生态环境学报 ›› 2022, Vol. 31 ›› Issue (3): 429-439.DOI: 10.16258/j.cnki.1674-5906.2022.03.001
• 研究论文 •
下一篇
高思琦1,2(), 董国涛2,3,*(
), 蒋晓辉1, 聂桐1,2, 郭欣伟2, 党素珍2, 李心宇1, 李昊洋1
收稿日期:
2021-10-19
出版日期:
2022-03-18
发布日期:
2022-05-25
通讯作者:
*董国涛(1982年生),男,正高级工程师,博士,研究方向为水文水资源遥感。E-mail: dongguotao@hhglj yrcc.gov.cn作者简介:
高思琦(1998年生),女,硕士研究生,研究方向为社会水文学。E-mail: siqigao@stumail.nwu.edu.cn
基金资助:
GAO Siqi1,2(), DONG Guotao2,3,*(
), JIANG Xiaohui1, NIE Tong1,2, GUO Xinwei2, DANG Suzhen2, LI Xinyu1, LI Haoyang1
Received:
2021-10-19
Online:
2022-03-18
Published:
2022-05-25
摘要:
归一化植被指数(NDVI)可以有效地反映地表植被的生长状况,研究植被NDVI空间分布的驱动因素有助于区域生态环境保护。该研究基于2000—2018年黄河源区MODIS-NDVI数据和同时期8种自然因子数据,运用趋势分析法分析黄河源区植被NDVI时空变化特征,并利用地理探测器分析其空间分布的自然驱动因子。研究表明,黄河源区植被覆盖总体较高,2018年区域内74%的面积NDVI大于0.6。NDVI分布特点为东南高西北低,变化格局为北部增加,中部减少。2000—2018年NDVI均值总体上呈增加趋势,但变化趋势不明显,增长率为0.013/10 a;除高植被覆盖区面积增加外,其他等级植被覆盖区面积均减小。年降水量对NDVI空间分布的影响力最大,达到0.602;高程影响力为0.385,年均温影响力为0.296,也很好地解释了黄河源区的植被覆盖状况;其他自然因子对NDVI空间分布的影响力较小。自然因子对植被NDVI的影响呈现相互增强和非线性增强关系,使地貌类型、坡度及坡向等影响较小的单因子对植被NDVI也有了较大的影响,其中,年降水量与其他因子之间的交互作用的影响力普遍较高,年降水量与海拔的交互作用影响力最大,达到0.682。研究表明,2000—2018年黄河源植被覆盖度呈不显著增加,年降水量是影响植被NDVI空间分布的主导因子,自然因子对植被NDVI的影响具有交互作用。该研究有助于更好地认识黄河源区植被覆盖情况以及植被空间分布的影响机制。
中图分类号:
高思琦, 董国涛, 蒋晓辉, 聂桐, 郭欣伟, 党素珍, 李心宇, 李昊洋. 黄河源植被覆盖度变化及空间分布自然驱动力分析[J]. 生态环境学报, 2022, 31(3): 429-439.
GAO Siqi, DONG Guotao, JIANG Xiaohui, NIE Tong, GUO Xinwei, DANG Suzhen, LI Xinyu, LI Haoyang. Analysis of Vegetation Coverage Changes and Natural Driving Forces of Spatial Distribution in the Source Region of the Yellow River[J]. Ecology and Environment, 2022, 31(3): 429-439.
