生态环境学报 ›› 2023, Vol. 32 ›› Issue (11): 2007-2018.DOI: 10.16258/j.cnki.1674-5906.2023.11.011
收稿日期:
2023-07-27
出版日期:
2023-11-18
发布日期:
2024-01-17
通讯作者:
* 王斌。作者简介:
赵洪艳(1998年生),女,硕士研究生,研究方向为新污染物的环境行为及健康效应。E-mail: 2389434824@qq.com
基金资助:
ZHAO Hongyan1(), WANG Bin1,2,*
Received:
2023-07-27
Online:
2023-11-18
Published:
2024-01-17
摘要:
全(多)氟烷基化合物(PFAS)是一类人工合成、应用广泛、高度氟化的化合物,由于数量众多及其持久性、生物累积性和潜在毒性,其暴露风险受到越来越多关注。人体可能通过食物、饮水、室内空气和灰尘等多种介质暴露于PFAS,当前研究多集中于饮水和食品暴露途径,较少针对室内空气和灰尘的人体暴露进行评估。然而人类通过室内环境介质对PFAS的暴露不可忽视,尤其对婴儿而言。该文综述了室内环境中释放PFAS的各类产品,PFAS在不同介质中的分布特征以及人体暴露于PFAS的途径,重点分析了不同人群的暴露特点和PFAS生物有效性的研究进展,提出了降低室内PFAS浓度的有效措施。发现皮肤接触暴露途径的研究数据较少,室内环境中PFAS从产品到室内的迁移转化机制尚不清楚,此外,目前的研究大多是通过检测膳食、饮水、灰尘、空气等环境介质中的PFAS浓度,然后通过风险评估模型去计算外暴露水平,或者通过尿液、血液、头发等检测PFAS的内暴露水平,外暴露和内暴露研究是相对独立的,二者之间的关联并不明确。众多研究已经表明,很多PFAS类型在各种暴露源中均有高水平检出,仅通过已有的体外暴露风险评估模型对外暴露风险的评估可能高估了暴露量,所以迫切需要更精确的风险暴露评估方式,而现有的生物有效性的建立,确实证明了在某些暴露途径评估上,高估了暴露量,生物有效性可客观评价生物和人体内外暴露之间的质量平衡。未来继续优化PFAS暴露风险评估模型,是评估PFAS对人体的精确暴露风险和优势途径的发展趋势。
中图分类号:
赵洪艳, 王斌. 室内环境中全(多)氟烷基化合物的分布特征和暴露风险[J]. 生态环境学报, 2023, 32(11): 2007-2018.
ZHAO Hongyan, WANG Bin. Distribution Characteristics and Exposure Risk of Per- and Polyfluoroalkyl Substances in Indoor Environments[J]. Ecology and Environment, 2023, 32(11): 2007-2018.
来源 | PFAS浓度 | 主要PFAS类型 | 参考文献 |
---|---|---|---|
地毯 | 325‒4010 ng∙g−1 | 6:2 FTOH、8:2 FTOH、10:2 FTOH | Liu et al., |
252 ng∙g−1 | PFOA、PFOS、 PFHxS | Beesoon et al., | |
1.6‒600 ng∙g−1 | FOSA/FOSEs、PFCAs、PFSAs、FTOHs | Zheng et al., | |
32.20‒8500 ng∙g−1 | PFBS、PFOS、 FTOH、PFBA | Wu et al., | |
化妆品 | 1200‒19000 ng∙g−1 | PFHxA、PFOA、 PFDA、PFDoDA | Fujii et al., |
22‒10500 ng∙g−1 | 6:2 FTOH、6:2 FTMA、FTOHs、PAPs | Whitehead et al., | |
470000 ng∙g−1 | PFHpA、PFHxA、 PAPs | Schultes et al., | |
食品包装袋 | 60000 ng∙g−1 | PFOA、PFHxA、 PFBS、6:2 FTSA | Schaider et al., |
22.10 ng∙dm−2 | PFOA | Monge Brenes et al., | |
0.20‒2.65 ng∙g−1 | PFDS、PFTeDA、PFTrDA、PFHxDA | Zafeiraki et al., |
表1 不同室内来源PFAS浓度和类型
Table 1 PFAS concentrations and types in different indoor environment
来源 | PFAS浓度 | 主要PFAS类型 | 参考文献 |
---|---|---|---|
地毯 | 325‒4010 ng∙g−1 | 6:2 FTOH、8:2 FTOH、10:2 FTOH | Liu et al., |
252 ng∙g−1 | PFOA、PFOS、 PFHxS | Beesoon et al., | |
1.6‒600 ng∙g−1 | FOSA/FOSEs、PFCAs、PFSAs、FTOHs | Zheng et al., | |
32.20‒8500 ng∙g−1 | PFBS、PFOS、 FTOH、PFBA | Wu et al., | |
化妆品 | 1200‒19000 ng∙g−1 | PFHxA、PFOA、 PFDA、PFDoDA | Fujii et al., |
22‒10500 ng∙g−1 | 6:2 FTOH、6:2 FTMA、FTOHs、PAPs | Whitehead et al., | |
470000 ng∙g−1 | PFHpA、PFHxA、 PAPs | Schultes et al., | |
食品包装袋 | 60000 ng∙g−1 | PFOA、PFHxA、 PFBS、6:2 FTSA | Schaider et al., |
22.10 ng∙dm−2 | PFOA | Monge Brenes et al., | |
0.20‒2.65 ng∙g−1 | PFDS、PFTeDA、PFTrDA、PFHxDA | Zafeiraki et al., |
暴露途径 | 估算公式 | 单位 |
---|---|---|
饮食摄入 | pg∙kg−1∙d−1 | |
C: 食物中目标PFAS的浓度 | pg∙g−1 | |
Q: 每天消耗的食物量 | g∙d−1 | |
F: PFAS经胃肠道的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
灰尘摄入 | pg∙kg−1∙d−1 | |
C: 室内灰尘中目标PFAS的浓度 | pg∙g−1 | |
Q: 每天吸尘量 | g∙d−1 | |
F: PFAS经胃肠道的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
室内空气吸入 | pg∙kg−1∙d−1 | |
C: 室内空气中目标PFAS的浓度 | pg∙m−3 | |
Q: 每天吸入率 | m3∙d−1 | |
F: PFAS通过肺部的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
皮肤吸收 | pg∙kg−1∙d−1 | |
Q: 根据目标PFAS的手部擦拭量 来确定手上的质量 | pg | |
T: 暴露时间为1 d | d−1 | |
F: PFAS通过皮肤吸收的吸收部分 | 无单位 | |
M: 个体体重 | kg |
表2 不同暴露途径的PFAS日摄入量估算公式1)
Table 2 Equations applied to estimated daily intakes of PFAS from different exposure pathways
暴露途径 | 估算公式 | 单位 |
---|---|---|
饮食摄入 | pg∙kg−1∙d−1 | |
C: 食物中目标PFAS的浓度 | pg∙g−1 | |
Q: 每天消耗的食物量 | g∙d−1 | |
F: PFAS经胃肠道的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
灰尘摄入 | pg∙kg−1∙d−1 | |
C: 室内灰尘中目标PFAS的浓度 | pg∙g−1 | |
Q: 每天吸尘量 | g∙d−1 | |
F: PFAS经胃肠道的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
室内空气吸入 | pg∙kg−1∙d−1 | |
C: 室内空气中目标PFAS的浓度 | pg∙m−3 | |
Q: 每天吸入率 | m3∙d−1 | |
F: PFAS通过肺部的摄取部分 | 无单位 | |
M: 个体体重 | kg | |
皮肤吸收 | pg∙kg−1∙d−1 | |
Q: 根据目标PFAS的手部擦拭量 来确定手上的质量 | pg | |
T: 暴露时间为1 d | d−1 | |
F: PFAS通过皮肤吸收的吸收部分 | 无单位 | |
M: 个体体重 | kg |
[1] |
ANTONIOU E, COLNOT T, ZEEGERS M, et al., 2022. Immunomodulation and exposure to per- and polyfluoroalkyl substances: An overview of the current evidence from animal and human studies[J]. Archives of Toxicology, 96(8): 2261-2285.
DOI PMID |
[2] |
BACH C C, BECH B H, BRIX N, et al., 2015. Perfluoroalkyl and polyfluoroalkyl substances and human fetal growth: a systematic review[J]. Critical Reviews in Toxicology, 45(1): 53-67.
DOI PMID |
[3] | BALK F G P, WINKENS PUTZ K, RIBBENSTEDT A, et al., 2019. Children's exposure to perfluoroalkyl acids - a modelling approach[J]. Environment Science Processes & Impacts, 21(11): 1875-1886. |
[4] |
BAO Y X, HUANG J, CAGNETTA G, et al., 2019. Removal of F-53B as PFOS alternative in chrome plating wastewater by UV/Sulfite reduction[J]. Water Research, 163: 114907.
DOI URL |
[5] |
BASSLER J, DUCATMAN A, ELLIOTT M, et al., 2019. Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines[J]. Environmental Pollution, 247: 1055-1063.
DOI PMID |
[6] |
BEESOON S, GENUIS S J, BENSKIN J P, et al., 2012. Exceptionally high serum concentrations of perfluorohexanesulfonate in a Canadian family are linked to home carpet treatment applications[J]. Environmental Science & Technology, 46(23): 12960-12967.
DOI URL |
[7] |
BESIS A, BOTSAROPOULOU E, SAMARA C, et al., 2019. Perfluoroalkyl substances (PFASs) in air-conditioner filter dust of indoor microenvironments in Greece: Implications for exposure[J]. Ecotoxicology and Environmental Safety, 183: 109559.
DOI URL |
[8] |
BUCK R C, FRANKLIN J, BERGER U, et al., 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 7(4): 513-541.
DOI PMID |
[9] |
CAHUAS L, MUENSTERMAN D J, KIM-FU M L, et al., 2022. Paints: A source of volatile PFAS in air horizontal line potential implications for inhalation exposure[J]. Environmental Science & Technology, 56(23): 17070-17079.
DOI URL |
[10] |
CHAPARRO-ORTEGA A, BETANCOURT M, ROSAS P, et al., 2018. Endocrine disruptor effect of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) on porcine ovarian cell steroidogenesis[J]. Toxicology in Vitro, 46: 86-93.
DOI URL |
[11] |
CHEN W L, BAI F Y, CHANG Y C, et al., 2018. Concentrations of perfluoroalkyl substances in foods and the dietary exposure among Taiwan general population and pregnant women[J]. Journal of Food and Drug Analysis, 26(3): 994-1004.
DOI URL |
[12] |
DAI M F, YAN N, BRUSSEAU M L, 2023. Potential impact of bacteria on the transport of PFAS in porous media[J]. Water Research, 243: 120350.
DOI URL |
[13] |
DALY E R, CHAN B P, TALBOT E A, et al., 2018. Per- and polyfluoroalkyl substance (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015[J]. International Journal of Hygiene and Environmental Health, 221(3): 569-577.
DOI PMID |
[14] |
DAS K P, WOOD C R, LIN M T, et al., 2017. Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis[J]. Toxicology, 378: 37-52.
DOI PMID |
[15] |
DE LA TORRE A, NAVARRO I, SANZ P, et al., 2019. Occurrence and human exposure assessment of perfluorinated substances in house dust from three European countries[J]. Science of the Total Environment, 685: 308-314.
DOI URL |
[16] |
DE SILVA A O, ARMITAGE J M, BRUTON T A, et al., 2021. PFAS exposure pathways for humans and wildlife: A synthesis of current knowledge and key gaps in understanding[J]. Environmental Toxicology and Chemistry, 40(3): 631-657.
DOI PMID |
[17] |
DELUCA N M, MINUCCI J M, MULLIKIN A, et al., 2022. Human exposure pathways to poly- and perfluoroalkyl substances (PFAS) from indoor media: A systematic review[J]. Environment International, 162: 107149.
DOI URL |
[18] |
DING N, HARLOW S D, RANDOLPH J F, JR, et al., 2020. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary[J]. Human Reproduction Update, 26(5): 724-752.
DOI PMID |
[19] |
DINGLASAN-PANLILIO M J A, MABURY S A, 2006. Significant residual fluorinated alcohols present in various fluorinated materials[J]. Environmental Science & Technology, 40(5): 1447-1453.
DOI URL |
[20] |
DOMINGO J L, NADAL M, 2017. Per- and polyfluoroalkyl substances (PFASs) in food and human dietary intake: A review of the recent scientific literature[J]. Journal of Agricultural and Food Chemistry, 65(3): 533-543.
DOI PMID |
[21] |
DOMINGO J L, NADAL M, 2019. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature[J]. Environmental Research, 177: 108648.
DOI URL |
[22] |
DOMINGUEZ A, SALAZAR Z, ARENAS E, et al., 2016. Effect of perfluorooctane sulfonate on viability, maturation and gap junctional intercellular communication of porcine oocytes in vitro[J]. Toxicology in Vitro, 35: 93-99.
DOI PMID |
[23] |
DU Z W, DENG S B, LIU D C, et al., 2016. Efficient adsorption of PFOS and F53B from chrome plating wastewater and their subsequent degradation in the regeneration process[J]. Chemical Engineering Journal, 290: 405-413.
DOI URL |
[24] | EGEGHY P P, LORBER M, 2011. An assessment of the exposure of Americans to perfluorooctane sulfonate: A comparison of estimated intake with values inferred from NHANES data[J]. Journal of Exposure Science & Environmental Epidemiology, 21(2): 150-168. |
[25] |
ERIKSSON U, KARRMAN A, 2015. World-wide indoor exposure to polyfluoroalkyl phosphate esters (PAPs) and other PFASs in household dust[J]. Environmental Science & Technology, 49(24): 14503-14511.
DOI URL |
[26] |
FASANO W J, KENNEDY G L, SZOSTEK B, et al., 2005. Penetration of Ammonium perfluorooctanoate through rat and human skin in vitro[J]. Drug and Chemical Toxicology, 28(1): 79-90.
PMID |
[27] |
FENTON S E, DUCATMAN A, BOOBIS A, et al., 2021. Per- and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research[J]. Environmental Toxicology and Chemistry, 40(3): 606-630.
DOI PMID |
[28] | FRANKO J, MEADE B J, FRASCH H F, et al., 2012. Dermal penetration potential of perfluorooctanoic acid (PFOA) in human and mouse skin[J]. Journal of Toxicology and Environmental Health, 75(1): 50-62. |
[29] |
FU J J, GAO Y, WANG T, et al., 2015. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: The importance of dust transfer[J]. Scientific Reports, 5(1): 9313.
DOI |
[30] |
FUJII Y, HARADA K H, KOIZUMI A, 2013. Occurrence of perfluorinated carboxylic acids (PFCAs) in personal care products and compounding agents[J]. Chemosphere, 93(3): 538-544.
DOI PMID |
[31] |
GARG S, KUMAR P, MISHRA V, et al., 2020. A review on the sources, occurrence and health risks of per-/poly-fluoroalkyl substances (PFAS) arising from the manufacture and disposal of electric and electronic products[J]. Journal of Water Process Engineering, 38: 101683.
DOI URL |
[32] |
GLENN G, SHOGREN R, JIN X, et al., 2021. Per- and polyfluoroalkyl substances and their alternatives in paper food packaging[J]. Comprehensive Reviews in Food Science and Food Safety, 20(3): 2596-2625.
DOI PMID |
[33] |
GOMIS M I, VESTERGREN R, NILSSON H, et al., 2016. Contribution of direct and indirect exposure to human serumconcentrations of perfluorooctanoic acid in an occupationally exposed group of ski waxers[J]. Environmental Science & Technology, 50(13): 7037-7046.
DOI URL |
[34] |
HALL S M, PATTON S, PETREAS M, et al., 2020. Per- and polyfluoroalkyl substances in dust collected from residential homes and fire stations in North America[J]. Environmental Science & Technology, 54(22): 14558-14567.
DOI URL |
[35] |
HALLBERG I, KJELLGREN J, PERSSON S, et al., 2019. Perfluorononanoic acid (PFNA) alters lipid accumulation in bovine blastocysts after oocyte exposure during in vitro maturation[J]. Reproductive Toxicology, 84: 1-8.
DOI PMID |
[36] |
HARRAD S, DE WIT C A, ABDALLAH M A E, et al., 2010. Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: An important exposure Pathway for People?[J]. Environmental Science & Technology, 44(9): 3221-3231.
DOI URL |
[37] |
HAUG L S, HUBER S, SCHLABACH M, et al., 2011. Investigation on per- and polyfluorinated compounds in paired samples of house dust and indoor air from Norwegian homes[J]. Environmental Science & Technology, 45(19): 7991-7998.
DOI URL |
[38] |
HEYDEBRECK F, TANG J, XIE Z, et al., 2016. Emissions of per- and polyfluoroalkyl substances in a textile manufacturing plant in hina and their relevance for workers' exposure[J]. Environmental Science & Technology, 50(19): 10386-10396.
DOI URL |
[39] |
HUANG Y, NIAN M, YU G Q, et al., 2022. Environmental exposure to per- and polyfluoroalkyl substances and sleep disturbance in pregnant women: A prospective cohort study[J]. Science of the Total Environment, 842: 156869.
DOI URL |
[40] |
HUBER S, HAUG L S, SCHLABACH M, 2011. Per- and polyfluorinated compounds in house dust and indoor air from northern Norway - a pilot study[J]. Chemosphere, 84(11): 1686-1693.
DOI PMID |
[41] |
JANE L E L, YAMADA M, FORD J, et al. 2022. Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA[J]. Environmental Research, 212(Pt C):113431.
DOI URL |
[42] |
JIAN J M, CHEN D, HAN F J, et al., 2018. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs)[J]. Science of the Total Environment, 636: 1058-1069.
DOI URL |
[43] |
JOHNSON M S, BUC K R C, COUSINS I T, et al., 2020. Estimating environmental hazard and risks from exposure to per‐ and polyfluoroalkyl Substances (PFASs): Outcome of a SETAC focused topic meeting[J]. Environmental Toxicology and Chemistry, 40(3): 543-549.
DOI URL |
[44] |
JUHASZ A L, KEITH A, JONES R, et al., 2023. Impact of precursors and bioaccessibility on childhood PFAS exposure from house dust[J]. Science of The Total Environment, 889: 164306.
DOI URL |
[45] |
KAISER A-M, FORSTHUBER M, WIDHALM R, et al., 2023. Prenatal exposure to per- and polyfluoroalkyl substances and pregnancy outcome in Austria[J]. Ecotoxicology and Environmental Safety, 259: 115006.
DOI URL |
[46] |
KARÁSKOVÁ P, VENIER M, MELYMUK L, et al., 2016. Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America[J]. Environment International, 94: 315-324.
DOI PMID |
[47] |
LANKOVA D, SVARCOVA A, KALACHOVA K, et al., 2015. Multi-analyte method for the analysis of various organohalogen compounds in house dust[J]. Analytica Chimica Acta, 854: 61-69.
