生态环境学报 ›› 2022, Vol. 31 ›› Issue (4): 652-662.DOI: 10.16258/j.cnki.1674-5906.2022.04.002

• 研究论文 • 上一篇    下一篇

粤港澳大湾区生态安全格局及重要生态廊道识别

韦家怡1,2(), 李铖2,*(), 吴志峰1,3,4, 张莉5, 吉冬青2, 程炯2   

  1. 1.广州大学地理科学与遥感学院,广东 广州 510006
    2.广东省科学院生态环境与土壤研究所/华南土壤污染控制与修复国家地方联合工程研究中心/广东省农业环境综合治理重点实验室,广东 广州 510650
    3.自然资源部大湾区地理环境监测重点实验室,广东 深圳 518060
    4.南方海洋科学与工程广东省实验室,广东 广州 510458
    5.华南农业大学资源环境学院,广东 广州 510642
  • 收稿日期:2021-12-10 出版日期:2022-04-18 发布日期:2022-06-22
  • 通讯作者: *李铖(1984年生),女,副研究员,博士,研究领域为景观生态学和城市生态学。E-mail: licheng@soil.gd.cn
  • 作者简介:韦家怡(1997年生),女,硕士研究生,研究方向为土地利用和景观生态。E-mail: 709970914@qq.com
  • 基金资助:
    广东省科技计划项目(2020B1111530001);广东省科技计划项目(2019B121201004);广东省科学院建设国内一流研究机构行动专项资金项目(2019GDASYL-0105040);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0301);国家自然科学基金项目(42071235);国家自然科学基金项目(41901219)

Identifying Ecological Security Patterns and Prioritizing Ecological Corridors in the Guangdong-Hong Kong-Macao Greater Bay Area

WEI Jiayi1,2(), LI Cheng2,*(), WU Zhifeng1,3,4, ZHANG Li5, JI Dongqing2, CHENG Jiong2   

  1. 1. School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, P. R. China
    2. National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China/Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management/Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
    3. Key Laboratory for Geo-Environmental Monitoring of Great Bay Area of Ministry of Natural Resources, Shenzhen 518060, P. R. China
    4. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510458, P. R. China
    5. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
  • Received:2021-12-10 Online:2022-04-18 Published:2022-06-22

摘要:

城市化引发诸多环境问题,如何协调城市建设空间与生态空间的矛盾,已成为中国国土空间规划领域的重大课题之一。确定区域生态安全格局,优化生态廊道是国土空间规划的重要步骤,也是后续开展生态保护和恢复的关键,如何科学识别显得尤为重要。该文以粤港澳大湾区为例,综合考虑自然资源本底条件和关键生态环境问题,基于生态系统功能重要性和生态系统敏感性评价识别生态源地,利用最小累积阻力模型识别生态廊道,构建区域生态安全格局。基于生态系统重要性和生态敏感性评价结果修正重力模型,并结合廊道连通性指数,进一步识别重要生态廊道。结果显示,生态源地面积为20371 km2,占区域总面积的36.7%,主要位于北部林地广布的山地丘陵区、自然保护区和港澳郊野公园。由于城市化快速发展,污染水平高,生态服务供给低,研究区中部不存在或仅存在较少生态源地。区域内共有潜在生态廊道36条,总长2300 km,呈东西两侧环绕式分布。廊道分级结果显示,高重要-低连通廊道最多(22条),其次是低重要-低连通(6条)和低重要-高连通廊道(5条),高重要-高连通廊道最少(3条)。针对不同类别的廊道,建议因地制宜地采取措施进行保护和管理。

关键词: 生态安全格局, 生态廊道, 生态源地, 最小累积阻力模型, 粤港澳大湾区

Abstract:

Urbanization has caused many environmental problems. How to coordinate the contradiction between urban construction space and ecological space has become an important issue in urban planning in China. Identifying regional ecological security patterns and prioritizing ecological corridors are significant steps for land space planning and critical for ecological protection and restoration. In this study, we took Guangdong-Hong Kong-Macao Greater Bay Area as an example and considered both ecological background and key environmental issues of the study area for attribute analyses. We identified the ecological security pattern in terms of ecological sources by combining the assessment of ecosystem functions and ecological corridors using a minimum cumulative resistance model. We modified a gravity model based on the ecosystem functional importance assessment and prioritized the ecological corridors by combining revised gravity model and modified corridor connectivity indices. We found that the total area of ecological sources was 20371 km2, accounting for 36.7% of the study area, mainly located in the northern part of mountainous and hilly areas with extensive woodlands, nature reserves, and Hong Kong and Macau national parks. Cities in the central part of the studied area, such as Dongguan, Foshan, and Guangzhou, hardly had any ecological sources due to rapid land urbanization, high pollution levels, and low ecological service supply. There were 36 ecological corridors in the study area with a total length of 2300 km and were peripherally distributed around the east and west parts of the region. Corridor priority grading results showed that the number of high importance-low connectivity corridors was the highest (22), followed by low importance-weak connectivity (6) and low importance-strong connectivity corridors (5), and high importance-strong connectivity corridors were the fewest (3). For different types of corridors, targeted protection and management measures should be adopted according to their local conditions.

Key words: ecological security pattern, ecological corridor, ecological source, minimum cumulative resistance model, Guangdong-Hong Kong-Macao Greater Bay Area

中图分类号: