderma, 347: 70-79.
|
[10] |
LI C, XIAO C W, LI M X, et al., 2023. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 432: 116385.
|
[11] |
LIN J J, ZHU B, CHENG W X, 2015. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon[J]. Global Change Biology, 21(12): 4602-4612.
DOI
PMID
|
[12] |
MORETTO A S, DISTEL R A, DIDONE N G, 2001. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland[J]. Applied Soil Ecology, 18(1): 31-37.
|
[13] |
RASUL M, CHO J W, SHIN H S, et al., 2022. Biochar-induced priming effects in soil via modifying the status of soil organic matter and microflora: A review[J]. Science of The Total Environment, 805: 150304.
|
[14] |
SCHLESINGER W H, 1977. Carbon balance in terrestrial detritus[J]. Annual Review of Ecology and Systematics, 8(1): 51-81.
|
[15] |
SIX J, FREY S D, THIET R K, et al., 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal, 70(2): 555-569.
|
[16] |
SOONG J L, MARANON-JIMENEZ S, COTRUFO M F, et al., 2018. Soil microbial CNP and respiration responses to organic matter and nutrient additions: Evidence from a tropical soil incubation[J]. Soil Biology and Biochemistry, 122: 141-149.
|
[17] |
TORRES I F, BASTIDA F, HERNANDEZ T, et al., 2014. The role of lignin and cellulose in the carbon-cycling of degraded soils under semiarid climate and their relation to microbial biomass[J]. Soil Biology and Biochemistry, 75: 152-160.
|
[18] |
WANG Q K, HE T X, LIU J, 2016. Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils[J]. Scientific Reports, 6(1): 33814.
|
[19] |
XU X, ZHOU Y, RUAN H H, et al., 2010. Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China[J]. Soil Biology and Biochemistry, 42(10): 1811-1815.
|
[20] |
陈甜, 元方慧, 张琳梅, 等, 2022. 不同化学性质叶凋落物添加对土壤有机碳矿化及激发效应的影响[J]. 应用生态学报, 33(10): 2602-2610.
DOI
|
|
CHEN T, YUAN F H, ZHANG L M, et al., 2022. Effects of addition of leaf litter with different chemical properties on soil organic carbon mineralization and priming effect[J]. Chinese Journal of Applied Ecology, 33(10): 2602-2610.
DOI
|
[21] |
黄锦学, 熊德成, 刘小飞, 等, 2017. 增温对土壤有机碳矿化的影响研究综述[J]. 生态学报, 37(1): 12-24.
|
|
HUANG J X, XIONG D C, LIU X F, et al., 2017. Effects of warming on soil organic carbon mineralization: A review[J]. Acta Ecologica Sinica, 37(1): 12-24.
|
[22] |
李梦娇, 陈甜, 洪小敏, 等, 2021. 不同化学结构外源碳添加对红壤和沙土有机碳矿化动态的影响[J]. 生态学杂志, 40(6): 1609-1617.
|
|
LI M J, CHEN T, HONG X M, et al., 2021. Effects of adding exogenous carbon with different chemical structure on the dynamics of organic carbon mineralization in red and sandy soils[J]. Chinese Journal of Ecology, 40(6): 1609-1617.
DOI
|
[23] |
梁鑫, 韩亚峰, 郑柯, 等, 2023. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 32(9): 1615-1622.
DOI
|
|
LIANG X, HAN Y F, ZHENG K, et al., 2023. Effects of Fe3O4 on soil carbon mineralization in paddy field[J]. Ecology and Environmental Sciences, 32(9): 1615-1622.
|
[24] |
刘金炜, 张文菊, 邬磊, 等, 2020. 长期施肥条件下红壤有机碳矿化对温度变化模式的响应[J]. 中国土壤与肥料 (2): 10-16.
|
|
LIU J W, ZHANG W J, WU L, et al., 2020. Response of organic carbon mineralization to temperature changing pattern under long-term fertilization in red Soil[J]. Soil and Fertilizer Sciences in China (2): 10-16.
|
[25] |
刘四义, 梁爱珍, 杨学明, 等, 2015. 不同部位玉米秸秆对两种质地黑土CO2排放和微生物量的影响[J]. 环境科学, 36(7): 2686-2694.
|
|
LIU S Y, LIANG A Z, YANG X M, et al., 2015. Effects of different residue part inputs of corn straws on CO2 efflux and microbial biomass in clay loam and sandy loam black soils[J]. Environmental Science, 36(7): 2686-2694.
|
[26] |
裴蓓, 高国荣, 2018. 凋落物分解对森林土壤碳库影响的研究进展[J]. 中国农学通报, 34(26): 58-64.
DOI
|
|
PEI B, GAO G R, 2018. Impact of forest litter decomposition on soil carbon pool: A review[J]. Chinese Agricultural Science Bulletin, 34(26): 58-64.
DOI
|
[27] |
彭少麟, 刘强, 2002. 森林凋落物动态及其对全球变暖的响应[J]. 生态学报, 22(9): 1534-1544.
|
|
PENG S L, LIU Q, 2002. The dynamics of forest litter and Its responses to global warming[J]. Acta Ecologica Sinica, 22(9): 1534-1544.
|
[28] |
秦文宽, 张秋芳, 敖古凯麟, 等, 2024. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 48(4): 403-415.
DOI
|
|
QIN W K, ZHANG Q F, AO G K L, et al., 2024. Responses and mechanisms of soil organic carbon dynamics to warming: A review[J]. Chinese Journal of Plant Ecology, 48(4): 403-415.
|
[29] |
史方颖, 张风宝, 杨明义, 2022. 基于文献计量分析的土壤有机碳矿化研究进展与热点[J]. 土壤学报, 59(2): 381-392.
|
|
SHI F Y, ZHANG F B, YANG M Y, 2022. Research hotspots and progress of soil organic carbon mineralization based on bibliometrics method[J]. Acta Pedologica Sinica, 59(2): 381-392.
|
[30] |
史学军, 潘剑君, 陈锦盈, 等, 2009. 不同类型凋落物对土壤有机碳矿化的影响[J]. 环境科学, 30(6): 1832-1837.
|
|
SHI X J, PAN J J, CHEN J Y, et al., 2009. Effects of different types of litters on soil organic carbon mineralization[J]. Environmental Science, 30(6): 1832-1837.
|
[31] |
宋珂辰, 王国会, 许冬梅, 等, 2021. 不同封育年限荒漠草原土壤有机碳矿化及温度敏感性[J]. 生态环境学报, 30(3): 453-459.
DOI
|
|
SONG K C, WANG G H, XU D M, et al., 2021. Soil organic carbon mineralization and its temperature sensitivity in desert steppe with different enclosure ages[J]. Ecology and Environmental Sciences, 30(3): 453-459.
|
[32] |
田玉强, 陈颖, 欧阳胜男, 等, 2020. 外源性碳氮添加对北方半干旱草原土壤有机质矿化的影响[J]. 生态环境学报, 29(6): 1101-1108.
DOI
|
|
TIAN Y Q, CHEN Y, OUYANG S N, et al., 2020. The Effect of carbon and nitrogen addition on soil organic matter mineralization in the semi-arid grassland of north China[J]. Ecology and Environmental Sciences, 29(6): 1101-1108.
|
[33] |
王丹, 吕瑜良, 徐丽, 等, 2013. 水分和温度对若尔盖湿地和草甸土壤碳矿化的影响[J]. 生态学报, 33(20): 6436-6443.
|
|
WANG D, LÜ Y L, XU L, et al., 2013. The effect of moisture and temperature on soil C mineralization in wetland and steppe of the Zoige region, China[J]. Acta Ecologica Sinica, 33(20): 6436-6443.
|
[34] |
王永慧, 杨殿林, 红雨, 等, 2019. 不同地力玉米田土壤有机碳矿化特征[J]. 农业环境科学学报, 38(3): 590-599.
|
|
WANG Y H, YANG D L, HONG Y, et al., 2019. Characteristics of soil organic carbon mineralization in the soil of maize fields with different soil fertility[J]. Journal of Agro-Environment Science, 38(3): 590-599.
|
[35] |
吴庆标, 王效科, 欧阳志云, 2006. 活性有机碳含量在凋落物分解过程中的作用[J]. 生态环境, 15(6): 1295-1299.
|
|
WU Q B, WANG X K, OUYANG Z Y, 2006. Effects of labile organic carbon on the litters decomposition process[J]. Ecology and Environment, 15(6): 1295-1299.
|
[36] |
元方慧, 应宇馨, 陈子亮, 等, 2024. 不同培养温度下杉木叶凋落物添加对土壤CO2释放及激发效应的影响[J]. 生态学杂志, 43(4): 993-999.
|
|
YUAN F H, YING Y X, CHEN Z L, et al., 2024. Effects of Chinese fir leaf litter addition on soil CO2 release and priming effect under different incubation temperatures[J]. Chinese Journal of Ecology, 43(4): 993-999.
|
[37] |
张薇, 王子芳, 王辉, 等, 2007. 土壤水分和植物残体对紫色水稻土有机碳矿化的影响[J]. 植物营养与肥料学报, 13(6): 1013-1019.
|
|
ZHANG W, WANG Z F, WANG H, et al., 2007. Organic carbon mineralization affected by water content and plant residues in purple paddy soil[J]. Plant Nutrition and Fertilizer Science, 13(6): 1013-1019.
|
[38] |
张迎春, 王萍, 刘亚龙, 等, 2024. 长期种植作物对中国农田土壤有机碳影响的Meta分析[J]. 土壤学报, 61(6): 1628-1638.
|
|
ZHANG Y C, WANG P, LIU Y L, et al., 2024. Effects of long-term crop cultivation on soil organic carbon in China’s farmland: A meta-analysis[J]. Acta Pedologica Sinica, 61(6): 1628-1638.
|
[39] |
朱灵, 张梦瑶, 高永恒, 2020. 高寒草原土壤有机碳矿化对水氮添加的响应[J]. 水土保持通报, 40(1): 30-37.
|
|
ZHU L, ZHANG M Y, GAO Y H, 2020. Response of soil organic carbon mineralization to water and nitrogen addition in alpine steppe[J]. Bulletin of Soil and Water Conservation, 40(1): 30-37.
|