DOI PMID |
[48] |
LI K, LI C, YU N Y, et al., 2015. In vivo bioavailability and in vitro bioaccessibility of perfluorooctanoic acid (PFOA) in food matrices: Correlation analysis and method development[J]. Environmental Science & Technology, 49(1): 150-158.
DOI URL |
[49] |
LI Y, FLETCHER T, MUCS D, et al., 2018. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water[J]. Occupational and Environmental Medicine, 75(1): 46-51.
DOI PMID |
[50] |
LIEW Z, GOUDARZI H, OULHOTE Y, 2018. Developmental exposures to perfluoroalkyl substances (PFASs): An update of associated health outcomes[J]. Current Environmental Health Reports, 5(1): 1-19.
DOI PMID |
[51] |
LIN H, TANIYASU S, YAMAZAKI E, et al., 2020. Per- and polyfluoroalkyl substances in the air particles of Asia: Levels, seasonality, and size-dependent distribution[J]. Environmental Science & Technology, 54(22): 14182-14191.
DOI URL |
[52] |
LIU S Y, YANG R J, YIN N Y, et al., 2020. Effects of per- and poly-fluorinated alkyl substances on pancreatic and endocrine differentiation of human pluripotent stem cells[J]. Chemosphere, 254: 126709.
DOI URL |
[53] |
LIU X T, CHEN D, WANG B, et al., 2020. Does low maternal exposure to per- and polyfluoroalkyl substances elevate the risk of spontaneous preterm birth? A nested case-c effects of per- and poly-fluorinated alkyl substances on pancreatic and endocrine differentiation of human pluripotent stem cells ontrol study in China[J]. Environmental Science & Technology, 54(13): 8259-8268.
DOI URL |
[54] |
LIU X Y, GUO Z S, FOLK E E T, et al., 2015. Determination of fluorotelomer alcohols in selected consumer products and preliminary investigation of their fate in the indoor environment[J]. Chemosphere, 129: 81-86.
DOI PMID |
[55] |
LIU X, ZHANG H, TIAN Y M, et al., 2021. Bioavailability evaluation of perchlorate in different foods in vivo: Comparison with in vitro assays and implications for human health risk assessment[J]. Journal of Agricultural and Food Chemistry, 69(17): 5189-5197.
DOI URL |
[56] |
LOPEZ-ARELLANO P, LOPEZ-ARELLANO K, LUNA J, et al., 2019. Perfluorooctanoic acid disrupts gap junction intercellular communication and induces reactive oxygen species formation and apoptosis in mouse ovaries[J]. Environmental Toxicology, 34(1): 92-98.
DOI URL |
[57] |
LU M J, LI G Y, YANG Y, et al., 2021. A review on in-vitro oral bioaccessibility of organic pollutants and its application in human exposure assessment[J]. Science of the Total Environment, 752: 142001.
DOI URL |
[58] |
MCDONOUGH C A, WARD C, HU Q, et al., 2020. Immunotoxicity of an electrochemically fluorinated aqueous film-forming foam[J]. Toxicological Sciences, 178(1): 104-114.
DOI PMID |
[59] |
MIKKONEN A T, MARTIN J, UPTON R N, et al., 2023. Spatio-temporal trends in livestock exposure to per- and polyfluoroalkyl substances (PFAS) inform risk assessment and management measures[J]. Environmental Research, 225(12): 115518.
DOI URL |
[60] | MONGE BRENES A L, CURTZWILER G, DIXON P, et al., 2019. PFOA and PFOS levels in microwave paper packaging between 2005 and 2018[J]. Food Additives & Contaminants: Part B, 12(3): 191-198. |
[61] | MORALES-MCDEVITT M E, BECANOVA J, BLUM A, et al., 2021. The air that we breathe: Neutral and volatile PFAS in indoor air[J]. Environmental Science & Technology Letters, 8(10): 897-902. |
[62] |
NGUYEN M A, WIBERG K, RIBELI E, et al., 2017. Spatial distribution and source tracing of per- and polyfluoroalkyl substances (PFASs) in surface water in Northern Europe[J]. Environmental Pollution, 220(Part B): 1438-1446.
DOI URL |
[63] |
NILSSON S, SMURTHWAITE K, AYLWARD L L, et al., 2022. Serum concentration trends and apparent half-lives of per- and polyfluoroalkyl substances (PFAS) in Australian firefighters[J]. International Journal of Hygiene and Environmental Health, 246: 114040.
DOI URL |
[64] |
OLSEN G W, CHANG S C, NOKER P E, et al., 2009. A comparison of the pharmacokinetics of perfluorobutanesulfonate (PFBS) in rats, monkeys, and humans[J]. Toxicology, 256(1-2): 65-74.
DOI PMID |
[65] | PEASLEE G F, WILKINSON J T, MCGUINNESS S R, et al., 2020. Another pathway for firefighter exposure to per- and polyfluoroalkyl substances: Firefighter textiles[J]. Environmental Science & Technology Letters, 7(8): 594-599. |
[66] |
POOTHONG S, PAPADOPOULOU E, PADILLA-SANCHEZ J A, et al., 2020. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): From external exposure to human blood[J]. Environment International, 134: 105244.
