生态环境学报 ›› 2023, Vol. 32 ›› Issue (12): 2103-2114.DOI: 10.16258/j.cnki.1674-5906.2023.12.003
收稿日期:
2023-08-30
出版日期:
2023-12-18
发布日期:
2024-02-05
通讯作者:
*罗小三。E-mail: xsluo@nuist.edu.cn作者简介:
李姝亭(1999年生),女,硕士研究生,主要从事环境新污染物与健康研究。E-mail: sclwdtz1001@163.com
基金资助:
LI Shuting1(), HU Guanjiu2, LUO Xiaosan1,*(
)
Received:
2023-08-30
Online:
2023-12-18
Published:
2024-02-05
摘要:
全氟和多氟烷基化合物(PFASs)是一类极具多样性的新型持久性有机污染物,用途广泛、性质复杂且具有毒性,其环境污染导致的生态和健康危害问题引起了广泛关注。已有综述主要总结了土壤、水体中PFASs的来源和分布,缺乏对大气环境中PFASs污染来源、时空分布及人体健康风险评价的系统归纳,该文对此进行了概括和分析。PFASs可通过含氟聚合物的工业生产和应用、消费品使用、废弃物处理以及土壤和水环境中的挥发和升华过程进入大气环境,易在颗粒物中富集。大气颗粒态PFASs的质量浓度在不同地区和季节间存在显著差异,工业活动、人口密度、气象条件等是主要影响因素,通常在暖季广泛分布但质量浓度较低,冬季则质量浓度较高且多集中于排放源附近。近10年来,中国大气PFASs浓度下降明显,但其种类显著增多,主要归因于政策措施向PFASs替代品生产转型的影响。大气PFASs可通过呼吸暴露、皮肤接触和口腔摄入等途径进入人体从而造成健康风险,目前主要采用吸入暴露评估模型对其进行健康风险评价。污染防控方面,美国、欧洲等发达地区的系列管理措施在一定程度上减少了PFASs的环境排放,但多针对单一物质,且生产逐渐向替代物发展,然而其环境健康风险尚不明确。未来大气PFASs的研究需求和方向包括进一步解析其迁移和转化机制,阐明其与其他污染物(如颗粒物)的协同效应和毒性风险,建立长期监测网络以及定量源解析方法,深入揭示其健康危害机制,并建立系统全面的人体健康风险评估模型。
中图分类号:
李姝亭, 胡冠九, 罗小三. 大气环境中全(多)氟烷基化合物(PFASs)的来源、分布及健康风险研究进展[J]. 生态环境学报, 2023, 32(12): 2103-2114.
LI Shuting, HU Guanjiu, LUO Xiaosan. Sources, Spatial-temporal Distribution, and Health Risks of Per- and Polyfluoroalkyl Substances (PFASs) in the Atmospheric Environment: A Review[J]. Ecology and Environment, 2023, 32(12): 2103-2114.
类型 | 简称 | 代表化合物 | 简称 | 分子式 | 主要用途 |
---|---|---|---|---|---|
全氟烷基酸类化合物 (Perfluoroalkane acid) | PFAAs | 全氟丁烷磺酸 (Perfluorobutane sulfonic acid) | PFBS | C4HF9O3S | 防火泡沫、润滑剂 |
全氟己烷磺酸 (Perfluorohexane sulfonic acid) | PFHxS | C6HF13O3S | 防水、放油布料 | ||
全氟辛基磺酸 (Perfluorooctane sulfonic acid) | PFOS | C8HF17O3S | 油墨、电子产品 | ||
全氟烷基磺酸类化合物 (Perfluoroalkane sulfonic acids) | PFSIAs | 全氟丁酸 (Perfluorobutanoic acid) | PFBA | C4F9COOH | 油漆、涂装 |
全氟己酸 (Perfluorohexanoic acid) | PFHxA | C6F13COOH | 涂覆金属、不粘锅 | ||
全氟辛酸 (Perfluorooctanoic acid) | PFOA | C8HF15O2 | 电线绝缘层、帐篷 | ||
全氟羧酸羧酸盐 (Perfluorocarboxylic acid & carboxylates) | PFCAs | 全氟庚烷羧酸 (Perfluoroheptanoic acid) | PFHpA | C7HF15O2 | 食品包装、雨衣 |
全氟康烷酸 (Perfluorononanoic acid) | PFNA | C9HF17O2 | 润滑剂、催化剂 | ||
全氟癸酸 (Perfluorodecanoic acid) | PFDA | C10HF19O2 | 润滑油、防水衣物 | ||
全氟己醇 (Perfluoro-1-hexanol) | 6:2FTOH | C6HF13O | 表面活性剂 | ||
全氟辛醇 (Perfluoro-1-octanol) | 8:2FTOH | C8HF17O | 防水、放油涂料 | ||
全氟十二烷醇 (Perfluoro-1-dodecanol) | 10:2FTOH | C12HF23O | 防水、放油涂料 | ||
全氟十四烷醇 (Perfluoro-1-tetradecanol) | 12:2FTOH | C14HF27O | 电子、半导体制造 | ||
全氟烷基磺酰胺类化合物(Perfluoroalkane sulfonamido compounds) | Me/Et/ Bu-FASAs | 甲基全氟辛烷磺酸 (Methyl perfluorooctane sulfonate) | MeFOSA | C8F17SO3 | 油墨分散剂 |
乙基全氟辛烷磺酸 (Ethyl perfluorooctane sulfonate) | EtFOSA | C8F17SO3 | 清洗剂、洗涤剂 | ||
甲基全氟辛烷磺酰氧乙基 (Methyl perfluorooctane sulfonamidoethyl sulfonate) | MeFOSE | C10H5F17NO4S2 | 防腐蚀涂层 | ||
乙基全氟辛烷磺酰氧乙基 (Ethyl perfluorooctane sulfonamidoethyl sulfonate) | EtFOSE | C10H4F18NO4S2 | 电子清洗剂 | ||
N-甲基全氟丁烷磺酰基乙基 (N-methylperfluorobutane sulfonamidoethyl sulfonate) | NMeFBSE | C6H4F9NO4S2 | 有机合成 | ||
N-甲基全氟丁烷磺酸 (N-methylperfluorobutane sulfonic acid) | NMeFBSA | C4H5F9O3S | 药物研发 |
表1 典型PFASs的中英文全称、简称、分子式及主要用途
Table1 Name, abbreviation, molecular formula and main uses of typical PFASs
类型 | 简称 | 代表化合物 | 简称 | 分子式 | 主要用途 |
---|---|---|---|---|---|
全氟烷基酸类化合物 (Perfluoroalkane acid) | PFAAs | 全氟丁烷磺酸 (Perfluorobutane sulfonic acid) | PFBS | C4HF9O3S | 防火泡沫、润滑剂 |
全氟己烷磺酸 (Perfluorohexane sulfonic acid) | PFHxS | C6HF13O3S | 防水、放油布料 | ||
全氟辛基磺酸 (Perfluorooctane sulfonic acid) | PFOS | C8HF17O3S | 油墨、电子产品 | ||
全氟烷基磺酸类化合物 (Perfluoroalkane sulfonic acids) | PFSIAs | 全氟丁酸 (Perfluorobutanoic acid) | PFBA | C4F9COOH | 油漆、涂装 |
全氟己酸 (Perfluorohexanoic acid) | PFHxA | C6F13COOH | 涂覆金属、不粘锅 | ||
全氟辛酸 (Perfluorooctanoic acid) | PFOA | C8HF15O2 | 电线绝缘层、帐篷 | ||
全氟羧酸羧酸盐 (Perfluorocarboxylic acid & carboxylates) | PFCAs | 全氟庚烷羧酸 (Perfluoroheptanoic acid) | PFHpA | C7HF15O2 | 食品包装、雨衣 |
全氟康烷酸 (Perfluorononanoic acid) | PFNA | C9HF17O2 | 润滑剂、催化剂 | ||
全氟癸酸 (Perfluorodecanoic acid) | PFDA | C10HF19O2 | 润滑油、防水衣物 | ||
全氟己醇 (Perfluoro-1-hexanol) | 6:2FTOH | C6HF13O | 表面活性剂 | ||
全氟辛醇 (Perfluoro-1-octanol) | 8:2FTOH | C8HF17O | 防水、放油涂料 | ||
全氟十二烷醇 (Perfluoro-1-dodecanol) | 10:2FTOH | C12HF23O | 防水、放油涂料 | ||
全氟十四烷醇 (Perfluoro-1-tetradecanol) | 12:2FTOH | C14HF27O | 电子、半导体制造 | ||
全氟烷基磺酰胺类化合物(Perfluoroalkane sulfonamido compounds) | Me/Et/ Bu-FASAs | 甲基全氟辛烷磺酸 (Methyl perfluorooctane sulfonate) | MeFOSA | C8F17SO3 | 油墨分散剂 |
