生态环境学报 ›› 2022, Vol. 31 ›› Issue (3): 565-571.DOI: 10.16258/j.cnki.1674-5906.2022.03.015
曾民1(), 陈佳1, 李娥贤1, 殷富有1, 王玲仙1, 曾黎琼1, 郭蓉2,*(
)
收稿日期:
2021-03-17
出版日期:
2022-03-18
发布日期:
2022-05-25
通讯作者:
*郭蓉,E-mail: grmm0207@126.com作者简介:
曾民(1980年生),男,助理研究员,博士,主要研究方向为土壤重金属污染修复。E-mail: 1833642906@qq.com
基金资助:
ZENG Min1(), CHEN Jia1, LI Exian1, YIN Fuyou1, WANG Linxian1, ZENG Liqiong1, GUO Rong2,*(
)
Received:
2021-03-17
Online:
2022-03-18
Published:
2022-05-25
摘要:
通过对元江普通野生稻渗入系中籽粒镉含量低和高株系间镉吸收及分布差异的分析,探讨渗入系低镉株系籽粒镉低积累的原因。采用大田试验,对2份低镉株系、2份高镉株系各器官中镉含量、总积累量、亚细胞镉分布及生育期各器官镉积累动态变化特征进行研究。结果表明,所有株系不同器官镉含量高低顺序为根>茎>叶>谷壳>籽粒。高镉株系(GJ11、GJ110)根、谷壳、籽粒Cd含量均显著高于低镉株系,高镉株系根部镉质量分数分别为24.2、22.4 mg∙kg-1,几乎是低镉株系(GJ71、GJ91)的2倍。高镉株系(GJ11、GJ110)根与籽粒的镉含量比值分别是43.21和32.94,均低于低镉株系(GJ71、GJ91)的67.5和471。所有株系根部镉动态变化趋势一致,镉积累量均上升。然而,高镉株系与低镉株系茎和叶部镉积累量在孕穗期和灌浆期出现差异,并且在灌浆期后发生分化。所有株系分蘖期和灌浆期各器官镉含量亚细胞分布表现为细胞壁>可溶部分>细胞器,细胞壁Cd含量占总量的39.47%—60.39%。研究表明,高镉株系对镉的吸收及转运到籽粒的能力均高于低镉株系,低镉株系间对镉的吸收及转运同样存在差异,其中GJ91能将地上部的镉大量分配并储存在茎叶内,从而降低籽粒镉含量。
中图分类号:
曾民, 陈佳, 李娥贤, 殷富有, 王玲仙, 曾黎琼, 郭蓉. 元江普通野生稻后代镉分布特点及镉积累动态变化规律[J]. 生态环境学报, 2022, 31(3): 565-571.
ZENG Min, CHEN Jia, LI Exian, YIN Fuyou, WANG Linxian, ZENG Liqiong, GUO Rong. Distribution Characteristics and Dynamic Changes of Cadmium Content in the Introgression Lines of Yuanjiang Common Wild Rice[J]. Ecology and Environment, 2022, 31(3): 565-571.
材料 strains | w/(mg∙kg-1) | Cd积累量 Cd accumulation/(µg∙kg-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
籽粒 Grain | 谷壳 Husk | 茎 Stem | 叶 Leaf | 根 Root | 籽粒 Grain | 谷壳 Husk | 茎 Stem | 叶 Leaf | 根 Root | 单株总量 Whole plant | ||
GJ11 | 0.56±0.18a | 0.87±0.07a | 1.41±0.05b | 1.55±0.05b | 24.2±1.45a | 13.8ab | 5.17b | 73.95c | 50.56a | 124.64a | 268.01a | |
GJ110 | 0.68±0.16a | 0.82±0.04a | 1.36±0.04b | 1.34±0.04c | 22.4±1b | 18.94a | 5.97a | 77.73c | 34.65d | 117.73a | 255.09a | |
GJ71 | 0.2±0.02b | 0.39±0.04c | 1.35±0.03b | 1.12±0.1d | 13.5±0.76d | 0.47e | 1.73e | 8.84d | 12.19e | 69.79c | 93.15d | |
GJ91 | 0.03±0.02b | 0.62±0.02b | 1.77±0.09a | 1.75±0.05a | 14.13±0.58d | 6.03d | 5.25b | 99.27a | 44.79b | 79.53c | 235b | |
GJ38 (CK) | 0.42±0.04a | 0.55±0.05b | 1.36±0.15b | 1.84±0.11a | 13.43±0.93d | 12.19b | 4.00d | 71.39c | 31.68d | 73.04c | 192.18c | |
GJ114 (CK) | 0.55±0.03a | 0.6±0.04b | 1.55±0.07b | 1.08±0.04d | 19.33±0.81c | 17.43ab | 4.75b | 87.17b | 39.09c | 97.05b | 245.51b |
表1 水稻完熟期不同器官Cd质量分数
Table 1 The Cd content in different organs of six strains during maturing stage
材料 strains | w/(mg∙kg-1) | Cd积累量 Cd accumulation/(µg∙kg-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
籽粒 Grain | 谷壳 Husk | 茎 Stem | 叶 Leaf | 根 Root | 籽粒 Grain | 谷壳 Husk | 茎 Stem | 叶 Leaf | 根 Root | 单株总量 Whole plant | ||
GJ11 | 0.56±0.18a | 0.87±0.07a | 1.41±0.05b | 1.55±0.05b | 24.2±1.45a | 13.8ab | 5.17b | 73.95c | 50.56a | 124.64a | 268.01a | |
GJ110 | 0.68±0.16a | 0.82±0.04a | 1.36±0.04b | 1.34±0.04c | 22.4±1b | 18.94a | 5.97a | 77.73c | 34.65d | 117.73a | 255.09a | |
GJ71 | 0.2±0.02b | 0.39±0.04c | 1.35±0.03b | 1.12±0.1d | 13.5±0.76d | 0.47e | 1.73e | 8.84d | 12.19e | 69.79c | 93.15d | |
GJ91 | 0.03±0.02b | 0.62±0.02b | 1.77±0.09a | 1.75±0.05a | 14.13±0.58d | 6.03d | 5.25b | 99.27a | 44.79b | 79.53c | 235b | |
GJ38 (CK) | 0.42±0.04a | 0.55±0.05b | 1.36±0.15b | 1.84±0.11a | 13.43±0.93d | 12.19b | 4.00d | 71.39c | 31.68d | 73.04c | 192.18c | |
GJ114 (CK) | 0.55±0.03a | 0.6±0.04b | 1.55±0.07b | 1.08±0.04d | 19.33±0.81c | 17.43ab | 4.75b | 87.17b | 39.09c | 97.05b | 245.51b |
材料 Strains | 部位 Organ | 分蘖期亚细胞组分Cd质量分数(mg∙kg-1)及分配比率% Subcelluar disreibution of Cd content and allocation ratio in tillering stage | 灌浆期亚细胞组分Cd质量分数/(mg∙kg-1)及分配比率/% Subcelluar disreibution of Cd content and allocation ratio in filling stage | |||||
---|---|---|---|---|---|---|---|---|
细胞壁 Cell wall | 细胞器 Organelle | 可溶物 Soluble | 细胞壁 Cell wall | 细胞器 Organelle | 可溶物 Soluble | |||
GJ11 | 根 | 4.56±0.46a (55.61%) | 1.48±0.1ab (18.05%) | 2.16±0.08b (26.34%) | 7.23±0.19b (54.3%) | 2.42±0.2b (18.17%) | 3.67±0.24a (27.55%) | |
GJ110 | 4.83±0.02a (54.88%) | 1.61±0.1a (18.3%) | 2.36±0.19a (26.82%) | 8.52±0.21a (56.95%) | 3.27±0.14a (21.86%) | 3.17±0.16b (21.19%) | ||