DOI URL |
[67] |
QI W P, CLARK J M, TIMME-LARAGY A R, et al., 2018. Perfluorobutanesulfonic acid (PFBS) potentiates adipogenesis of 3T3-L1 adipocytes[J]. Food and Chemical Toxicology, 120: 340-345.
DOI PMID |
[68] |
RAGNARSDOTTIR O, ABDALLAH M A, HARRAD S, 2022. Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances?[J]. Environmental Pollution, 307: 119478.
DOI URL |
[69] |
ROCK K D, POLERA M E, GUILLETTE T C, et al., 2023. Domestic dogs and horses as sentinels of per- and polyfluoroalkyl substance exposure and associated health biomarkers in Gray's Creek North Carolina[J]. Environmental Science & Technology, 57(26): 9567-9579.
DOI URL |
[70] |
SAVVAIDES T, KOELMEL J P, ZHOU Y K, et al., 2021. Prevalence and implications of per- and polyfluoroalkyl substances (PFAS) in settled dust[J]. Current Environmental Health Reports, 8(4): 323-335.
DOI PMID |
[71] | SCHAIDER L A, BALAN S A, BLUM A, et al., 2017. Fluorinated compounds in U.S. fast food packaging[J]. Environmental Science & Technology Letters, 4(3): 105-111. |
[72] | SCHRENK D, BIGNAMI M, BODIN L, et al., 2020. Risk to human health related to the presence of perfluoroalkyl substances in food[J]. EFSA Journal, 18(9): e06223. |
[73] | SCHULTES L, VESTERGREN R, VOLKOVA K, et al., 2018. Per- and polyfluoroalkyl substances and fluorine mass balance in cosmetic products from the Swedish market: Implications for environmental emissions and human exposure[J]. Environmental Science: Processes & Impacts, 20(12): 1680-1690. |
[74] |
SHOEIB T, HASSAN Y, RAUERT C, et al., 2016. Poly- and perfluoroalkyl substances (PFASs) in indoor dust and food packaging materials in Egypt: Trends in developed and developing countries[J]. Chemosphere, 144: 1573-1581.
DOI PMID |
[75] |
SINCLAIR E, KIM S K, AKINLEYE H B, et al., 2007. Quantitation of gas-phase perfluoroalkyl surfactants and fluorotelomer alcohols released from nonstick cookware and microwave popcorn bags[J]. Environmental Science & Technology, 41(4): 1180-1185.
DOI URL |
[76] |
SINCLAIR G M, LONG S M, JONES O A H, 2020. What are the effects of PFAS exposure at environmentally relevant concentrations?[J]. Chemosphere, 258: 127340.
DOI URL |
[77] |
SUSMANN H P, SCHAIDER L A, RODGERS K M, et al., 2019. Dietary habits related to food packaging and population exposure to PFASs[J]. Environmental Health Perspectives, 127(10): 107003.
DOI URL |
[78] |
TANNER E M, BLOOM M S, WU Q, et al., 2018. Occupational exposure to perfluoroalkyl substances and serum levels of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in an aging population from upstate New York: A retrospective cohort study[J]. International Archives of Occupational and Environmental Health, 91(2): 145-154.
DOI PMID |
[79] |
THEPAUT E, DIRVEN H, HAUG L S, et al., 2021. Per- and polyfluoroalkyl substances in serum and associations with food consumption and use of personal care products in the Norwegian biomonitoring study from the EU project EuroMix[J]. Environmental Research, 195: 110795.
DOI URL |
[80] |
TIAN Z X, KIM S-K, SHOEIB M, et al., 2016. Human exposure to per- and polyfluoroalkyl substances (PFASs) via house dust in Korea: Implication to exposure pathway[J]. Science of The Total Environment, 553: 266-275.
DOI URL |
[81] |
TRUDEL D, HOROWITZ L, WORMUTH M, et al., 2008. Estimating consumer exposure to PFOS and PFOA[J]. Risk Analysis, 28(2): 251-69.
DOI PMID |
[82] |
WANG B, YAO Y M, WANG Y, et al., 2022. Per- and polyfluoroalkyl substances in outdoor and indoor dust from mainland China: Contributions of unknown precursors and implications for human exposure[J]. Environmental Science & Technology, 56(10): 6036-6045.
DOI URL |
[83] |
WANG X L, BAI Y Y, TANG C F, et al., 2018. Impact of perfluorooctane sulfonate on reproductive ability of female mice through suppression of estrogen receptor alpha-activated kisspeptin neurons[J]. Toxicological Sciences, 165(2): 475-486.
DOI URL |
[84] |
WASHINGTON J W, RANKIN K, LIBELO E L, et al., 2019. Determining global background soil PFAS loads and the fluorotelomer-based polymer degradation rates that can account for these loads[J]. Science of the Total Environment, 651(Part 2): 2444-2449.