乙基全氟辛烷磺酸 (Ethyl perfluorooctane sulfonate) | EtFOSA | C8F17SO3 | 清洗剂、洗涤剂 | ||
甲基全氟辛烷磺酰氧乙基 (Methyl perfluorooctane sulfonamidoethyl sulfonate) | MeFOSE | C10H5F17NO4S2 | 防腐蚀涂层 | ||
乙基全氟辛烷磺酰氧乙基 (Ethyl perfluorooctane sulfonamidoethyl sulfonate) | EtFOSE | C10H4F18NO4S2 | 电子清洗剂 | ||
N-甲基全氟丁烷磺酰基乙基 (N-methylperfluorobutane sulfonamidoethyl sulfonate) | NMeFBSE | C6H4F9NO4S2 | 有机合成 | ||
N-甲基全氟丁烷磺酸 (N-methylperfluorobutane sulfonic acid) | NMeFBSA | C4H5F9O3S | 药物研发 |
采样时间 | 样品数 | 粒径 | 检出种类 | 区域 | 采样点 (n) | FTOHs | NMeFOSA | NEtFOSA | NEtFOSE | PFBS | 参考文献 | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2005-02‒2006-02 | 81 | TSP | ‒ | 城市/ 郊区 | 英国 (4) | ND-237 | 63.5 | 102 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 1.60-3.20 | 2.40 | 2.40 | Barber et al., | |||||||||||||||||||||||||
挪威 (2) | 0.02- 3.42×103 | 870 | 3.42× 103 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 0.09-0.50 | 0.30 | 0.30 | |||||||||||||||||||||||||||||||
爱尔兰 (1) | ‒ | 5.66 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 1.00 | ‒ | |||||||||||||||||||||||||||||||
2005-10‒2007-11 | >100 | TSP | 24 | ‒ | 德国 (2) | 0-0.30 | 0.10 | 0.10 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 0-0.90 | 0.20 | ‒ | Dreyer et al., | |||||||||||||||||||||||||
2006-10‒2006-12 | ‒ | PM10 | 13 | 郊区 | 大西洋 (2) | 0-8.02 | 0.90 | 0.10 | ND- 0.10 | 0.04 | 0.05 | ‒ | 0.10 | ‒ | 0.10-0.50 | 0.20 | 0.10 | ‒ | ‒ | ‒ | Cai et al., | |||||||||||||||||||||||||
2009-03‒ 2009-07 | 14 | TSP | 14 | 城市/农村/偏远地区 | 加拿大 (8) | ND-870 | 161 | 0 | ND | ‒ | ‒ | ND | ‒ | ‒ | ND-565 | 70.6 | ‒ | ND | ‒ | ‒ | Genualdi et al., | |||||||||||||||||||||||||
美国 (5) | ND-435 | 87.0 | 0 | ND | ‒ | ‒ | ND | ‒ | ‒ | ‒ | ‒ | ‒ | ND | ‒ | ‒ | |||||||||||||||||||||||||||||||
法国 (1) | ND | ‒ | ‒ | ‒ | 115 | ‒ | ‒ | ‒ | ‒ | ND | ‒ | ‒ | ND | ‒ | ‒ | |||||||||||||||||||||||||||||||
冰岛 (2) | ‒ | 505 | ‒ | ND | ‒ | ‒ | ND | ‒ | ‒ | ND | ‒ | ‒ | ND | ‒ | ‒ | |||||||||||||||||||||||||||||||
2009-07‒ 2009-09 | 18 | TSP | 18 | 排放源 | 加拿大 (4) | 70.4‒1.74×104 | 3.4×103 | 991 | 6.11- 48.2 | 16.2 | 14.4 | 6.07-30.0 | 10.9 | 9.56 | 4.80-29.2 | 10.9 | 7.96 | ‒ | ‒ | ‒ | Lutz et al., | |||||||||||||||||||||||||
2009-03‒ 2009-08 | >100 | TSP | 14 | 城市/郊区/农村 | 日本 (9) | 2.37- 808 | 91.6 | 47.0 | ND- 10.2 | 5.65 | 5.91 | 1.85-7.23 | 3.43 | 2.65 | 0.67-56.2 | 8.16 | 2.27 | ‒ | ‒ | ‒ | Li et al., | |||||||||||||||||||||||||
印度 (18) | 0.56- 135 | 29.7 | 18.0 | ND- 13.1 | 6.51 | 6.89 | ND-817 | 72.3 | 0.96 | 1.43-11.4 | 5.15 | 4.24 | ‒ | ‒ | ‒ | |||||||||||||||||||||||||||||||
中国 (18) | ND- 498 | 68.2 | 40.5 | 1.27- 12.5 | 7.24 | 7.40 | 1.85-14.2 | 4.37 | 2.99 | ND-24.2 | 6.02 | 4.27 | ‒ | ‒ | ‒ | |||||||||||||||||||||||||||||||
2013-11‒ 2014-06 | 2 | TSP | 2 | 城市/ 郊区 | 中国 (86) | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 方祥光等, | |||||||||||||||||||||||||
2014-10 | 9 | PM2.5/ PM10/ TSP | 9 | 城市 | 中国 (1) | 9.50- 22.7 | 128 | 121 | ‒ | ‒ | ‒ | 0.30-0.60 | 0.50 | 0.50 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 杨朔等, | |||||||||||||||||||||||||
2014‒2015 | ‒ | PM2.5 | 12 | 城市 | 中国 (6) | 0.73- 48.1 | 17.5 | 512 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ND-0.96 | 0.56 | 0.49 | Yu et al., | |||||||||||||||||||||||||
2014-06‒ 2015-02 | ‒ | TSP | ‒ | 城市/ 郊区 | 中国 (3) | ND- 189 | 20.5 | 9.96 | ND-0.81 | 0.46 | 0 | ND-423 | 110 | 9.42 | ND | ‒ | ‒ | ND | ‒ | ‒ | Yao et al., | |||||||||||||||||||||||||
2016‒2018 | 17 | PM2.5/ PM10/ TSP | 17 | 城市 | 中国 (5) | ‒ | ‒ | ‒ | ND | ‒ | ‒ | ND-0.50 | 0.45 | 0.42 | ‒ | ‒ | ‒ | ND-0.38 | 0.38 | ‒ | Lin et al., | |||||||||||||||||||||||||
印度 (2) | ‒ | ‒ | ‒ | ND-0.53 | 0.07 | 0.34 | 0.21-2.27 | 1.24 | 1.42 | ‒ | ‒ | ‒ | ND-1.19 | 1.04 | ‒ | |||||||||||||||||||||||||||||||
日本 (1) | ‒ | ‒ | ‒ | 0.06-0.18 | 0.1 | 0.08 | 0.37-0.70 | 0.51 | 0.41 | ‒ | ‒ | ‒ | ND-0.04 | 0.02 | ‒ | |||||||||||||||||||||||||||||||
韩国 (1) | ‒ | ‒ | ‒ | 0.17-0.31 | 0.22 | 0.18 | 0.68-1.46 | 0.72 | 0.72 | ‒ | ‒ | ‒ | ND-0.11 | 0.01 | 0.01 | |||||||||||||||||||||||||||||||
2020-12‒2021-01 | 17 | PM10/ TSP | 17 | 排放源/偏远地区 | 中国香港 (6) | ND- 335 | 66.5 | 17.9 | ‒ | ‒ | ‒ | ND-3.00 | 1.82 | 1.60 | ‒ | ‒ | ‒ | 0.39-138 | 14.9 | 1.62 | Lin et al., | |||||||||||||||||||||||||
采样 时间 | 样品数 | 粒径 | 检出种类 | 区域 | 采样点 (n) | PFHxS | PFOS | PFOA | PFNA | PFHpA | PFHxA | 参考 文献 | ||||||||||||||||||||||||||||||||||