GJ71 | 3.28±0.27b (56%) | 1.05±0.06c (17.9%) | 1.53±0.03c (26.1%) | 4.84±0.2d (55%) | 1.85±0.09d (21.02%) | 2.11±0.11c (23.98%) | ||
GJ91 | 3.66±0.2b (56.83%) | 1.15±0.83c (17.86%) | 1.63±0.05c (25.31%) | 5.04±0.17d (54.14%) | 1.95±0.1cd (20.95%) | 2.32±0.25c (24.92%) | ||
GJ38 | 4.32±0.38a (54.75%) | 1.44±0.07b (18.25%) | 2.13±0.06b (27%) | 5.05±0.1d (54.36%) | 2.04±0.17cd (21.96%) | 2.2±0.12c (23.68%) | ||
GJ114 | 4.57±0.24a (55.46%) | 1.49±0.1ab (18.08%) | 2.18±0.03b (26.46%) | 6.72±0.21c (53.67%) | 2.18±0.16bc (17.41%) | 3.62±0.21a (26.04%) | ||
GJ11 | 茎 | 0.25±0.01ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.67±0.03ab (48.55%) | 0.33±0.04a (23.91%) | 0.38±0.03a (27.54%) | |
GJ110 | 0.25±0.03ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.59±0.04c (47.2%) | 0.31±0.03ab (24.8%) | 0.35±0.04a (28%) | ||
GJ71 | 0.26±0.02a (52%) | 0.07±0.01b (14%) | 0.17±0.01a (34%) | 0.71±0.06a (53.38%) | 0.33±0.03a (24.81%) | 0.29±0.03d (21.81%) | ||
GJ91 | 0.26±0.01a (52%) | 0.07±0.01b (14%) | 0.17±0.01a (34%) | 0.42±0.02d (52.38%) | 0.2±0.02c (23.81%) | 0.22±0.02c (26.19%) | ||
GJ38 | 0.22±0.02b (41.51%) | 0.14±0.01a (26.42%) | 0.17±0.01a (32.08%) | 0.58±0.06c (48.74%) | 0.28±0.03b (23.53%) | 0.33±0.02ab (27.73%) | ||
GJ114 | 0.25±0.01ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.63±0.04bc (49.22%) | 0.3±0.02ab (23.44%) | 0.35±0.05a (27.34%) | ||
GJ11 | 叶 | 0.15±0.04bc (39.47%) | 0.11±0.01a (28.95%) | 0.12±0.01b (31.58%) | 0.71±0.03bc (55.04%) | 0.16±0.01b (12.4%) | 0.42±0.04ab (32.56%) | |
GJ110 | 0.15±0.01 bc (40.54%) | 0.1±0.01a (27.03%) | 0.12±0.01b (32.43%) | 0.65±0.09cd (51.18%) | 0.21±0.01a (16.54%) | 0.41±0.07ab (32.28%) | ||
GJ71 | 0.14±0.02c (40%) | 0.09±0.01b (25.71%) | 0.12±0.01b (34.29%) | 0.57±0.06de (58.75%) | 0.10±0.01d (10.31%) | 0.30±0.06ab (30.93%) | ||
GJ91 | 0.18±0.03bc (47.37%) | 0.07±0.01c (18.42%) | 0.13±0.03a (34.21%) | 0.52±0.03e (59.77%) | 0.11±0.01d (12.64%) | 0.24±0.07b (27.58%) | ||
GJ38 | 0.2±0.01a (44.44%) | 0.12±0.02a (26.67%) | 0.13±0.01a (28.89%) | 0.93±0.08a (60.39%) | 0.14±0.01c (9.1%) | 0.47±0.08a (35.07%) | ||
GJ114 | 0.19±0.03ab (43.18%) | 0.11±0.01a( 25%) | 0.14±0.01a (31.82%) | 0.76±0.04b (56.72%) | 0.14±0.01c (10.45%) | 0.44±0.04a (32.84%) |
表2 渗入系水稻材料的不同时期亚细胞分布
Table 2 Subcelluar disreibution of Cd content in introgression lines rice at different stage
材料 Strains | 部位 Organ | 分蘖期亚细胞组分Cd质量分数(mg∙kg-1)及分配比率% Subcelluar disreibution of Cd content and allocation ratio in tillering stage | 灌浆期亚细胞组分Cd质量分数/(mg∙kg-1)及分配比率/% Subcelluar disreibution of Cd content and allocation ratio in filling stage | |||||
---|---|---|---|---|---|---|---|---|
细胞壁 Cell wall | 细胞器 Organelle | 可溶物 Soluble | 细胞壁 Cell wall | 细胞器 Organelle | 可溶物 Soluble | |||
GJ11 | 根 | 4.56±0.46a (55.61%) | 1.48±0.1ab (18.05%) | 2.16±0.08b (26.34%) | 7.23±0.19b (54.3%) | 2.42±0.2b (18.17%) | 3.67±0.24a (27.55%) | |
GJ110 | 4.83±0.02a (54.88%) | 1.61±0.1a (18.3%) | 2.36±0.19a (26.82%) | 8.52±0.21a (56.95%) | 3.27±0.14a (21.86%) | 3.17±0.16b (21.19%) | ||
GJ71 | 3.28±0.27b (56%) | 1.05±0.06c (17.9%) | 1.53±0.03c (26.1%) | 4.84±0.2d (55%) | 1.85±0.09d (21.02%) | 2.11±0.11c (23.98%) | ||
GJ91 | 3.66±0.2b (56.83%) | 1.15±0.83c (17.86%) | 1.63±0.05c (25.31%) | 5.04±0.17d (54.14%) | 1.95±0.1cd (20.95%) | 2.32±0.25c (24.92%) | ||
GJ38 | 4.32±0.38a (54.75%) | 1.44±0.07b (18.25%) | 2.13±0.06b (27%) | 5.05±0.1d (54.36%) | 2.04±0.17cd (21.96%) | 2.2±0.12c (23.68%) | ||
GJ114 | 4.57±0.24a (55.46%) | 1.49±0.1ab (18.08%) | 2.18±0.03b (26.46%) | 6.72±0.21c (53.67%) | 2.18±0.16bc (17.41%) | 3.62±0.21a (26.04%) | ||
GJ11 | 茎 | 0.25±0.01ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.67±0.03ab (48.55%) | 0.33±0.04a (23.91%) | 0.38±0.03a (27.54%) | |
GJ110 | 0.25±0.03ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.59±0.04c (47.2%) | 0.31±0.03ab (24.8%) | 0.35±0.04a (28%) | ||
GJ71 | 0.26±0.02a (52%) | 0.07±0.01b (14%) | 0.17±0.01a (34%) | 0.71±0.06a (53.38%) | 0.33±0.03a (24.81%) | 0.29±0.03d (21.81%) | ||
GJ91 | 0.26±0.01a (52%) | 0.07±0.01b (14%) | 0.17±0.01a (34%) | 0.42±0.02d (52.38%) | 0.2±0.02c (23.81%) | 0.22±0.02c (26.19%) | ||
GJ38 | 0.22±0.02b (41.51%) | 0.14±0.01a (26.42%) | 0.17±0.01a (32.08%) | 0.58±0.06c (48.74%) | 0.28±0.03b (23.53%) | 0.33±0.02ab (27.73%) | ||
GJ114 | 0.25±0.01ab (43.1%) | 0.15±0.01a (25.86%) | 0.18±0.01a (31.04%) | 0.63±0.04bc (49.22%) | 0.3±0.02ab (23.44%) | 0.35±0.05a (27.34%) | ||
GJ11 | 叶 | 0.15±0.04bc (39.47%) | 0.11±0.01a (28.95%) | 0.12±0.01b (31.58%) | 0.71±0.03bc (55.04%) | 0.16±0.01b (12.4%) | 0.42±0.04ab (32.56%) | |
GJ110 | 0.15±0.01 bc (40.54%) | 0.1±0.01a (27.03%) | 0.12±0.01b (32.43%) | 0.65±0.09cd (51.18%) | 0.21±0.01a (16.54%) | 0.41±0.07ab (32.28%) | ||
GJ71 | 0.14±0.02c (40%) | 0.09±0.01b (25.71%) | 0.12±0.01b (34.29%) | 0.57±0.06de (58.75%) | 0.10±0.01d (10.31%) | 0.30±0.06ab (30.93%) | ||
GJ91 | 0.18±0.03bc (47.37%) | 0.07±0.01c (18.42%) | 0.13±0.03a (34.21%) | 0.52±0.03e (59.77%) | 0.11±0.01d (12.64%) | 0.24±0.07b (27.58%) | ||
GJ38 | 0.2±0.01a (44.44%) | 0.12±0.02a (26.67%) | 0.13±0.01a (28.89%) | 0.93±0.08a (60.39%) | 0.14±0.01c (9.1%) | 0.47±0.08a (35.07%) | ||
GJ114 | 0.19±0.03ab (43.18%) | 0.11±0.01a( 25%) | 0.14±0.01a (31.82%) | 0.76±0.04b (56.72%) | 0.14±0.01c (10.45%) | 0.44±0.04a (32.84%) |
[1] | SIEBERS N, SIANGLIW M, TONGCUMPOU C, 2013. Cadmium uptake and subcellular distribution in rice plants as affected by phosphorus: Soil and hydroponic experiments[J]. Journal of Soil Science & Plant Nutrition, 13(4): 833-844. |
[2] |
SUN L, XU X, JIANG Y, et al., 2016. Genetic diversity, rather than cultivar type, determines relative grain Cd accumulation in hybrid rice[J]. Frontier in Plant Science, DOI: 10.3389/fpls.2016.01407.