探测因子 Detection factor | 指标 Index | 单位 Unit |
---|---|---|
X1 | 坡度 | ° |
X2 | 坡向 | ° |
X3 | 高程 | m |
X4 | 土壤类型 | — |
X5 | 植被类型 | — |
X6 | 地貌类型 | — |
X7 | 年均温 | ℃ |
X8 | 年降水量 | mm |
表1 自然因子
Table 1 Natural factors
探测因子 Detection factor | 指标 Index | 单位 Unit |
---|---|---|
X1 | 坡度 | ° |
X2 | 坡向 | ° |
X3 | 高程 | m |
X4 | 土壤类型 | — |
X5 | 植被类型 | — |
X6 | 地貌类型 | — |
X7 | 年均温 | ℃ |
X8 | 年降水量 | mm |
依据 Foundation | 交互作用 Interaction |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)<q(X1∩X2)]<Max[q(X1), q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max[q(X1), q(X2)] | 相互增强 |
q(X1∩X2)=q(X1)+q(X2) | 独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
表2 交互作用类型
Table 2 Types of interaction
依据 Foundation | 交互作用 Interaction |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)<q(X1∩X2)]<Max[q(X1), q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max[q(X1), q(X2)] | 相互增强 |
q(X1∩X2)=q(X1)+q(X2) | 独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
NDVI等级 NDVI Grade | 年份 Year | |||||
2000 | 2018 | 2000-2018 | ||||
面积 Area/km2 | 占比 Proportion/% | 面积 Area/km2 | 占比 Proportion/% | 面积变化 Area change/km2 | 占比 Proportion/% | |
0-0.2 | 2610.65 | 1.96 | 1382.25 | 1.04 | -1228.40 | -0.92 |
0.2-0.4 | 17575.60 | 13.17 | 10410.69 | 7.80 | -7164.91 | -5.37 |
0.4-0.6 | 28242.58 | 21.17 | 23046.23 | 17.27 | -5196.35 | -3.90 |
0.6-0.8 | 58225.76 | 43.64 | 53443.03 | 40.05 | -4782.73 | -3.59 |
0.8-1.0 | 26781.55 | 20.07 | 45153.94 | 33.84 | 18372.39 | 13.77 |
表3 2000—2018年NDVI动态变化
Table 3 Dynamic changes of NDVI during 2000-2018
NDVI等级 NDVI Grade | 年份 Year | |||||
2000 | 2018 | 2000-2018 | ||||
面积 Area/km2 | 占比 Proportion/% | 面积 Area/km2 | 占比 Proportion/% | 面积变化 Area change/km2 | 占比 Proportion/% | |
0-0.2 | 2610.65 | 1.96 | 1382.25 | 1.04 | -1228.40 | -0.92 |
0.2-0.4 | 17575.60 | 13.17 | 10410.69 | 7.80 | -7164.91 | -5.37 |
0.4-0.6 | 28242.58 | 21.17 | 23046.23 | 17.27 | -5196.35 | -3.90 |
0.6-0.8 | 58225.76 | 43.64 | 53443.03 | 40.05 | -4782.73 | -3.59 |
0.8-1.0 | 26781.55 | 20.07 | 45153.94 | 33.84 | 18372.39 | 13.77 |
变化趋势 Change trend | 斜率 Gradient | 面积 Area/km2 | 比例 Proportion/% |
---|---|---|---|
显著减少 Significant reduction | -0.0421- -0.0137 | 628.86 | 0.47 |
中度减少 Moderate reduction | -0.0137- -0.0032 | 2933.92 | 2.19 |
轻微减少 Slight reduction | -0.0032- -0.0004 | 22992.65 | 17.20 |
基本不变 Basically unchanged | -0.0004-0.0013 | 42087.69 | 31.48 |
轻微增加 Slight increase | 0.0013-0.0031 | 37350.13 | 27.94 |
中度增加 Moderate increase | 0.0031-0.0056 | 21539.16 | 16.11 |
显著增加 Significant increase | 0.0056-0.0225 | 6158.91 | 4.61 |
表4 2000—2018年NDVI变化趋势
Table 4 Change trend of NDVI during 2000-2018
变化趋势 Change trend | 斜率 Gradient | 面积 Area/km2 | 比例 Proportion/% |
---|---|---|---|
显著减少 Significant reduction | -0.0421- -0.0137 | 628.86 | 0.47 |
中度减少 Moderate reduction | -0.0137- -0.0032 | 2933.92 | 2.19 |
轻微减少 Slight reduction | -0.0032- -0.0004 | 22992.65 | 17.20 |
基本不变 Basically unchanged | -0.0004-0.0013 | 42087.69 | 31.48 |
轻微增加 Slight increase | 0.0013-0.0031 | 37350.13 | 27.94 |
中度增加 Moderate increase | 0.0031-0.0056 | 21539.16 | 16.11 |
显著增加 Significant increase | 0.0056-0.0225 | 6158.91 | 4.61 |
自然因子Natural factors | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