2005-02‒ 2006-02 | 81 | TSP | - | 城市/ 郊区 | 英国 (4) | 0.04-5.90 | 1.76 | 1.76 | 1.60-44.5 | 23.1 | 1.60 | 101-552 | 327 | 327 | 0.80-26.6 | 10.5 | 10.5 | 0.20-14.4 | 6.10 | 6.10 | 26.0-107 | 55.8 | 55.8 | Barber et al., | ||||||||||||||||||||||
挪威 (2) | 0.05-4.10 | 2.08 | 2.08 | 1.00-47.4 | 24.2 | 47.4 | 1.50-4.40 | 2.97 | 4.4 | 0.12-2.70 | 1.41 | 1.41 | 0.80-0.87 | 0.84 | 0.84 | 0.50-17.1 | 8.80 | 8.80 | ||||||||||||||||||||||||||||
爱尔兰 (1) | ‒ | 0.07 | ‒ | ‒ | 1.80 | ‒ | ‒ | 8.90 | ‒ | ‒ | 3.30 | ‒ | - | 0.01 | ‒ | ‒ | 13.8 | ‒ | ||||||||||||||||||||||||||||
2005-10‒ 2007-11 | >100 | TSP | 24 | ‒ | 德国 (2) | ‒ | ‒ | ‒ | 0.10-2.50 | 0.95 | 0.20 | 0.10-0.40 | 0.25 | 0.15 | ‒ | ‒ | ‒ | 0-0.10 | ‒ | ‒ | 0-0.20 | 0.10 | 0.10 | Dreyer et al., | ||||||||||||||||||||||
2006-10‒ 2006-12 | ‒ | PM10 | 13 | 郊区 | 大西洋 (2) | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | Cai et al., | ||||||||||||||||||||||
2009-03‒ 2009-07 | 14 | TSP | 14 | 城市/ 农村/ 偏远地区 | 加拿大 (8) | ND | ‒ | ‒ | ND-130 | 16.3 | ‒ | ND | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | Genualdi et al., | ||||||||||||||||||||||
美国 (5) | ND | ‒ | ‒ | ND-560 | 112 | ‒ | ND | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ||||||||||||||||||||||||||||
法国 (1) | ND | ‒ | ‒ | ND | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ||||||||||||||||||||||||||||
冰岛 (2) | ND | ‒ | ‒ | 470-1.96×103 | 1.22× 103 | ‒ | ND | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ||||||||||||||||||||||||||||
2009-07‒ 2009-09 | 18 | TSP | 18 | 排放源 | 加拿大 (4) | ‒ | ‒ | ‒ | ND-171 | 57.8 | 34.2 | ND-47.3 | 14.8 | 7.44 | ND-15.8 | 3.51 | 2.50 | ND-20.4 | 8.01 | 4.13 | ND-62.8 | 21.8 | 10.5 | Lutz et al., | ||||||||||||||||||||||
2009-03‒ 2009-08 | >100 | TSP | 14 | 城市/ 郊区/ 农村 | 日本 (9) | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | Li et al., | ||||||||||||||||||||||
印度 (18) | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ||||||||||||||||||||||||||||
中国 (18) | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ||||||||||||||||||||||||||||
2013-11‒ 2014-06 | 2 | TSP | 2 | 城市/ 郊区 | 中国 (86) | ‒ | ‒ | ‒ | ND-25.0 | 2.43 | 0.82 | 0.12-14.0 | 1.82 | 0.79 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 方祥光等, | ||||||||||||||||||||||
2014-10 | 9 | PM2.5/ PM10/ TSP | 9 | 城市 | 中国 (1) | ‒ | ‒ | ‒ | 0.80-10.8 | 4.40 | 3.60 | 3.70-32.0 | 12.3 | 11.7 | 1.00-3.00 | 1.91 | 1.80 | 0.20-2.60 | 1.01 | 0.60 | 0.40-1.60 | 0.83 | 0.60 | 杨朔等, | ||||||||||||||||||||||
2014‒ 2015 | ‒ | PM2.5 | 12 | 城市 | 中国 (6) | ND-2.01 | 1.32 | 1.83 | 0.14-8.37 | 3.98 | 4.30 | 2.07-556 | 181 | 12.5 | 0.17-12.8 | 3.40 | 0.65 | 0.24-11.7 | 4.54 | 0.99 | 1.10-31.5 | 5.28 | 1.34 | Yu et al., | ||||||||||||||||||||||
2014-06‒ 2015-02 | ‒ | TSP | - | 城市/ 郊区 | 中国 (3) | ND | ‒ | ‒ | 3.24-6.75 | 4.97 | 4.94 | 8.29-8.60 | 24.4 | 23.4 | 0.75-7.25 | 3.39 | 2.66 | ND-7.36 | 6.92 | 6.92 | ‒ | ‒ | ‒ | Yao et al., | ||||||||||||||||||||||
2016‒ 2018 | 17 | PM2.5/ PM10/ TSP | 17 | 城市 | 中国 (5) | ND-1.07 | 0.49 | 0.43 | 0.18-3.42 | 0.99 | 0.72 | 0.10-13.6 | 1.80 | 0.80 | ND-0.80 | 0.32 | 0.34 | ND-2.38 | 0.74 | 0.63 | ND-1.33 | 0.54 | 0.50 | Lin et al., | ||||||||||||||||||||||
印度 (2) | ND | ‒ | ‒ | 0.17-1.09 | 0.50 | 0.31 | 0.26-0.77 | 0.40 | 0.31 | ND-0.35 | 0.35 | 0.35 | 0.67-1.04 | 0.81 | 0.78 | 0.14-1.17 | 0.55 | 0.56 | ||||||||||||||||||||||||||||
日本 (1) | ND-0.05 | 0.05 | 0.05 | 0.24-0.43 | 0.28 | 0.24 | 0.23-1.46 | 0.53 | 0.25 | 0.14-0.99 | 0.33 | 0.18 | 0.53-1.03 | 0.66 | 0.57 | ND-1.91 | 1.01 | 0.72 | ||||||||||||||||||||||||||||
韩国 (1) | ND-0.12 | 0.04 | ‒ | 0.42-0.68 | 0.53 | 0.48 | 0.56-5.05 | 2.07 | 0.60 | 0.18-0.33 | 0.36 | 0.18 | 0.47-1.02 | 0.68 | 0.54 | ND | ‒ | ‒ | ||||||||||||||||||||||||||||
2020-12‒2021-01 | 17 | PM10/ TSP | 17 | 排放源/偏远地区 | 中国香港 (6) | ND-1.59 | 0.66 | 0.63 | 5.31-34.4 | 13.4 | 9.44 | 4.81-14.8 | 10.13 | 8.49 | ND-9.18 | 2.95 | 1.98 | 0.56-2.61 | 1.27 | 1.23 | 1.22-3.42 | 2.16 | 1.75 | Lin et al., |
表2 国内外大气颗粒物中典型PFASs研究案例
Table 2 Atmospheric distribution of main particulate PFASs reported in global references
采样时间 | 样品数 | 粒径 | 检出种类 | 区域 | 采样点 (n) | FTOHs | NMeFOSA | NEtFOSA | NEtFOSE | PFBS | 参考文献 | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2005-02‒2006-02 | 81 | TSP | ‒ | 城市/ 郊区 | 英国 (4) | ND-237 | 63.5 | 102 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 1.60-3.20 | 2.40 | 2.40 | Barber et al., | |||||||||||||||||||||||||
