Ecology and Environment ›› 2023, Vol. 32 ›› Issue (8): 1384-1391.DOI: 10.16258/j.cnki.1674-5906.2023.08.004
• Research Article [Ecology] • Previous Articles Next Articles
WANG Yuqin1,2,*(), SONG Meiling1,2, ZHOU Rui1,2, WANG Hongsheng1,2
Received:
2023-04-06
Online:
2023-08-18
Published:
2023-11-08
Contact:
WANG Yuqin
王玉琴1,2,*(), 宋梅玲1,2, 周睿1,2, 王宏生1,2
通讯作者:
王玉琴
作者简介:
王玉琴(1988年生),女,助理研究员,博士研究生,主要从事高寒草地保护研究。E-mail: gsndwangyuqin@126.com
基金资助:
CLC Number:
WANG Yuqin, SONG Meiling, ZHOU Rui, WANG Hongsheng. Effects of Spread of Ligularia virgaurea on Soil Physicochemical Properties and Enzyme Activities in Alpine Meadow[J]. Ecology and Environment, 2023, 32(8): 1384-1391.
王玉琴, 宋梅玲, 周睿, 王宏生. 黄帚橐吾扩散对高寒草甸土壤理化特性及酶活性的影响[J]. 生态环境学报, 2023, 32(8): 1384-1391.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.08.004
斑块 | 黄帚橐吾密度/(ind·m-2) | 总物种数 | 主要优势植物 |
---|---|---|---|
D0 | 0 | 22.25±0.75a | 高原早熟禾P. alpigena、矮嵩草K. humilis、线叶嵩草K. capillifolia、钝裂银莲花A. obtusiloba |
D1 | 43±5.00e | 24.25±1.25a | 高原早熟禾P. alpigena、矮嵩草K. humilis、黄帚橐吾L. virgaurea、线叶嵩草K. capillifolia |
D2 | 99±2.52d | 23.5±1.50a | 高原早熟禾P. alpigena、矮嵩草K. humilis、黄帚橐吾L. virgaurea、线叶嵩草K. capillifolia |
D3 | 163±11.70c | 24.25±1.25a | 黄帚橐吾L. virgaurea、高原早熟禾P. alpigena、矮嵩草K. humilis、线叶嵩草K. capillifolia |
D4 | 332±10.71b | 25.00±0.82a | 黄帚橐吾L. virgaurea、高原早熟禾P. alpigena、矮嵩草K. humilis、线叶嵩草K. capillifolia |
D5 | 621±9.15a | 22.25±0.48a | 黄帚橐吾L. virgaurea、高原早熟禾P. alpigena、矮嵩草K. humilis、线叶嵩草K. capillifolia |
Table 1 Basic condition of each patch
斑块 | 黄帚橐吾密度/(ind·m-2) | 总物种数 | 主要优势植物 |
---|---|---|---|
D0 | 0 | 22.25±0.75a | 高原早熟禾P. alpigena、矮嵩草K. humilis、线叶嵩草K. capillifolia、钝裂银莲花A. obtusiloba |
D1 | 43±5.00e | 24.25±1.25a | 高原早熟禾P. alpigena、矮嵩草K. humilis、黄帚橐吾L. virgaurea、线叶嵩草K. capillifolia |
D2 | 99±2.52d | 23.5±1.50a | 高原早熟禾P. alpigena、矮嵩草K. humilis、黄帚橐吾L. virgaurea、线叶嵩草K. capillifolia |
D3 | 163±11.70c | 24.25±1.25a | 黄帚橐吾L. virgaurea、高原早熟禾P. alpigena、矮嵩草K. humilis、线叶嵩草K. capillifolia |
D4 | 332±10.71b | 25.00±0.82a | 黄帚橐吾L. virgaurea、高原早熟禾P. alpigena、矮嵩草K. humilis、线叶嵩草K. capillifolia |
D5 | 621±9.15a | 22.25±0.48a | 黄帚橐吾L. virgaurea、高原早熟禾P. alpigena、矮嵩草K. humilis、线叶嵩草K. capillifolia |
斑块 | pH | w(土壤水分)/ % | w(有机碳)/ (g·kg-1) | w(全氮)/ (g∙kg-1) | w(铵态氮)/ (mg·kg-1) | w(硝态氮)/ (mg·kg-1) | w(全磷)/ (g·kg-1) | w(速效磷)/ (g·kg-1) | w(全钾)/ (g·kg-1) | w(速效钾)/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