DOI |
[3] | TIWARI M, SHARMA D, DWIVEDI S, et al., 2014. Expression in Arabidopsis, and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance[J]. Plant Cell & Environment, 37(1): 140-152. |
[4] | UENO D, YAMAJI N, KONO I, et al., 2010. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(38): 16500-16505. |
[5] |
URAGUCHI S, FUJIWARA T, 2011. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences, 108(52): 20959-20964.
DOI URL |
[6] | WANG J B, SU L Y, YANG J Z, et al., 2015. Comparisons of cadmium subcellular distribution and chemical forms between low-Cd and high-Cd accumulation genotypes of watercress[J]. Plant & Soil, 396(12): 325-337. |
[7] |
ZHAO F J, MA Y, ZHU Y G, et al., 2015. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science and Technology, 49(2): 750-759.
DOI URL |
[8] | 付铄岚, 王昌全, 李冰, 等, 2017. 外源Cd 在不同品种水稻组织中的细胞分布和化学形态特征研究[J]. 中国生态农业学报, 25(6): 903-910. |
FU S L, WANG C Q, LI B, et al., 2017. Histocyte distribution and cadmium forms in different rice cultivar seedlings with exogenous cadmium supply[J]. Chinese Journal of Eco-Agriculture, 25(6): 903-910. | |
[9] | 贺慧, 陈灿, 邓华斌, 等, 2014. 不同基因型水稻镉吸收差异及镉对水稻的影响研究进展[J]. 作物研究, 28(2): 211-215. |
HE H, CHEN C, DENG H B, et al., 2014. Research progress of cadmium absorption of different genotypes of rice and the effect of cadmium on rice[J]. Crop Research, 28(2): 211-215. | |
[10] | 黄兴奇, 陈勇, 戴陆园, 等, 2005. 云南作物种质资源[M]. 昆明: 云南科技出版社. |
HUANG X Q, CHEN Y, DAI L Y, et al., 2005. Crop germplasm resources of Yunnan province[M]. Kunming: Yunnan Science and Technology Press. | |
[11] | 柯学, 陈越, 殷富有, 等, 2018. 普通野生稻在稻属中的分类进化及资源研究[J]. 分子植物育种, 16(4): 1363-1376. |
KE X, CHEN Y, YIN F Y, et al., 2018. Taxonomic evolution and resource research of oryza rufipogon griff. in phylogeny of oryza and its advances[J]. Molecular Plant Breeding, 16(4): 1363-1376. | |
[12] | 李江遐, 张军, 马友华, 等, 2017. 不同水稻品种对镉的吸收转运及其非蛋白巯基含量的变化[J]. 生态环境学报, 26(12): 2140-2145. |
LI J X, ZHANG J, MA Y H, et al., 2017. Uptake and translocation of cadmium and content of non-protein thiols in different rice cultivars[J]. Ecology and Environmental Sciences, 26(12): 2140-2145. | |
[13] | 李坤权, 刘建国, 陆小龙, 等, 2003. 水稻不同品种对镉吸收及分配的差异[J]. 农业环境科学学报, 22(5): 529-532. |
LI K Q, LIU J G, LU X L, et al., 2003. Uptake and distribution of cadmium in different rice cultivars[J]. Journal of Agro-Environment Science, 22(5): 529-532. | |
[14] | 刘仲齐, 张长波, 黄永春, 2019. 水稻各器官镉阻控功能的研究进展[J]. 农业环境科学学报, 38(4): 721-727. |
LIU Z Q, ZHANG C B, HUANG Y C, 2019. Research advance on the functions of rice organs in cadmium inhibition: A review[J]. Journal of Agro-Environment Science, 38(4): 721-727. | |
[15] | 史静, 潘根兴, 2015. 外加镉对水稻镉吸收、亚细胞分布及非蛋白巯基含量的影响[J]. 生态环境学报, 24(5): 853-859. |
SHI J, PAN G X, 2015. Effects of Cd-spiking treatment on Cd accumulation, subcellular distribution and content of nonprotein thiols in rice[J]. Ecology and Environmental Sciences, 24(5): 853-859. | |
[16] | 文典, 江棋, 邓腾灏博, 等, 2021. 土壤调理剂对稻米中镉含量及其品质的影响[J]. 生态环境学报, 30(2): 400-404. |
WEN D, JIANG Q, DENG T H B, et al., 2021. Effects of soil amendment on rice cadmium uptake and quality[J]. Ecology and Environmental Sciences, 30(2): 400-404. | |
[17] | 文典, 江棋, 李蕾, 等, 2020. 重金属污染高风险农用地水稻安全种植技术研究[J]. 生态环境学报, 29(3): 624-628. |
WEN D, JIANG Q, LI L, et al., 2020. Study on safe planting technology of rice in high risk farmland of heavy metal pollution[J]. Ecology and Environmental Sciences, 29(3): 624-628. | |
[18] | 吴文革, 张洪程, 吴桂成, 等, 2007. 超级稻群体籽粒库容特征的初步研究[J]. 中国农业科学, 40(2): 250-257. |
WU W G, ZHANG H C, WU G C, et al., 2007. Preliminary study on super rice population sink characters[J]. Scientia Agricultura Sinica, 40(2): 250-257. | |
[19] | 徐靖, 唐清杰, 韩义胜, 等, 2014. 海南普通野生稻与栽培稻的营养品质比较[J]. 热带农业科学, 34(4): 57-59. |
XU J, TANG Q J, HAN Y S, et al., 2014. Comparison of nutritional quality between Hainan common wild rice (Oryza rufipogon Griff) and cultivated rice[J]. Chinese Journal of Tropical Agriculture, 34(4): 57-59. | |
[20] | 徐玲玲, 陈善娜, 程在全, 等, 2005. 云南野生稻对土壤环境中营养元素的吸收能力初探[J]. 西南农业学报, 18(6): 744-746. |
XU L L, CHEN S N, CHENG Z Q, et al., 2005. Primary study on absorption efficiency of different Yunnan wild rice to nutrient elements[J]. South west China Journal of Agricultural Sciences, 18(6): 744-746. | |
[21] | 严勋, 唐杰, 李冰, 等, 2019. 不同水稻品种对镉积累的差异及其与镉亚细胞分布的关系[J]. 生态毒理学报, 14(5): 244-256. |
YAN X, TANG J, LI B, et al., 2019. Cadmium accumulation in different rice varieties and its relationship with subcellular distribution of cadmium[J]. Asian Journal of Ecotoxicology, 14(5): 244-256. | |
[22] | 杨庆文, 戴陆园, 时津霞, 等, 2004. 云南元江普通野生稻 (Oryza rufipogon Griff) 遗传多样性分析及保护策略研究[J]. 植物遗传资源学报, 5(1): 1-5. |
YANG Q W, DAI L Y, SHI J X, et al., 2004. Study of genetic diversity and conservation strategy of (Oryza rufipogon Griff.) in Yuan jiang[J]. Journal of Plant Genetic Resources, 5(1): 1-5. | |