挪威 (2) | 0.02- 3.42×103 | 870 | 3.42× 103 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 0.09-0.50 | 0.30 | 0.30 | |||||||||||||||||||||||||||||||
爱尔兰 (1) | ‒ | 5.66 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 1.00 | ‒ | |||||||||||||||||||||||||||||||
2005-10‒2007-11 | >100 | TSP | 24 | ‒ | 德国 (2) | 0-0.30 | 0.10 | 0.10 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 0-0.90 | 0.20 | ‒ | Dreyer et al., | |||||||||||||||||||||||||
2006-10‒2006-12 | ‒ | PM10 | 13 | 郊区 | 大西洋 (2) | 0-8.02 | 0.90 | 0.10 | ND- 0.10 | 0.04 | 0.05 | ‒ | 0.10 | ‒ | 0.10-0.50 | 0.20 | 0.10 | ‒ | ‒ | ‒ | Cai et al., | |||||||||||||||||||||||||
2009-03‒ 2009-07 | 14 | TSP | 14 | 城市/农村/偏远地区 | 加拿大 (8) | ND-870 | 161 | 0 | ND | ‒ | ‒ | ND | ‒ | ‒ | ND-565 | 70.6 | ‒ | ND | ‒ | ‒ | Genualdi et al., | |||||||||||||||||||||||||
美国 (5) | ND-435 | 87.0 | 0 | ND | ‒ | ‒ | ND | ‒ | ‒ | ‒ | ‒ | ‒ | ND | ‒ | ‒ | |||||||||||||||||||||||||||||||
法国 (1) | ND | ‒ | ‒ | ‒ | 115 | ‒ | ‒ | ‒ | ‒ | ND | ‒ | ‒ | ND | ‒ | ‒ | |||||||||||||||||||||||||||||||
冰岛 (2) | ‒ | 505 | ‒ | ND | ‒ | ‒ | ND | ‒ | ‒ | ND | ‒ | ‒ | ND | ‒ | ‒ | |||||||||||||||||||||||||||||||
2009-07‒ 2009-09 | 18 | TSP | 18 | 排放源 | 加拿大 (4) | 70.4‒1.74×104 | 3.4×103 | 991 | 6.11- 48.2 | 16.2 | 14.4 | 6.07-30.0 | 10.9 | 9.56 | 4.80-29.2 | 10.9 | 7.96 | ‒ | ‒ | ‒ | Lutz et al., | |||||||||||||||||||||||||
2009-03‒ 2009-08 | >100 | TSP | 14 | 城市/郊区/农村 | 日本 (9) | 2.37- 808 | 91.6 | 47.0 | ND- 10.2 | 5.65 | 5.91 | 1.85-7.23 | 3.43 | 2.65 | 0.67-56.2 | 8.16 | 2.27 | ‒ | ‒ | ‒ | Li et al., | |||||||||||||||||||||||||
印度 (18) | 0.56- 135 | 29.7 | 18.0 | ND- 13.1 | 6.51 | 6.89 | ND-817 | 72.3 | 0.96 | 1.43-11.4 | 5.15 | 4.24 | ‒ | ‒ | ‒ | |||||||||||||||||||||||||||||||
中国 (18) | ND- 498 | 68.2 | 40.5 | 1.27- 12.5 | 7.24 | 7.40 | 1.85-14.2 | 4.37 | 2.99 | ND-24.2 | 6.02 | 4.27 | ‒ | ‒ | ‒ | |||||||||||||||||||||||||||||||
2013-11‒ 2014-06 | 2 | TSP | 2 | 城市/ 郊区 | 中国 (86) | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 方祥光等, | |||||||||||||||||||||||||
2014-10 | 9 | PM2.5/ PM10/ TSP | 9 | 城市 | 中国 (1) | 9.50- 22.7 | 128 | 121 | ‒ | ‒ | ‒ | 0.30-0.60 | 0.50 | 0.50 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 杨朔等, | |||||||||||||||||||||||||
2014‒2015 | ‒ | PM2.5 | 12 | 城市 | 中国 (6) | 0.73- 48.1 | 17.5 | 512 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ND-0.96 | 0.56 | 0.49 | Yu et al., | |||||||||||||||||||||||||
2014-06‒ 2015-02 | ‒ | TSP | ‒ | 城市/ 郊区 | 中国 (3) | ND- 189 | 20.5 | 9.96 | ND-0.81 | 0.46 | 0 | ND-423 | 110 | 9.42 | ND | ‒ | ‒ | ND | ‒ | ‒ | Yao et al., | |||||||||||||||||||||||||
2016‒2018 | 17 | PM2.5/ PM10/ TSP | 17 | 城市 | 中国 (5) | ‒ | ‒ | ‒ | ND | ‒ | ‒ | ND-0.50 | 0.45 | 0.42 | ‒ | ‒ | ‒ | ND-0.38 | 0.38 | ‒ | Lin et al., | |||||||||||||||||||||||||
印度 (2) | ‒ | ‒ | ‒ | ND-0.53 | 0.07 | 0.34 | 0.21-2.27 | 1.24 | 1.42 | ‒ | ‒ | ‒ | ND-1.19 | 1.04 | ‒ | |||||||||||||||||||||||||||||||
日本 (1) | ‒ | ‒ | ‒ | 0.06-0.18 | 0.1 | 0.08 | 0.37-0.70 | 0.51 | 0.41 | ‒ | ‒ | ‒ | ND-0.04 | 0.02 | ‒ | |||||||||||||||||||||||||||||||
韩国 (1) | ‒ | ‒ | ‒ | 0.17-0.31 | 0.22 | 0.18 | 0.68-1.46 | 0.72 | 0.72 | ‒ | ‒ | ‒ | ND-0.11 | 0.01 | 0.01 | |||||||||||||||||||||||||||||||
2020-12‒2021-01 | 17 | PM10/ TSP | 17 | 排放源/偏远地区 | 中国香港 (6) | ND- 335 | 66.5 | 17.9 | ‒ | ‒ | ‒ | ND-3.00 | 1.82 | 1.60 | ‒ | ‒ | ‒ | 0.39-138 | 14.9 | 1.62 | Lin et al., | |||||||||||||||||||||||||
采样 时间 | 样品数 | 粒径 | 检出种类 | 区域 | 采样点 (n) | PFHxS | PFOS | PFOA | PFNA | PFHpA | PFHxA | 参考 文献 | ||||||||||||||||||||||||||||||||||
2005-02‒ 2006-02 | 81 | TSP | - | 城市/ 郊区 | 英国 (4) | 0.04-5.90 | 1.76 | 1.76 | 1.60-44.5 | 23.1 | 1.60 | 101-552 | 327 | 327 | 0.80-26.6 | 10.5 | 10.5 | 0.20-14.4 | 6.10 | 6.10 | 26.0-107 | 55.8 | 55.8 | Barber et al., | ||||||||||||||||||||||
挪威 (2) | 0.05-4.10 | 2.08 | 2.08 | 1.00-47.4 | 24.2 | 47.4 | 1.50-4.40 | 2.97 | 4.4 | 0.12-2.70 | 1.41 | 1.41 | 0.80-0.87 | 0.84 | 0.84 | 0.50-17.1 | 8.80 | 8.80 | ||||||||||||||||||||||||||||
爱尔兰 (1) | ‒ | 0.07 | ‒ | ‒ | 1.80 | ‒ | ‒ | 8.90 | ‒ | ‒ | 3.30 | ‒ | - | 0.01 | ‒ | ‒ | 13.8 | ‒ | ||||||||||||||||||||||||||||
2005-10‒ 2007-11 | >100 | TSP | 24 | ‒ | 德国 (2) | ‒ | ‒ | ‒ | 0.10-2.50 | 0.95 | 0.20 | 0.10-0.40 | 0.25 | 0.15 | ‒ | ‒ | ‒ | 0-0.10 | ‒ | ‒ | 0-0.20 | 0.10 | 0.10 | Dreyer et al., | ||||||||||||||||||||||
2006-10‒ 2006-12 | ‒ | PM10 | 13 | 郊区 | 大西洋 (2) | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | Cai et al., | ||||||||||||||||||||||
2009-03‒ 2009-07 | 14 | TSP | 14 | 城市/ 农村/ 偏远地区 | 加拿大 (8) | ND | ‒ | ‒ | ND-130 | 16.3 | ‒ | ND | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | Genualdi et al., | ||||||||||||||||||||||
美国 (5) | ND | ‒ | ‒ | ND-560 | 112 | ‒ | ND | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ||||||||||||||||||||||||||||
法国 (1) | ND | ‒ | ‒ | ND | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ||||||||||||||||||||||||||||
冰岛 (2) | ND | ‒ | ‒ | 470-1.96×103 | 1.22× 103 | ‒ | ND | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ||||||||||||||||||||||||||||
2009-07‒ 2009-09 | 18 | TSP | 18 | 排放源 | 加拿大 (4) | ‒ | ‒ | ‒ | ND-171 | 57.8 | 34.2 | ND-47.3 | 14.8 | 7.44 | ND-15.8 | 3.51 | 2.50 | ND-20.4 | 8.01 | 4.13 | ND-62.8 | 21.8 | 10.5 | Lutz et al., | ||||||||||||||||||||||
2009-03‒ 2009-08 | >100 | TSP | 14 | 城市/ 郊区/ 农村 | 日本 (9) | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | Li et al., | ||||||||||||||||||||||
印度 (18) | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ||||||||||||||||||||||||||||
中国 (18) | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ||||||||||||||||||||||||||||
2013-11‒ 2014-06 | 2 | TSP | 2 | 城市/ 郊区 | 中国 (86) | ‒ | ‒ | ‒ | ND-25.0 | 2.43 | 0.82 | 0.12-14.0 | 1.82 | 0.79 | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | 方祥光等, | ||||||||||||||||||||||
2014-10 | 9 | PM2.5/ PM10/ TSP | 9 | 城市 | 中国 (1) | ‒ | ‒ | ‒ | 0.80-10.8 | 4.40 | 3.60 | 3.70-32.0 | 12.3 | 11.7 | 1.00-3.00 | 1.91 | 1.80 | 0.20-2.60 | 1.01 | 0.60 | 0.40-1.60 | 0.83 | 0.60 | 杨朔等, | ||||||||||||||||||||||
2014‒ 2015 | ‒ | PM2.5 | 12 | 城市 | 中国 (6) | ND-2.01 | 1.32 | 1.83 | 0.14-8.37 | 3.98 | 4.30 | 2.07-556 | 181 | 12.5 | 0.17-12.8 | 3.40 | 0.65 | 0.24-11.7 | 4.54 | 0.99 | 1.10-31.5 | 5.28 | 1.34 | Yu et al., | ||||||||||||||||||||||
2014-06‒ 2015-02 | ‒ | TSP | - | 城市/ 郊区 | 中国 (3) | ND | ‒ | ‒ | 3.24-6.75 | 4.97 | 4.94 | 8.29-8.60 | 24.4 | 23.4 | 0.75-7.25 | 3.39 | 2.66 | ND-7.36 | 6.92 | 6.92 | ‒ | ‒ | ‒ | Yao et al., | ||||||||||||||||||||||
2016‒ 2018 | 17 | PM2.5/ PM10/ TSP | 17 | 城市 | 中国 (5) | ND-1.07 | 0.49 | 0.43 | 0.18-3.42 | 0.99 | 0.72 | 0.10-13.6 | 1.80 | 0.80 | ND-0.80 | 0.32 | 0.34 | ND-2.38 | 0.74 | 0.63 | ND-1.33 | 0.54 | 0.50 | Lin et al., | ||||||||||||||||||||||
印度 (2) | ND | ‒ | ‒ | 0.17-1.09 | 0.50 | 0.31 | 0.26-0.77 | 0.40 | 0.31 | ND-0.35 | 0.35 | 0.35 | 0.67-1.04 | 0.81 | 0.78 | 0.14-1.17 | 0.55 | 0.56 | ||||||||||||||||||||||||||||
日本 (1) | ND-0.05 | 0.05 | 0.05 | 0.24-0.43 | 0.28 | 0.24 | 0.23-1.46 | 0.53 | 0.25 | 0.14-0.99 | 0.33 | 0.18 | 0.53-1.03 | 0.66 | 0.57 | ND-1.91 | 1.01 | 0.72 | ||||||||||||||||||||||||||||
韩国 (1) | ND-0.12 | 0.04 | ‒ | 0.42-0.68 | 0.53 | 0.48 | 0.56-5.05 | 2.07 | 0.60 | 0.18-0.33 | 0.36 | 0.18 | 0.47-1.02 | 0.68 | 0.54 | ND | ‒ | ‒ | ||||||||||||||||||||||||||||
2020-12‒2021-01 | 17 | PM10/ TSP | 17 | 排放源/偏远地区 | 中国香港 (6) | ND-1.59 | 0.66 | 0.63 | 5.31-34.4 | 13.4 | 9.44 | 4.81-14.8 | 10.13 | 8.49 | ND-9.18 | 2.95 | 1.98 | 0.56-2.61 | 1.27 | 1.23 | 1.22-3.42 | 2.16 | 1.75 | Lin et al., |
图2 2014年中国大气颗粒物中PFOA和PFOS的分布 数据来自:Yu et al.,2018;Yao et al.,2017;方祥光等,2018;杨朔等,2018
Figure 2 Distribution of PFOA and PFOS in atmospheric particulate matter of China in 2014
图4 2009与2021年点源附近大气中的PFASs质量浓度分布比较 数据来自:Lin et al.,2022;Lutz et al.,2011
Figure 4 Distribution of PFASs concentrations in atmospheric near point sources in 2009 and 2021
评价方法 | 评价内容 | 计算公式 | 参考文献 |
---|---|---|---|
PBPK模型 | 评估环境污染物在人体内的暴露水平 | AS, L=U/(E×24) | Chen et al., |
人体吸入暴露评估模型 | 评估人体吸入化学物质的 暴露水平 | Fi=0.5×(1+exp(−0.06×DP, i)) | Qiao et al., |
Iinh−g=Cg×IR×t | |||
皮肤暴露估计 | 人类皮肤对空气污染物的 摄入量 | Weschler et al., | |
Ider−g=Cg×Kp−g×SA×f×t | |||
表3 PFASs人体健康风险评价方法
Table 3 Human health risk assessment methods for PFASs
评价方法 | 评价内容 | 计算公式 | 参考文献 |
---|---|---|---|
PBPK模型 | 评估环境污染物在人体内的暴露水平 | AS, L=U/(E×24) | Chen et al., |
人体吸入暴露评估模型 | 评估人体吸入化学物质的 暴露水平 | Fi=0.5×(1+exp(−0.06×DP, i)) | Qiao et al., |
Iinh−g=Cg×IR×t | |||
皮肤暴露估计 | 人类皮肤对空气污染物的 摄入量 | Weschler et al., | |
Ider−g=Cg×Kp−g×SA×f×t | |||
[1] |
AHRENS L, SHOEIB M, HARNER T, et al., 2011. Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere[J]. Environmental Science & Technology, 45(19): 8098-8105.