q值 q value | 0.073 | 0.059 | 0.385 | 0.139 | 0.218 | 0.061 | 0.296 | 0.602 |
p值 p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
表5 自然因子的q值
Table 5 q values of natural factors
自然因子Natural factors | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
q值 q value | 0.073 | 0.059 | 0.385 | 0.139 | 0.218 | 0.061 | 0.296 | 0.602 |
p值 p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
因子 Factors | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 0.073 | ||||||||||
X2 | 0.126 | 0.059 | |||||||||
X3 | 0.502 | 0.447 | 0.385 | ||||||||
X4 | 0.204 | 0.152 | 0.494 | 0.139 | |||||||
X5 | 0.260 | 0.228 | 0.514 | 0.272 | 0.218 | ||||||
X6 | 0.117 | 0.124 | 0.566 | 0.219 | 0.266 | 0.061 | |||||
X7 | 0.350 | 0.346 | 0.507 | 0.425 | 0.457 | 0.371 | 0.296 | ||||
X8 | 0.623 | 0.631 | 0.682 | 0.656 | 0.673 | 0.628 | 0.637 | 0.602 |
表6 自然因子交互作用及生态探测
Table 6 Interaction and ecological detection of natural factors
因子 Factors | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 0.073 | ||||||||||
X2 | 0.126 | 0.059 | |||||||||
X3 | 0.502 | 0.447 | 0.385 | ||||||||
X4 | 0.204 | 0.152 | 0.494 | 0.139 | |||||||
X5 | 0.260 | 0.228 | 0.514 | 0.272 | 0.218 | ||||||
X6 | 0.117 | 0.124 | 0.566 | 0.219 | 0.266 | 0.061 | |||||
X7 | 0.350 | 0.346 | 0.507 | 0.425 | 0.457 | 0.371 | 0.296 | ||||
X8 | 0.623 | 0.631 | 0.682 | 0.656 | 0.673 | 0.628 | 0.637 | 0.602 |
自然因子 Natural factors | 植被NDVI适宜范围或类型 Appropriate range or type of NDVI | NDVI |
---|---|---|
坡度 Slope/(°) | 25-35 | 0.739 |
坡向 Aspect/(°) | 292.5-337.5 | 0.700 |
高程 Elevation/m | 3578—3787 | 0.822 |
土壤类型 Soil type | 半水成土 | 0.812 |
植被类型 Vegetation type | 沼泽植被 | 0.821 |
地貌类型 Topographic type | 中起伏山地 | 0.740 |
年均温 Average annual temperature/℃ | 3.45-4.48 | 0.814 |
年降水量 Annual precipitation/mm | 899-996 | 0.817 |
表7 植被对自然因子的适宜范围或类型
Table 7 Suitable range or type of vegetation
自然因子 Natural factors | 植被NDVI适宜范围或类型 Appropriate range or type of NDVI | NDVI |
---|---|---|
坡度 Slope/(°) | 25-35 | 0.739 |
坡向 Aspect/(°) | 292.5-337.5 | 0.700 |
高程 Elevation/m | 3578—3787 | 0.822 |
土壤类型 Soil type | 半水成土 | 0.812 |
植被类型 Vegetation type | 沼泽植被 | 0.821 |
地貌类型 Topographic type | 中起伏山地 | 0.740 |
年均温 Average annual temperature/℃ | 3.45-4.48 | 0.814 |
年降水量 Annual precipitation/mm | 899-996 | 0.817 |
[1] | CHEN J, YANG S T, LI H W, et al., 2013. Research on geographical environment unit division based on the method of natural breaks (Jenks)[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3: 47-50. |
[2] | JIANG L L, JIAPAER G, BAO A M, et al., 2017. Vegetation dynamics and responses to climate change and human activities in Central Asia[J]. The Science of the total environment, 599: 967-980. |
[3] |
LIU Y, LI Y, LI S H, et al., 2015. Spatial and temporal patterns of global NDVI trends: Correlations with climate and human factors[J]. Remote Sensing, 7(10): 13233-13250.
DOI URL |
[4] |
NIE T, DONG G T, JIANG X H, et al., 2021. Spatio-temporal changes and driving forces of vegetation coverage on the Loess Plateau of Northern Shaanxi[J]. Remote Sens, 13(4): 613-629.
DOI URL |
[5] |
PIAO S L, WANG X H, CIAIS P, et al., 2011. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006 [J]. Global Change Biology, 17(10): 3228-3239.