[23] | 曾民, 郭蓉, 杨树明, 等, 2019. 云南省个旧市农产品产地土壤重金属污染与生态风险评价[J]. 土壤与作物, 8(1): 85-92. |
ZENG M, GUO R, YANG S M, et al., 2019. Heavy metal pollution and ecological risk assessment in agricultural production areas: Taking Gejiu City of Yunnan Province as an example[J]. Soils and Crops, 8(1): 85-92. | |
[24] | 曾民, 曾黎琼, 王玲仙, 等, 2021. 元江普通野生稻渗入系籽粒镉评价及与农艺性状的相关性分析[J]. 农业环境科学学报, 40(8): 1644-1649. |
ZENG M, ZENG L Q, WANG L X, et al., 2021. Cd accumulation in grains of introgression lines of Yuanjiang common wild rice and its correlation with agronomic traits in rice[J]. Journal of Agro-Environment Science, 40(8): 1644-1649. | |
[25] | 甄燕红, 成颜君, 潘根兴, 等, 2008. 中国部分市售大米中Cd、Zn、Se的含量及其食物安全评价[J]. 安全与环境学报, 8(1): 119-122. |
ZHEN Y H, CHENG Y J, PAN G X, et al., 2008. Cd,Zn and Se content of the polished rice samples from some Chinese open markets and their relevance to food safety[J]. Journal of Safety and Environment, 8(1): 119-122. |
[1] | 赵良侠, 高坤, 黄婷婷, 高也, 琚唐丹, 蒋秋阳, 金珩, 熊蕾, 汤在琳, 高灿红. 玉米籽粒高/低镉积累自交系不同生育期的镉累积特性研究[J]. 生态环境学报, 2023, 32(4): 766-775. |
[2] | 杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634. |
[3] | 徐敏, 许超, 余光辉, 尹力初, 张泉, 朱捍华, 朱奇宏, 张杨珠, 黄道友. 地下水位和长期秸秆还田对土壤镉有效性及稻米镉含量的影响[J]. 生态环境学报, 2023, 32(1): 150-157. |
[4] | 崔远远, 张征云, 刘鹏, 张运春, 张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响[J]. 生态环境学报, 2023, 32(1): 158-165. |
[5] | 李晓晖, 艾仙斌, 李亮, 王玺洋, 辛在军, 孙小艳. 新型改性稻壳生物炭材料对镉污染土壤钝化效果的研究[J]. 生态环境学报, 2022, 31(9): 1901-1908. |
[6] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[7] | 房献宝, 张智钧, 赖阳晴, 叶脉, 刁增辉. 新型污泥生物炭对土壤重金属Cr和Cd的修复研究[J]. 生态环境学报, 2022, 31(8): 1647-1656. |
[8] | 赵超凡, 周丹丹, 孙建财, 钱坤鹏, 李芳芳. 生物炭中可溶性组分对其吸附镉的影响[J]. 生态环境学报, 2022, 31(4): 814-823. |
[9] | 文典, 赵沛华, 陈楚国, 李富荣, 杜瑞英, 黄永东, 李蕾, 王富华. 珠三角典型区域蔬菜产地土壤Cd安全阈值研究[J]. 生态环境学报, 2022, 31(3): 603-609. |
[10] | 李少宁, 陶雪莹, 李慧敏, 赵娜, 徐晓天, 鲁绍伟. 侧柏和垂柳释放有益BVOCs组分生长季动态变化特征研究[J]. 生态环境学报, 2022, 31(2): 257-264. |
[11] | 石含之, 江棋, 刘帆, 文典, 黄永东, 邓腾灏博, 王旭, 徐爱平, 李富荣, 吴志超, 李梅霞, 彭锦芬, 杜瑞英. 水稻根茬还田对土壤及稻米中镉累积的影响[J]. 生态环境学报, 2022, 31(2): 363-369. |
[12] | 上官宇先, 尹宏亮, 徐懿, 钟红梅, 何明江, 秦鱼生, 郭松, 喻华. 不同钝化剂对水稻小麦籽粒镉吸收的影响[J]. 生态环境学报, 2022, 31(2): 370-379. |
[13] | 秦秦, 段海芹, 宋科, 孙丽娟, 孙雅菲, 周斌, 薛永. 常规施肥对土壤水稳性团聚体镉吸附解吸特性及化学形态的影响研究[J]. 生态环境学报, 2022, 31(12): 2403-2413. |
[14] | 李少宁, 陶雪莹, 李绣宏, 赵娜, 徐晓天, 鲁绍伟. 植物释放有益挥发性有机物研究进展[J]. 生态环境学报, 2022, 31(1): 187-195. |
[15] | 王卫红, 高双全, 杜衍红, 李志丰, 窦飞, 曾晓舵. 镉污染菜地叶面阻隔剂对不同品种辣椒镉积累影响[J]. 生态环境学报, 2021, 30(8): 1751-1756. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||