DOI URL |
[2] |
ANKLEY G T, CURETON P, HOKE R A, et al., 2021. Assessing the ecological risks of per-and polyfluoroalkyl substances: Current state-of-the science and a proposed path forward[J]. Environmental Toxicology and Chemistry, 40(3): 564-605.
DOI URL |
[3] |
APELBERG B J, WITTER F R, HERBSTMAN J B, et al., 2007. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at Birth[J]. Environmental Health Perspectives, 115(11): 1670-1676.
DOI PMID |
[4] | ATSDR (Agency for Toxic Substances and Disease Registry). 2021. Toxicological Profile for Perfluoroalkyls[EB/OL]. (2021-05) [2023-05-15]. https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=1117&tid=237. |
[5] |
BARBER J L, BERGER U, CHAEMFA C, et al., 2007. Analysis of per- and polyfluorinated alkyl substances in air samples from northwest Europe[J]. Journal of Environmental Monitoring, 9(6): 530-541.
DOI PMID |
[6] |
BARRY V, WINQUIST A, STEENLAND K, 2013. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant[J]. Environmental Health Perspectives, 121(11-12): 1313-1318.
DOI PMID |
[7] |
BASSLER J, DUCATMAN A, ELLIOTT M, et al., 2019. Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines[J]. Environmental Pollution, 247: 1055-1063.
DOI PMID |
[8] |
BUCK R C, FRANKLIN J, BERGER U, et al., 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 7(4): 513-541.
DOI PMID |
[9] |
CAI M H, XIE Z Y, MÖLLER A, et al., 2012. Polyfluorinated compounds in the atmosphere along a cruise pathway from the Japan Sea to the Arctic Ocean[J]. Chemosphere, 87(9): 989-997.
DOI PMID |
[10] |
CASAL P, ZHANG Y, MARTIN J W, et al., 2017. Role of snow deposition of perfluoroalkylated substances at coastal livingston island (Maritime Antarctica)[J]. Environmental Science & Technology, 51(15): 8460-8470.
DOI URL |
[11] |
CHANG S, BUTENHOFF J L, PARKER G A, et al., 2018. Reproductive and developmental toxicity of potassium perfluorohexanesulfonate in CD-1 mice[J]. Reproductive Toxicology, 78: 150-168.
DOI PMID |
[12] |
CHEN Q R, CHOU W C, LIN Z M, 2022. Integration of toxicogenomics and physiologically based pharmacokinetic modeling in human health risk assessment of perfluorooctane sulfonate[J]. Environmental Science & Technology, 56(6): 3623-3633.
DOI URL |
[13] |
CHOU W C, LIN Z, 2020. Probabilistic human health risk assessment of perfluorooctane sulfonate (PFOS) by integrating in vitro, in vivo toxicity, and human epidemiological studies using a bayesian-based dose-response assessment coupled with physiologically based pharmacokinetic (PBPK) modeling approach[J]. Environment International, 137: 105581.
DOI URL |
[14] |
CHOU W C, LIN Z M, 2019. Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification[J]. Environment International, 129: 408-422.
DOI URL |
[15] |
CONTI A, STRAZZERI C, RHODEN K J, 2020. Perfluorooctane sulfonic acid, a persistent organic pollutant, inhibits iodide accumulation by thyroid follicular cells in vitro[J]. Molecular and Cellular Endocrinology, 515: 110922.
DOI URL |
[16] | COUSINS I T, DEWITT J C, GLÜGE J, et al., 2020. Strategies for grouping per-and polyfluoroalkyl substances (PFAS) to protect human and environmental health[J]. Environmental Science: Processes & Impacts, 22(7): 1444-1460. |
[17] | DEWITT J C, BLOSSOM S J, SCHAIDER L A, 2019. Exposure to per-fluoroalkyl and polyfluoroalkyl substances leads to immunotoxicity: Epidemiological and toxicological evidence[J]. Journal of Exposure Science & Environmental Epidemiology, 29(2): 148-156. |
[18] |
DREYER A, MATTHIAS V, TEMME C, et al., 2009. Annual time series of air concentrations of polyfluorinated compounds[J]. Environmental Science & Technology, 43(11): 4029-4036.
DOI URL |
[19] | ECHA (European Chemicals Agency), 2023. Restriction of Per- and Polyfluoroalkyl Substances (PFAS) under REACH. [2023-01-07] https://echa.europa.eu/-/echa-adds-nine-hazardous-chemicals-to-candidate-list. |
[20] |
EVICH M G, DAVIS M J B, MCCORD J P, et al., 2022. Per-and polyfluoroalkyl substances in the environment[J]. Science, 375(6580): eabg9065.
DOI URL |
[21] |
FANG S H, LI C, ZHU L Y, et al., 2019. Spatiotemporal distribution and isomer profiles of perfluoroalkyl acids in airborne particulate matter in Chengdu City, China[J]. Science of the Total Environment, 689: 1235-1243.
DOI URL |
[22] | FAUST J A, 2023. PFAS on atmospheric aerosol particles: A review[J]. Environmental Science: Processes & Impacts, 25(2): 133-150. |
[23] |
GENUALDI S, LEE S C, SHOEIB M, et al., 2010. Global pilot study of legacy and emerging persistent organic pollutants using sorbent-impregnated polyurethane foam disk passive air samplers[J]. Environmental Science & Technology, 44(14): 5534-5539.
DOI URL |
[24] |
HAMID H, LI L Y, GRACE J R, 2018. Review of the fate and transformation of per-and polyfluoroalkyl substances (PFASs) in landfills[J]. Environmental Pollution, 235: 74-84.
DOI URL |
[25] | HE P F, ZHANG H, LI J, et al., 2016. Residue characteristics of perfuorinated compounds in the atmosphere of Shenzhen[J]. Environmental Science, 37(4): 1240-1247. |
[26] |
HU X C, DASSUNCAO C, ZHANG X, et al., 2018. Can profiles of poly-and perfluoroalkyl substances (pfass) in human serum provide information on major exposure sources[J]. Environmental Health, 17(1): 1-15.
DOI |
[27] | HUANG K, LI Y L, BU D, et al., 2022. Trophic magnification of short-chain per-and polyfluoroalkyl substances in a terrestrial food chain from the Tibetan Plateau[J]. Environmental Science & Technology Letters, 9(2): 147-152. |
[28] |
JAHNKE A, AHRENS L, EBINGHAUS R, et al., 2007. Urban versus remote air concentrations of fluorotelomer alcohols and other polyfluorinated alkyl substances in Germany[J]. Environmental Science & Technology, 41(3): 745-752.
DOI URL |
[29] |
JOENSEN U N, VEYRAND B, ANTIGNAC J P, et al., 2013. PFOS (Perfluorooctanesulfonate) in serum is negatively associated with testosterone levels, but not with semen quality, in healthy men[J]. Human Reproduction, 28(3): 599-608.
DOI URL |
[30] |
JONES K C, 2021. Persistent organic pollutants (POPs) and related chemicals in the global environment: Some personal reflections[J]. Environmental Science & Technology, 55(14): 9400-9412.
DOI URL |
[31] |
KARÁSKOVÁ P, VENIER M, MELYMUK L, et al., 2016. Perfluorinated alkyl substances (PFASs) in household dust in central europe and north America[J]. Environment International, 94: 315-324.