DOI URL |
[6] | 白军红, 欧阳华, 徐惠风, 等, 2004. 青藏高原湿地研究进展[J]. 地理科学进展, 23(4): 1-9. |
BAI J H, OUYANG H, XU H F, et al., 2004. Advances in studies of wetlands in Qinghai-Tibet Plateau[J]. Progress in Geography, 23(4): 1-9. | |
[7] | 陈宽, 杨晨晨, 白力嘎, 等, 2021. 基于地理探测器的内蒙古自然和人为因素对植被NDVI变化的影响[J]. 生态学报, 41(12): 4963-4975. |
CHEN K, YANG C C, BAI L G, et al., 2021. Effects of natural and human factors on vegetation normalized difference vegetation index based on geographical detectors in Inner Mongolia[J]. Acta Ecologica Sinica, 41(12): 4963-4975. | |
[8] | 陈燕丽, 龙步菊, 潘学标, 等, 2011. MODIS NDVI和AVHRR NDVI对草原植被变化监测差异[J]. 遥感学报, 15(4): 831-845. |
CHEN Y L, LONG B J, PAN X B, et al., 2011. Differences between MODIS NDVI and AVHRR NDVI in monitoring grasslands change[J]. Journal of Remote Sensing, 15(4): 831-845. | |
[9] | 段水强, 范世雄, 曹广超, 等, 2015. 1976-2014年黄河源区湖泊变化特征及成因分析[J]. 冰川冻土, 37(3): 745-756. |
DUAN S Q, FAN S X, CAO G C, et al., 2015. The changing features and cause analysis of the lakes in the source regions of the Yellow River from 1976 to 2014 [J]. Journal of Glaciology and Geocryology, 37(3): 745-756. | |
[10] |
高江波, 焦珂伟, 吴绍洪, 2019. 1982-2013年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 74(3): 534-543.
DOI |
GAO J B, JIAO K W, WU S H, 2019. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982-2013 [J]. Acta Geographica Sinica, 74(3): 534-543. | |
[11] | 管晓祥, 刘翠善, 鲍振鑫, 等, 2021. 黄河源区植被NDVI演变及其与降水、气温的关系[J]. 水土保持研究, 28(5): 268-277. |
GUAN X X, LIU C S, BAO Z X, et al., 2021. Variation of vegetation NDVI and its relationship with climate factors in the Yellow River source region[J]. Research of Soil and Water Conservation, 28(5): 268-277. | |
[12] |
郭泽呈, 魏伟, 石培基, 等, 2020. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 75(9): 1948-1965.
DOI |
GUO Z C, WEI W, SHI P J, et al., 2020. Spatiotemporal changes of land desertification sensitivity in the arid region of Northwest China[J]. Acta Geographica Sinica, 75(9): 1948-1965. | |
[13] | 韩炳宏, 周秉荣, 颜玉倩, 等, 2019. 2000-2018年间青藏高原植被覆盖变化及其与气候因素的关系分析[J]. 草地学报, 27(6): 1651-1658. |
HAN B H, ZHOU B R, YAN Y Q, et al., 2019. Analysis of vegetation voverage change and its driving factors over Tibetan Plateau from 2000 to 2008 [J]. Acta Agrestia Sinica, 27(6): 1651-1658. | |
[14] | 韩思淇, 麻泽龙, 庄文化, 等, 2019. 2000-2018年黄河源植被叶面积指数时空变化特征[J]. 灌溉排水学报, 38(12): 57-62. |
HAN S Q, MA Z L, ZHUANG W H, et al., 2019. Spatial-temporal change of leaf area index (LAI) in the source region of the Yellow River during 2000-2018 [J]. Journal of Irrigation and Drainage, 38(12): 57-62. | |
[15] | 姜欣彤, 黎曙, 周祖昊, 等, 2020. 基于高程分段的黄河源区NDVI和水热条件空间分布格局[J]. 南水北调与水利科技, 18(4): 39-53. |
JIANG X T, LI S, ZHOU Z H, et al., 2020. Distribution pattern of NDVI and hydrothermal conditions in the Yellow River headwaters based on elevation section[J]. South-to-North Water Transfers and Water Science & Technology, 18(4): 39-53. | |
[16] |
金凯, 王飞, 韩剑桥, 等, 2020. 1982-2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 75(5): 961-974.
DOI |
JIN K, WANG F, HAN J Q, et al., 2020. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015 [J]. Acta Geographica Sinica, 75(5): 961-974.
DOI |
|
[17] | 康悦, 李振朝, 田辉, 等, 2011. 黄河源区植被变化趋势及其对气候变化的响应过程研究[J]. 气候与环境研究, 16(4): 505-512. |
KANG Y, LI Z C, TIAN H, et al., 2011. Trend of vegetation evaluation and its responses to climate change over the source region of the Yellow River[J]. Climatic and Environmental Research, 16(4): 505-512. | |
[18] |
李双双, 张玉凤, 汪成博, 等, 2021. 气候变化和生态建设对秦岭-淮河南北植被动态的影响[J]. 地理科学进展, 40(6): 1026-1036.