DOI URL |
[85] |
WESCHLER C J, NAZAROFF W W, 2008. Semivolatile organic compounds in indoor environments[J]. Atmospheric Environment, 42(40): 9018-9040.
DOI URL |
[86] | WHITEHEAD H D, VENIER M, WU Y, et al., 2021. Fluorinated compounds in North American cosmetics[J]. Environmental Science & Technology Letters, 8(7): 538-544. |
[87] |
WINKENS K, GIOVANOULIS G, KOPONEN J, et al., 2018. Perfluoroalkyl acids and their precursors in floor dust of children's bedrooms - Implications for indoor exposure[J]. Environment International, 119: 493-502.
DOI PMID |
[88] |
WU Y, ROMANAK K, BRUTON T, et al., 2020. Per-and polyfluoroalkyl substances in paired dust and carpets from childcare centers[J]. Chemosphere, 251: 126771.
DOI URL |
[89] |
XIA C J, DIAMOND M L, PEASLEE G F, et al., 2022. Per- and polyfluoroalkyl substances in North American school uniforms[J]. Environmental Science & Technology, 56(19): 13845-13857.
DOI URL |
[90] |
XU F P, CHEN D, LIU X T, et al., 2021. Emerging and legacy per- and polyfluoroalkyl substances in house dust from South China: Contamination status and human exposure assessment[J]. Environmental Research, 192: 110243.
DOI URL |
[91] |
YAO Y M, CHANG S, SUN H W, et al., 2016. Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China)[J]. Environmental Pollution, 212: 449-456.
DOI PMID |
[92] |
YAO Y M, ZHAO Y Y, SUN H W, et al., 2018. Per- and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China: Implications for human exposure[J]. Environmental Science & Technology, 52(5): 3156-3166.
DOI URL |
[93] |
YOUNG A S, HAUSER R, JAMES-TODD T M, et al., 2021. Impact of “healthier” materials interventions on dust concentrations of per- and polyfluoroalkyl substances, polybrominated diphenyl ethers, and organophosphate esters[J]. Environment International, 150: 106151.
DOI URL |
[94] |
YUAN G X, PENG H, HUANG C, et al., 2016. Ubiquitous occurrence of fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure[J]. Environmental Science & Technology, 50(2): 942-50.
DOI URL |
[95] |
ZABALETA I, NEGREIRA N, BIZKARGUENAGA E, et al., 2017. Screening and identification of per- and polyfluoroalkyl substances in microwave popcorn bags[J]. Food Chemistry, 230: 497-506.
DOI PMID |
[96] |
ZAFEIRAKI E, COSTOPOULOU D, VASSILIADOU I, et al., 2014. Determination of perfluorinated compounds (PFCs) in various foodstuff packaging materials used in the Greek market[J]. Chemosphere, 94: 169-176.
PMID |
[97] |
ZANG L, LIU X R, XIE X J, et al., 2023. Exposure to per- and polyfluoroalkyl substances in early pregnancy, risk of gestational diabetes mellitus, potential pathways, and influencing factors in pregnant women: A nested case-control study[J]. Environmental Pollution, 326: 121504.
DOI URL |
[98] |
ZHANG B, HE Y, HUANG Y Y, et al., 2020. Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: The emergence of PFAS alternatives in China[J]. Environmental Pollution, 263(Part A): 114461.
DOI URL |
[99] |
ZHANG L M, KRISHNAN P, EHRESMAN D J, et al., 2016. Editor's highlight: Perfluorooctane sulfonate-choline ion pair formation: A potential mechanism modulating hepatic steatosis and oxidative stress in mice[J]. Toxicological Sciences, 153(1): 186-197.
DOI PMID |
[100] |
ZHANG Y T, ZEESHAN M, SU F, et al., 2022. Associations between both legacy and alternative per- and polyfluoroalkyl substances and glucose-homeostasis: The isomers of C8 health project in China[J]. Environment International, 158: 106913.
DOI URL |
[101] |
ZHENG G M, BOOR B E, SCHREDER E, et al., 2020. Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment[J]. Environmental Pollution, 258: 113714.
DOI URL |
[102] |
ZHOU J Q, BAUMANN K, CHANG N M, et al., 2022. Per- and polyfluoroalkyl substances (PFASs) in airborne particulate matter (PM2.0) emitted during floor waxing: A pilot study[J]. Atmospheric Environment, 268: 118845.
DOI URL |
[103] |
ZHU Y M, JIA Y B, WANG X, et al., 2022. Mechanisms underlying the impacts of lipids on the diverse bioavailability of per- and polyfluoroalkyl substances in foods[J]. Environmental Science & Technology, 56(6): 3613-3622.