DOI PMID |
[32] |
LANGER V, DREYER A, EBINGHAUS R, 2010. Polyfluorinated compounds in residential and nonresidential indoor air[J]. Environmental Science & Technology, 44(21): 8075-8081.
DOI URL |
[33] |
LI J, DEL VENTO S, SCHUSTER J, et al., 2011. Perfluorinated compounds in the asian atmosphere[J]. Environmental Science & Technology, 45(17): 7241-7248.
DOI URL |
[34] |
LI Z W, LIU Q, LIU C, et al., 2017. Evaluation of PFOS-mediated neurotoxicity in rat primary neurons and astrocytes cultured separately or in co-culture[J]. Toxicology In Vitro, 38: 77-90.
DOI PMID |
[35] |
LIN H J, LAO J Y, WANG Q, et al., 2022. Per-and polyfluoroalkyl substances in the atmosphere of waste management infrastructures: Uncovering secondary fluorotelomer alcohols, particle size distribution, and human inhalation exposure[J]. Environment International, 167: 107434.
DOI URL |
[36] |
LIN H J, TANIYASU S, YAMAZAKI E, et al., 2020. Per-and polyfluoroalkyl substances in the air particles of asia: levels, seasonality, and size-dependent distribution[J]. Environmental Science & Technology, 54(22): 14182-14191.
DOI URL |
[37] | LUTZ A, MAHIBA S, TOM H et al., 2011. Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere[J]. Reiner Environmental Science & Technology, 45(19): 8098-8105. |
[38] |
MACINNIS J J, LEHNHERR I, MUIR D C G, et al., 2019. Fate and transport of perfluoroalkyl substances from snowpacks into a lake in the high arctic of Canada[J]. Environmental Science & Technology, 53(18): 10753-10762.
DOI URL |
[39] |
MILINOVIC J, LACORTE S, VIDAL M, et al., 2015. Sorption behaviour of perfluoroalkyl substances in soils[J]. Science of the Total Environment, 511: 63-71.
DOI URL |
[40] | NG C, COUSINS I T, DEWITT J C, et al., 2021. Addressing urgent questions for PFAS in the 21st century[J]. Environmental Science & Technology, 55(19): 12755-12765. |
[41] |
PANIERI E, BARALIC K, DJUKIC-COSIC D, et al., 2022. PFAS Molecules: A Major Concern for the Human Health and the Environment[J]. Toxics, 10(2): 44.
DOI URL |
[42] |
QIAO L, GAO L R, LIU Y, et al., 2022. Recognition and health impacts of organic pollutants with significantly different proportions in the gas phase and size-fractionated particulate phase in ambient air[J]. Environmental Science & Technology, 56(11): 7153-7162.
DOI URL |
[43] |
REINIKAINEN J, PERKOLA N, ÄYSTÖ L, et al., 2022. The occurrence, distribution, and risks of PFAS at AFFF-impacted sites in finland[J]. Science of the Total Environment, 829: 154237.
DOI URL |
[44] |
ROSCALES J L, VICENTE A, RYAN P G, et al., 2019. Spatial and interspecies heterogeneity in concentrations of perfluoroalkyl substances (PFASs) in seabirds of the Southern Ocean[J]. Environmental Science & Technology, 53(16): 9855-9865.
DOI URL |
[45] |
SHA B, JOHANSSON J H, TUNVED P, et al., 2021. Sea spray aerosol (SSA) as a source of perfluoroalkyl acids (PFAAs) to the atmosphere: Field evidence from long-term air monitoring[J]. Environmental Science & Technology, 56(1): 228-238.
DOI URL |
[46] |
SHOEIB M, HARNER T, M. WEBSTER G, et al., 2011. Indoor sources of poly-and perfluorinated compounds (PFCS) in Vancouver, Canada: Implications for human exposure[J]. Environmental Science & Technology, 45(19): 7999-8005.
DOI URL |
[47] |
SIMA M W, JAFFÉ P R, 2021. A critical review of modeling poly-and perfluoroalkyl substances (PFAS) in the soil-water environment[J]. Science of the Total Environment, 757: 143793.
DOI URL |
[48] |
SØRLI J B, LÅG M, EKEREN L, et al., 2020. Per-and polyfluoroalkyl substances (PFASs) modify lung surfactant function and pro-inflammatory responses in human bronchial epithelial cells[J]. Toxicology in Vitro, 62: 104656.
DOI URL |
[49] |
STYLER S A, MYERS A L, DONALDSON D J, 2013. Heterogeneous photooxidation of fluorotelomer alcohols: A new source of aerosol-phase perfluorinated carboxylic acids[J]. Environmental Science & Technology, 47(12): 6358-6367.
DOI URL |
[50] | THACKRAY C P, SELIN N E, YOUNG C J, 2020. A global atmospheric chemistry model for the fate and transport of PFCAs and their precursors[J]. Environmental Science: Processes & Impacts, 22(2): 285-293. |
[51] | USEPA (United States Environmental Protection Agency). 2009. Fact Sheet: 2010/2015 PFOA Stewardship Program. [2023-05-16]. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoa-stewardship-program. |
[52] | USEPA (United States Environmental Protection Agency). 2019. EPA’s PFAS Action Plan: A Summary of Key Actions. [2023-05-16]. https://www.epa.gov/sites/default/files/2019-02/documents/pfas_action_factsheet_021319_final_508compliant.pdf. |
[53] |
WANG H X, DU H Y, YANG J Q, et al., 2019. PFOS, PFOA, estrogen homeostasis, and birth size in Chinese infants[J]. Chemosphere, 221: 349-355.
DOI PMID |
[54] |
WANG T, WANG Y W, LIAO C Y, et al., 2009. Perspectives on the inclusion of perfluorooctane sulfonate into the stockholm convention on persistent organic pollutants[J]. Environmental Science & Technology, 43(14): 5171-5175.
DOI URL |
[55] |
WANG Z, BUSER A M, COUSINS I T, et al., 2021. A New OECD definition for per-and polyfluoroalkyl substances[J]. Environmental Science & Technology, 55(23): 15575-15578.
DOI URL |
[56] |
WANG Z Y, SCHERINGER M, MACLEOD M, et al., 2012. Atmospheric fate of poly-and perfluorinated alkyl substances (PFASs): II. emission source strength in summer in Zurich, Switzerland[J]. Environmental Pollution, 169: 204-209.
DOI URL |
[57] |
WEBSTER E, ELLIS D A, 2010. Potential role of sea spray generation in the atmospheric transport of perfluorocarboxylic acids[J]. Environmental Toxicology and Chemistry, 29(8): 1703-1708.
DOI PMID |
[58] |
WESCHLER C J, NAZAROFF W W, 2014. Dermal uptake of organic vapors commonly found in indoor air[J]. Environmental Science & Technology, 48(2): 1230-1237.
DOI URL |
[59] |
WESCHLER C J, NAZAROFF W W, 2012. SVOC exposure indoors: Fresh look at dermal pathways[J]. Indoor Air, 22(5): 356-377.
DOI PMID |
[60] |
XIE Z Y, WANG Z, MAGAND O, et al., 2020. Occurrence of legacy and emerging organic contaminants in snow at dome C in the Antarctic[J]. Science of The Total Environment, 741: 140200.
DOI URL |
[61] |
YAO Y M, CHANG S, ZHAO Y Y, et al., 2017. Per-and poly-fluoroalkyl substances (PFASs) in the urban, industrial, and background atmosphere of northeastern China coast around the Bohai Sea: Occurrence, partitioning, and seasonal variation[J]. Atmospheric Environment, 167: 150-158.
DOI URL |
[62] |
YEUNG L W Y, DASSUNCAO C, MABURY S, et al., 2017. Vertical profiles, sources, and transport of PFASs in the Arctic Ocean[J]. Environmental Science & Technology, 51(12): 6735-6744.