DOI |
LI S S, ZHANG Y F, WANG C B, et al., 2021. Coupling effects of climate change and ecological restoration on vegetation dynamics in the Qinling-Huaihe region[J]. Progress in Geography, 40(6): 1026-1036. | |
[19] | 刘静, 温仲明, 刚成诚, 2020. 黄土高原不同植被覆被类型NDVI对气候变化的响应[J]. 生态学报, 40(2): 678-691. |
LIU J, WEN Z M, GANG C C, 2020. Normalized difference vegetation index of different vegetation cover types and its responses to climate change in the Loess Plateau[J]. Acta Ecologica Sinica, 40(2): 678-691. | |
[20] | 刘启兴, 董国涛, 景海涛, 等, 2019. 2000-2016年黄河源区植被NDVI变化趋势及影响因素[J]. 水土保持研究, 26(3): 86-92. |
LIU Q X, DONG G T, JING H T, et al., 2019. Change trend of vegetation NDVI and its influencing factors in the source region of the Yellow River in the period from 2000 to 2016 [J]. Research of Soil and Water Conservation, 26(3): 86-92. | |
[21] | 刘宪锋, 任志远, 林志慧, 等, 2013. 2000-2011年三江源区植被覆盖时空变化特征[J]. 地理学报, 68(7): 897-908. |
LIU X F, REN Z Y, LIN Z H, et al., 2013. The spatial-temporal changes of vegetation coverage in the Three-River Headwater Region in recent 12 years[J]. Acta Geographica Sinica, 68(7): 897-908. | |
[22] | 刘宪锋, 朱秀芳, 潘耀忠, 等, 2015. 1982-2012年中国植被覆盖时空变化特征[J]. 生态学报, 35(16): 5331-5342. |
LIU X F, ZHU X F, PAN Y Z, et al., 2015. Spatiotemporal changes in vegetation coverage in China during 1982-2012 [J]. Acta Ecologica Sinica, 35(16): 5331-5342. | |
[23] |
刘彦随, 李进涛, 2017. 中国县域农村贫困化分异机制的地理探测与优化决策[J]. 地理学报, 72(1): 161-173.
DOI |
LIU Y S, LI J T, 2017. Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China[J]. Acta Geographica Sinica, 72(1): 161-173. | |
[24] | 栾金凯, 刘登峰, 黄强, 等, 2018. 近17年陕西榆林植被指数的时空变化及影响因素[J]. 生态学报, 38(8): 2780-2790. |
LUAN J K, LIU D F, HUANG Q, et al., 2018. Analysis of the spatial-temporal change and impact factors of the vegetation index in Yulin, Shaanxi Province, in the last 17 years[J]. Acta Ecologica Sinica, 38(8): 2780-2790. | |
[25] | 马守存, 保广裕, 郭广, 等, 2018. 1982-2013年黄河源区植被变化趋势及其对气候变化的响应[J]. 干旱气象, 36(2): 226-233. |
MA S C, BAO G Y, GUO G, et al., 2018. Change trend of vegetation and its responses to climate change in the source Region of the Yellow River[J]. Journal of Arid Meteorology, 36(2): 226-233. | |
[26] | 穆少杰, 李建龙, 陈奕兆, 等, 2012. 2001-2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 67(9): 1255-1268. |
MU S J, LI J L, CHEN Y Z, et al., 2012. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010 [J]. Acta Geographica Sinica, 67(9): 1255-1268. | |
[27] | 聂桐, 董国涛, 蒋晓辉, 等, 2021. 延安地区植被覆盖度时空变化及驱动力[J]. 水土保持研究, 28(5): 340-346. |
NIE T, DONG G T, JIANG X H, et al., 2021. Spatiotemporal variation and driving forces of vegetation coverage in Yan'an area[J]. Research of Soil and Water Conservation, 28(5): 340-346. | |
[28] | 潘竟虎, 刘菊玲, 2005. 黄河源区土地利用和景观格局变化及其生态环境效应[J]. 干旱区资源与环境, 19(4): 69-74. |
PAN J H, LIU J L, 2005. Land use change and its impact in the eco-environment on the Yellow River source region during the past 15 years[J]. Journal of Arid Land Resources and Environment, 19(4): 69-74. | |
[29] | 彭文甫, 王广杰, 周介铭, 等, 2016. 基于多时相Landsat5/8影像的岷江汶川-都江堰段植被覆盖动态监测[J]. 生态学报, 36(7): 1975-1988. |
PENG W F, WANG G J, ZHOU J M, et al., 2016. Dynamic monitoring of fractional vegetation cover along Minjiang River from Wenchuan County to Dujiangyan City using multi-temporal landsat 5 and 8 images[J]. Acta Ecologica Sinica, 36(7): 1975-1988. | |
[30] |
彭文甫, 张冬梅, 罗艳玫, 等, 2019. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 74(9): 1758-1776.