DOI URL |
[104] |
ZHU Y M, LI Y Q, LIU X S, et al., 2023. Bioaccessibility of per- and polyfluoroalkyl substances in food and dust: Implication for more accurate risk assessment[J]. Science of the Total Environment, 868: 161739.
DOI URL |
[105] | 郝薛文, 李力, 王杰, 等, 2015. 全氟和多氟烷基化合物的环境风险评估研究现状、不确定性与趋势分析[J]. 环境科学, 36(8): 3106-3118. |
HAO X W, LI L, WANG J, et al., 2015. Status Quo, uncertainties and trends analysis of environmental risk assessment for PFASs[J]. Environmental Sciences, 36(8): 3106-3118. | |
[106] | 史亚利, 蔡亚岐, 2014. 全氟和多氟化合物环境问题研究[J]. 化学进展, 26(4): 665-681. |
SHI Y L, CAI Y Q, 2014. Study of per-and polyfluoroalkyl substances related environmental problems[J]. Progress in Chemistry, 26(4): 665-681. | |
[107] | 史亚利, 张博钠, 郑哲, 等, 2022. 全氟和多氟烷基类物质在大气环境中的存在和行为研究进展[J]. 环境科学研究, 35(9): 2037-2046. |
SHI Y L, ZHANG B N, ZHENG Z, et al., 2022. Research progress on existence and behavior of per-and polyfluoroalkyl substances in atmosphere[J]. Research of Environmental Sciences, 35(9): 2037-2046. | |
[108] | 夏慧, 敖俊杰, 袁涛, 2016. 室内灰尘中全氟化合物的污染状况与人体暴露水平评估[J]. 生态毒理学报, 11(2): 223-230. |
XIA H, AO J J, YUAN T, 2016. Occurrences, characteristics and human exposure assessment of perfluorinated compounds in indoor dust[J]. Asian Journal of Ecotoxicolog, 11(2): 223-230. | |
[109] | 赵洋洋, 姚义鸣, 常帅, 等, 2015. 室内空气和灰尘中全(多)氟烷基化合物的研究进展[J]. 环境化学, 34(4): 656-663. |
ZHAO Y Y, YAO Y M, CHANG S, et al., 2015. Per (poly) fluoroalkyl substances in indoor air and dust[J]. Environmental Chemistry, 34(4): 656-663. |
[1] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[2] | 杨春亮, 刘旻霞, 王千月, 苗乐乐, 肖音迪, 王敏. 单户与联户放牧经营下草玉梅与嵩草种群空间格局及其关联性[J]. 生态环境学报, 2023, 32(4): 651-659. |
[3] | 吴雅睿, 王美景, 王涛, 杨梅焕. 新冠疫情下NO2时空变化特征——以陕西省为例[J]. 生态环境学报, 2023, 32(3): 514-524. |
[4] | 宋志斌, 周佳诚, 谭路, 唐涛. 高原河流着生藻类群落沿海拔梯度的变化特征--以西藏黑曲、雪曲为例[J]. 生态环境学报, 2023, 32(2): 274-282. |
[5] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
[6] | 李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921. |
[7] | 黄世聪, 陈丽珂, 张政杰, 陈科华, 陈澄宇, 曾巧云. 四环素对不同品种蔬菜毒性阈值及其敏感性分布[J]. 生态环境学报, 2023, 32(11): 1988-1995. |
[8] | 李双双, 蔡铭灿, 汪庆, 齐丽英, 魏贺红, 王纯. 淡水环境中微塑料与生物膜的相互作用及其生态效应研究进展[J]. 生态环境学报, 2023, 32(11): 2041-2049. |
[9] | 刘明宇, 郑旭, 强丽媛, 李鲁华, 张若宇, 王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析[J]. 生态环境学报, 2023, 32(11): 2050-2061. |
[10] | 孙正, 曹亚非, 王德彩, 刘峰, 宋效东, 张甘霖, 吴华勇. 近30年京津冀电镀场地时空演变特征及趋势预测[J]. 生态环境学报, 2023, 32(1): 183-194. |
[11] | 向兴, 满百膺, 张俊忠, 罗洋, 毛小涛, 张超, 孙丙华, 王希. 黄山土壤细菌群落及氮循环功能群的垂向分布格局[J]. 生态环境学报, 2023, 32(1): 56-69. |
[12] | 吴胜义, 王飞, 徐干君, 马浩, 党禹杰, 吴菲. 川西北高山峡谷区森林碳储量及空间分布研究--以四川洛须自然保护区为例[J]. 生态环境学报, 2022, 31(9): 1735-1744. |
[13] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[14] | 彭红丽, 谭海霞, 王颖, 魏建梅, 冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价[J]. 生态环境学报, 2022, 31(6): 1235-1243. |
[15] | 朱立安, 张会化, 程炯, 李婷, 林梓, 李俊杰. 珠江三角洲林业用地土壤重金属潜在生态风险格局分析[J]. 生态环境学报, 2022, 31(6): 1253-1262. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 234
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||