DOI URL |
[63] |
YU N Y, GUO H W, YANG J P, et al., 2018. Non-target and suspect screening of per-and polyfluoroalkyl substances in airborne particulate matter in China[J]. Environmental Science & Technology, 52(15): 8205-8214.
DOI URL |
[64] |
ZHAO N, ZHAO M R, LIU W P, et al., 2021. Atmospheric particulate represents a source of C8-C12 perfluoroalkyl carboxylates and 10: 2 fluorotelomer alcohol in tree bark[J]. Environmental Pollution, 273: 116475.
DOI URL |
[65] | 方祥光, 赵祯, 李军, 等, 2018. 中国典型城市和地区大气颗粒物中全氟烷基酸的污染分布特征[J]. 环境化学, 37(7): 1445-1459. |
FANG X G, ZHAO Z, LI J, et al., 2018. Pollution distribution characteristics of perfluoroalkyl acids in atmospheric particulate matter in typical cities and regions of China[J]. Environmental Chemistry, 37(7): 1445-1459. | |
[66] | 李冰洁, 陈金媛, 刘铮铮, 等, 2021. 浙江省大气颗粒物PM2.5中全氟化合物污染特征分析及健康风险评估[J]. 环境科学, 43(2): 639-648. |
LI B J, CHEN J Y, LIU Z Z, et al., 2021. Analysis of perfluorinated compound pollution characteristics in PM2.5 atmospheric particulate matter in Zhejiang province and health risk assessment[J]. Environmental Science, 43(2): 639-648. | |
[67] | 林泳峰, 阮挺, 江桂斌. 2017. 新型全氟和多氟烷基化合物的分析、行为与效应研究进展[J]. 科学通报, 62(24): 2724-2738. |
LIN Y F, RUAN T, JIANG G B, 2017. Advances in analysis, behavior, and effects of novel perfluoroalkyl and polyfluoroalkyl substances[J]. Chinese Science Bulletin, 62(24): 2724-2738. | |
[68] | 孟文杰, 2022. 全氟化合物暴露对肺表面活性物质表达影响的研究[D]. 沈阳: 中国医科大学. |
MENG W J, 2022. Study on the impact of perfluorinated compound exposure on pulmonary surfactant expression[D]. Shenyang: China Medical University. | |
[69] | 史亚利, 张博钠, 郑哲, 等, 2022. 全氟和多氟烷基类物质在大气环境中的存在和行为研究进展[J]. 环境科学, 35(9): 2037-2046. |
SHI Y L, ZHANG B N, ZHENG Z, et al., 2022. Research progress on the occurrence and behavior of perfluoroalkyl and polyfluoroalkyl substances in the atmospheric environment[J]. Environmental Science Research, 35(9): 2037-2046. | |
[70] | 温祥洁, 陈朝辉, 徐维新, 等, 2022. 青藏高原东北部地区表层土壤中全氟化合物的分布特征及来源解析[J]. 环境科学, 43(6): 3253-3261. |
WEN X J, CHEN Z H, XU W X, et al., 2022. Distribution characteristics and source analysis of perfluorinated compounds in surface soil of the northeastern Qinghai-Tibet Plateau Region[J]. Environmental Science, 43(6): 3253-3261. | |
[71] | 武倩倩, 吴强, 宋帅, 等, 2021. 天津市主要河流和土壤中全氟化合物空间分布、来源及风险评价[J]. 环境科学, 42(8): 3682-3694. |
WU Q Q, WU Q, SONG S, et al., 2021. Spatial distribution, sources, and risk assessment of perfluorinated compounds in major rivers and soils of Tianjin, China[J]. Environmental Science, 42(8): 3682-3694. | |
[72] | 夏慧, 敖俊杰, 袁涛, 2016. 室内灰尘中全氟化合物的污染状况与人体暴露水平评估[J]. 生态毒理学报, 11(2): 223-230. |
XIA H, AO J J, YUAN T, 2016. Pollution status of perfluorinated compounds in indoor dust and assessment of human exposure levels[J]. Journal of Ecotoxicology and Environmental Safety, 11(2): 223-230. | |
[73] | 杨朔, 陈辉伦, 盖楠, 等, 2018. 北京市大气颗粒物中全氟烷基化合物的粒径分布特征[J]. 岩矿测试, 37(5): 549-557. |
YANG S, CHEN H L, GAI N, et al., 2018. Particle size distribution characteristics of perfluoroalkyl compounds in atmospheric particulate matter in Beijing[J]. Rock and Mineral Analysis, 37(5): 549-557. | |
[74] | 中华人民共和国生态环境部, 2023. 重点管控新污染物清单, 2022.12.29. https://www.gov.cn/zhengce/2022-12/30/content_5734728.htm. |
Ministry of Ecology and Environment, 2023. People’s Republic of China.Focus on Controlling the List of New Pollutants, 2022.12.29. https://www.gov.cn/zhengce/2022-12/30/content_5734728.htm. | |
[75] |
朱永乐, 汤家喜, 谭婷, 等, 2023. 氟化工园区周边玉米中全氟/多氟化合物的污染特征[J]. 生态环境学报, 32(5): 1001-1006.
DOI |
ZHU Y L, TANG J X, TAN T et al., 2023. Contaminant characteristic of per- and poly-fluorinated substances in maize in the surrounding of fluorine chemical park[J]. Journal of Ecological Environment, 32(5): 1001-1006. |
[1] | 朱永乐, 汤家喜, 谭婷, 李玉, 向彪. 氟化工园区周边玉米中全氟/多氟化合物的污染特征[J]. 生态环境学报, 2023, 32(5): 1001-1006. |
[2] | 吴雅睿, 王美景, 王涛, 杨梅焕. 新冠疫情下NO2时空变化特征——以陕西省为例[J]. 生态环境学报, 2023, 32(3): 514-524. |
[3] | 刘宁, 孔宇, 任春廷, 潘超, 李晓娜, 王震宇. 废碳粉中新污染物的环境健康风险与资源化利用[J]. 生态环境学报, 2023, 32(12): 2128-2140. |
[4] | 黄国锋, 贺斌, 谢志宜, 刘军, 王安侯, 廖彤, 王博瑾, 郝贝贝. 广东省农业源污染对水环境的影响及其空间分异格局[J]. 生态环境学报, 2023, 32(12): 2207-2215. |
[5] | 刘明宇, 郑旭, 强丽媛, 李鲁华, 张若宇, 王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析[J]. 生态环境学报, 2023, 32(11): 2050-2061. |
[6] | 孙正, 曹亚非, 王德彩, 刘峰, 宋效东, 张甘霖, 吴华勇. 近30年京津冀电镀场地时空演变特征及趋势预测[J]. 生态环境学报, 2023, 32(1): 183-194. |
[7] | 贺斌, 胡茂川. 广东省各区县农业面源污染负荷估算及特征分析[J]. 生态环境学报, 2022, 31(4): 771-776. |
[8] | 石慧斌, 黄艺, 程馨, 李婷, 何敏, 王进进. 成都市冬季PM2.5中碳组分污染特征及来源解析[J]. 生态环境学报, 2021, 30(7): 1420-1427. |
[9] | 王金杰, 赵安周, 胡小枫. 京津冀植被净初级生产力时空分布及自然驱动因子分析[J]. 生态环境学报, 2021, 30(6): 1158-1167. |
[10] | 王薇, 程歆玥, 胡春, 夏斯涵, 王甜. 城市街道峡谷PM2.5时空分布特征与空气质量评价——以合肥市长淮街道为例[J]. 生态环境学报, 2021, 30(11): 2157-2164. |
[11] | 郑诗禹, 张绿水, 郭晓敏, 黄子峻, 肖以华. 不同森林郁闭度环境内空气负氧离子的时空变化及环境影响要素研究——以广州帽峰山为例[J]. 生态环境学报, 2021, 30(11): 2204-2212. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||