DOI |
PENG W F, ZHANG D M, LUO Y M, et al., 2019. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan Province[J]. Acta Geographica Sinica, 74(9): 1758-1776. | |
[31] | 钱程, 韩建恩, 朱大岗, 等, 2012. 基于ASTER-GDEM数据的黄河源地区构造地貌分析[J]. 中国地质, 39(5): 1247-1260. |
QIAN C, HAN J E, ZHU D G, et al., 2012. An analysis of geomorphologic characteristics of the Yellow River source region based on ASTER-GDEM[J]. Geology of China, 39(5): 1247-1260. | |
[32] | 饶品增, 王义成, 王芳, 2021. 三江源植被覆盖区NDVI变化及影响因素分析[J]. 草地学报, 29(3): 572-582. |
RAO P Z, WANG Y C, WANG F, 2021. Analysis on the NDVI change and influence factors of vegetation cover in the Three-River Headwaters Region[J]. Acta Agrestia Sinica, 29(3): 572-582. | |
[33] | 史丹丹, 杨涛, 胡金明, 等, 2018. 基于NDVI的黄河源区生长季植被时空变化及其与气候因子的关系[J]. 山地学报, 36(2): 184-193. |
SHI D D, YANG T, HU J M, et al., 2018. Spatio-temporal variation of NDVI-based vegetation during the growing-season and its relation with climatic factors in the Yellow River Source Region[J]. Mountain Research, 36(2): 184-193. | |
[34] | 孙红雨, 王长耀, 牛铮, 等, 1998. 中国地表植被覆盖变化及其与气候因子关系--基于NOAA时间序列数据分析[J]. 遥感学报, 2(3): 204-210. |
SUN H Y, WANG C Y, NIU Z, et al., 1998. Analysis of the vegetation cover change and the relationship between NDVI and environmental factors by using NOAA time series data[J]. Journal of Remote Sensing, 2(3): 204-210. | |
[35] | 孙艳玲, 郭鹏, 延晓冬, 等, 2010. 内蒙古植被覆盖变化及其与气候、人类活动的关系[J]. 自然资源学报, 25(3): 407-414. |
SUN Y L, GUO P, YAN X D, et al., 2010. Dynamics of vegetation cover and its relationship with climate change and human activities in Inner Mongolia[J]. Journal of Natural Resources, 25(3): 407-414. | |
[36] | 覃金兰, 薛联青, 2020. 西北干旱区玛纳斯河流域植被时空变化特征及其与地形因子的空间关系[J]. 生态环境学报, 29(11): 2179-2188. |
QIN J L, XUE L Q, 2020. Spatial and temporal variation characteristics of vegetation in the Manas river basin in northwest arid region and its spatial relationship with topographical factors[J]. Ecology and Environmental Sciences, 29(11): 2179-2188. | |
[37] | 覃巧婷, 陈建军, 杨艳萍, 等, 2021. 黄河源植被时空变化及其对地形和气候的响应[J]. 中国环境科学, 41(8): 3832-3841. |
QIN Q T, CHEN J J, YANG Y P, et al., 2021. Spatiotemporal variations of vegetation and its response to topography and climate in the source region of the Yellow River[J]. China Environmental Science, 41(8): 3832-3841. | |
[38] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
WANG J F, XU C D, 2017. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 72(1): 116-134. | |
[39] | 王俊奇, 王广军, 梁四海, 等, 2021. 1996-2015年黄河源区植被覆盖度提取和时空变化分析[J]. 冰川冻土, 43(2): 662-674. |
WANG J Q, WANG G J, LIANG S H, et al., 2021. Extraction and spatio-temporal analysis of vegetation coverage from 1996 to 2015 in the source region of the Yellow River[J]. Journal of Glaciology and Geocryology, 43(2): 662-674. | |