D0 | 7.26±0.04a | 26.68±0.26c | 91.29±4.04b | 4.53±0.21a | 18.72±1.10ab | 19.97±0.82a | 0.49±0.003b | 6.59±0.10b | 12.09±0.04a | 256.26±4.53b |
D1 | 7.17±0.01a | 28.07±0.30ab | 90.12±6.62b | 4.81±0.12a | 19.36±0.94ab | 15.35±1.20b | 0.50±0.01b | 6.71±0.29ab | 11.31±0.13b | 229.83±1.65c |
D2 | 6.84±0.02b | 29.52±0.50a | 114.21±1.04a | 4.87±0.15a | 18.96±0.51ab | 18.21±0.68a | 0.52±0.01b | 6.97±0.36ab | 11.39±0.38b | 314.07±4.02a |
D3 | 6.79±0.01b | 29.21±0.74a | 105.05±6.98ab | 4.84±0.11a | 19.12±1.03ab | 8.50±0.35d | 0.70±0.03a | 6.41±0.21b | 12.14±0.13a | 237.70±3.15c |
D4 | 6.82±0.01b | 28.33±0.23ab | 93.74±4.54b | 4.87±0.21a | 16.05±0.36b | 12.49±0.16c | 0.51±0.02b | 7.68±0.19a | 12.09±0.17a | 254.57±3.48b |
D5 | 6.67±0.02c | 27.80±1.06abc | 104.90±4.32ab | 4.48±0.22a | 19.72±2.25a | 5.67±0.08c | 0.51±0.001b | 7.29±0.54ab | 11.64±0.24ab | 264.92±4.09b |
Table 2 Changes of soil physicochemical properties in different density patches
斑块 | pH | w(土壤水分)/ % | w(有机碳)/ (g·kg-1) | w(全氮)/ (g∙kg-1) | w(铵态氮)/ (mg·kg-1) | w(硝态氮)/ (mg·kg-1) | w(全磷)/ (g·kg-1) | w(速效磷)/ (g·kg-1) | w(全钾)/ (g·kg-1) | w(速效钾)/ (mg·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
D0 | 7.26±0.04a | 26.68±0.26c | 91.29±4.04b | 4.53±0.21a | 18.72±1.10ab | 19.97±0.82a | 0.49±0.003b | 6.59±0.10b | 12.09±0.04a | 256.26±4.53b |
D1 | 7.17±0.01a | 28.07±0.30ab | 90.12±6.62b | 4.81±0.12a | 19.36±0.94ab | 15.35±1.20b | 0.50±0.01b | 6.71±0.29ab | 11.31±0.13b | 229.83±1.65c |
D2 | 6.84±0.02b | 29.52±0.50a | 114.21±1.04a | 4.87±0.15a | 18.96±0.51ab | 18.21±0.68a | 0.52±0.01b | 6.97±0.36ab | 11.39±0.38b | 314.07±4.02a |
D3 | 6.79±0.01b | 29.21±0.74a | 105.05±6.98ab | 4.84±0.11a | 19.12±1.03ab | 8.50±0.35d | 0.70±0.03a | 6.41±0.21b | 12.14±0.13a | 237.70±3.15c |
D4 | 6.82±0.01b | 28.33±0.23ab | 93.74±4.54b | 4.87±0.21a | 16.05±0.36b | 12.49±0.16c | 0.51±0.02b | 7.68±0.19a | 12.09±0.17a | 254.57±3.48b |
D5 | 6.67±0.02c | 27.80±1.06abc | 104.90±4.32ab | 4.48±0.22a | 19.72±2.25a | 5.67±0.08c | 0.51±0.001b | 7.29±0.54ab | 11.64±0.24ab | 264.92±4.09b |
指标 | pH | SWC | TOC | STN | NH4+-N | NO3--N | STP | RAP | STK | RAK | CAT | EC | NP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWC | -0.294 | 1 | |||||||||||