[40] | 王伟, 阿里木·赛买提, 吉力力·阿不都外力, 2019. 基于地理探测器模型的中亚NDVI时空变化特征及其驱动因子分析[J]. 国土资源遥感, 31(4): 32-40. |
WANG W, ALIM S, JILILI A, 2019. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia[J]. Remote Sensing for Land & Resources, 31(4): 32-40. | |
[41] | 魏凤英, 2007. 现代气候统计诊断与预测技术[M]. 第2版. 北京: 气象出版社: 66-67. |
WEI F Y, 2007. Modern climate statistical diagnosis and prediction technology[M]. Second Edition. Beijing: China Meteorological Press: 66-67. | |
[42] | 吴喜芳, 李改欣, 潘学鹏, 等, 2015. 黄河源区植被覆盖度对气温和降水的响应研究[J]. 资源科学, 37(3): 512-521. |
WU X F, LI G X, PAN X P, et al., 2015. Response of vegetation cover to temperature and precipitation in the source region of the Yellow River[J]. Resources Science, 37(3): 512-521. | |
[43] | 徐浩杰, 杨太保, 曾彪, 2012. 黄河源区植被生长季NDVI时空特征及其对气候变化的响应[J]. 生态环境学报, 21(7): 1205-1210. |
XU H J, YANG T B, ZENG B, 2012. Spatial-temporal variation of growing-season NDVI and its responses to climate change over the source region of the Yellow River[J]. Ecology and Environmental Sciences, 21(7): 1205-1210. | |
[44] | 杨彩云, 王世曦, 杨春艳, 等, 2021. 川藏铁路沿线植被覆盖度时空变化特征分析[J]. 干旱区资源与环境, 35(3): 174-182. |
YANG C Y, WANG S X, YANG C Y, et al., 2021. Spatial-temporal variation characteristics of vegetation coverage along Sichuan-Tibet railway[J]. Journal of Arid Land Resources and Environment, 35(3): 174-182. | |
[45] | 于伯华, 吕昌河, 2011. 青藏高原高寒区生态脆弱性评价[J]. 地理研究, 30(12): 2289-2295. |
YU B H, LV C H, 2011. Assessment of ecological vulnerability on the Tibetan Plateau[J]. Geographical Research, 30(12): 2289-2295. | |
[46] | 袁丽华, 蒋卫国, 申文明, 等, 2013. 2000-2010年黄河流域植被覆盖的时空变化[J]. 生态学报, 33(24): 7798-7806. |
YUAN L H, JIANG W G, SHEN W M, et al., 2013. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010 [J]. Acta Ecologica Sinica, 33(24): 7798-7806. | |
[47] | 张翀, 白子怡, 李学梅, 等, 2021. 2001-2018年黄土高原植被覆盖人为影响时空演变及归因分析[J]. 干旱区地理, 44(1): 188-196. |
ZHANG C, BAI Z Y, LI X M, et al., 2021. Spatio-temporal evolution and attribution analysis of human effects of vegetation cover on the Loess Plateau from 2001 to 2018 [J]. Arid Land Geography, 44(1): 188-196. | |
[48] | 张成凤, 鲍振鑫, 杨晓甜, 等, 2019. 黄河源区水文气象要素演变特征及响应关系[J]. 华北水利水电大学学报 (自然科学版), 40(6): 15-19. |
ZHANG C F, BAO Z X, YANG X T, et al., 2019. Evolution characteristics and response relationships of hydro-meteorological variables in the source region of the Yellow River[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 40(6): 15-19. | |
[49] | 张华, 李明, 宋金岳, 等, 2021. 基于地理探测器的祁连山国家公园植被NDVI变化驱动因素分析[J]. 生态学杂志, 40(8): 2530-2540. |
ZHANG H, LI M, SONG J Y, et al., 2021. Analysis of driving factors of vegetation NDVI change in Qilian Mountain National Park based on geographic detector[J]. Chinese Journal of Ecology, 40(8): 2530-2540. | |
[50] | 张晓龙, 黄领梅, 权全, 等, 2019. 基于ITPCAS驱动数据集的黄河源区植被变化及其与气候因子相关分析[J]. 西北农林科技大学学报 (自然科学版), 47(9): 55-68. |
ZHANG X L, HUANG L M, QUAN Q, et al., 2019. Relationship of vegetation cover change with climate factors in source region of the Yellow River based on ITPCAS forcing data[J]. Journal of Northwest A & F University. Natural Science Edition, 47(9): 55-68. | |
[51] | 张镱锂, 刘林山, 摆万奇, 等, 2006. 黄河源地区草地退化空间特征[J]. 地理学报, 61(1): 3-14. |
ZHANG Y L, LIU L S, BAI W Q, et al., 2006. Grassland degradation in the source region of the Yellow River[J]. Acta Geographica Sinica, 61(1): 3-14. | |
[52] | 张英洁, 靳英华, 谷晓楠, 等, 2017. 长白山苔原带植被变化与土壤微生物、酶活性及土壤肥力的相关性[J]. 生态学杂志, 36(11): 3086-3093. |
ZHANG Y J, JIN Y H, GU X N, et al., 2017. Vegetation change in relation to soil microbes, enzyme activity and soil fertility in the tundra of Changbai Mountain[J]. Chinese Journal of Ecology, 36(11): 3086-3093. | |
[53] | 周爱霞, 马泽忠, 周万村, 2004. 大宁河流域坡度与坡向对土地利用/覆盖变化的影响[J]. 水土保持学报, 18(2): 126-129. |
ZHOU A X, MA Z Z, ZHOU W C, 2004. Influences of slope and aspect on distribution and change of land use and cover in Daninghe River watershed[J]. Journal of Soil and Water Conservation, 18(2): 126-129.
DOI URL |
[1] | 王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148. |
[2] | 李建辉, 党争, 陈琳. 黄河几字弯都市圈PM2.5时空特征及影响因素分析[J]. 生态环境学报, 2023, 32(4): 697-705. |
[3] | 王成武, 罗俊杰, 唐鸿湖. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 2023, 32(2): 215-225. |
[4] | 付蓉, 武新梅, 陈斌. 城市地表温度空间分异及驱动因子差异性分析——以合肥市为例[J]. 生态环境学报, 2023, 32(1): 110-122. |
[5] | 冯娴慧, 曾芝琳. 粤港澳大湾区植被覆盖特征与变化趋势的自然驱动力研究[J]. 生态环境学报, 2022, 31(9): 1713-1724. |
[6] | 陈文裕, 夏丽华, 徐国良, 余世钦, 陈行, 陈金凤. 2000—2020年珠江流域NDVI动态变化及影响因素研究[J]. 生态环境学报, 2022, 31(7): 1306-1316. |
[7] | 李梦华, 韩颖娟, 赵慧, 王云霞. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报, 2022, 31(7): 1317-1325. |
[8] | 杨冲, 王春燕, 王文颖, 毛旭峰, 周华坤, 陈哲, 索南吉, 靳磊, 马华清. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J]. 生态环境学报, 2022, 31(5): 896-908. |
[9] | 赵锐, 詹梨苹, 周亮, 张军科. 地理探测联合地理加权岭回归的PM2.5驱动因素分析[J]. 生态环境学报, 2022, 31(2): 307-317. |
[10] | 杨艳, 周德成, 宫兆宁, 刘子源, 张良侠. 基于植被生产力的黄土高原地区生态脆弱性及其控制因子分析[J]. 生态环境学报, 2022, 31(10): 1951-1958. |
[11] | 聂桐, 董国涛, 蒋晓辉, 郭欣伟, 党素珍, 郑嘉昊, 李立缠, 王江. 榆林地区植被时空分异特征及其影响因素研究[J]. 生态环境学报, 2022, 31(1): 26-36. |
[12] | 王金杰, 赵安周, 胡小枫. 京津冀植被净初级生产力时空分布及自然驱动因子分析[J]. 生态环境学报, 2021, 30(6): 1158-1167. |
[13] | 张军, 高煜, 王国兰, 金梓函, 杨明航. 典型河谷城市土壤重金属含量空间分异及其影响因素[J]. 生态环境学报, 2021, 30(6): 1276-1285. |
[14] | 张静, 杜加强, 盛芝露, 张杨成思, 吴金华, 刘博. 1982—2015年黄河流域植被NDVI时空变化及影响因素分析[J]. 生态环境学报, 2021, 30(5): 929-937. |
[15] | 徐文印, 张宇鹏, 段成伟, 柴瑜, 宋娴, 李希来. 黄河源不同区域退化高寒草甸土壤养分空间变异研究[J]. 生态环境学报, 2021, 30(10): 1968-1975. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||