TOC | -0.443* | 0.486* | 1 | ||||||||||
STN | -0.029 | -0.187 | -0.180 | 1 | |||||||||
NH4+-N | 0.103 | -0.265 | 0.079 | 0.296 | 1 | ||||||||
NO3--N | 0.716** | -0.031 | -0.195 | 0.170 | -0.076 | 1 | |||||||
STP | -0.274 | 0.419* | 0.344 | 0.126 | -0.005 | -0.203 | 1 | ||||||
RAP | -0.217 | 0.247 | 0.065 | -0.325 | -0.397 | -0.138 | -0.227 | 1 | |||||
STK | -0.031 | -0.212 | -0.218 | 0.147 | 0.054 | -0.088 | 0.063 | -0.006 | 1 | ||||
RAK | -0.297 | 0.157 | 0.560** | -0.088 | 0.048 | 0.212 | -0.068 | 0.156 | -0.235 | 1 | |||
CAT | 0.152 | 0.154 | -0.011 | -0.117 | 0.272 | 0.078 | 0.024 | -0.398 | -0.392 | -0.028 | 1 | ||
EC | 0.031 | -0.004 | 0.032 | -0.336 | 0.277 | -0.205 | -0.140 | 0.235 | -0.087 | -0.071 | 0.152 | 1 | |
NP | -0.491* | 0.069 | 0.178 | -0.211 | -0.043 | -0.540** | -0.222 | 0.230 | -0.154 | 0.075 | 0.068 | 0.154 | 1 |
Ure | 0.598** | -0.102 | -0.125 | 0.037 | 0.078 | 0.418* | -0.185 | -0.054 | -0.476* | -0.210 | 0.269 | -0.056 | -0.327 |
Table 3 Pearson correlation analysis of soil physicochemical properties
指标 | pH | SWC | TOC | STN | NH4+-N | NO3--N | STP | RAP | STK | RAK | CAT | EC | NP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SWC | -0.294 | 1 | |||||||||||
TOC | -0.443* | 0.486* | 1 | ||||||||||
STN | -0.029 | -0.187 | -0.180 | 1 | |||||||||
NH4+-N | 0.103 | -0.265 | 0.079 | 0.296 | 1 | ||||||||
NO3--N | 0.716** | -0.031 | -0.195 | 0.170 | -0.076 | 1 | |||||||
STP | -0.274 | 0.419* | 0.344 | 0.126 | -0.005 | -0.203 | 1 | ||||||
RAP | -0.217 | 0.247 | 0.065 | -0.325 | -0.397 | -0.138 | -0.227 | 1 | |||||
STK | -0.031 | -0.212 | -0.218 | 0.147 | 0.054 | -0.088 | 0.063 | -0.006 | 1 | ||||
RAK | -0.297 | 0.157 | 0.560** | -0.088 | 0.048 | 0.212 | -0.068 | 0.156 | -0.235 | 1 | |||
CAT | 0.152 | 0.154 | -0.011 | -0.117 | 0.272 | 0.078 | 0.024 | -0.398 | -0.392 | -0.028 | 1 | ||
EC | 0.031 | -0.004 | 0.032 | -0.336 | 0.277 | -0.205 | -0.140 | 0.235 | -0.087 | -0.071 | 0.152 | 1 | |
NP | -0.491* | 0.069 | 0.178 | -0.211 | -0.043 | -0.540** | -0.222 | 0.230 | -0.154 | 0.075 | 0.068 | 0.154 | 1 |
Ure | 0.598** | -0.102 | -0.125 | 0.037 | 0.078 | 0.418* | -0.185 | -0.054 | -0.476* | -0.210 | 0.269 | -0.056 | -0.327 |
土壤指标 | 密度 | 土壤指标 | 密度 |
---|---|---|---|
pH | -0.766** | RAP | 0.402 |
SWC | -0.026 | STK | 0.040 |
TOC | 0.192 | RAK | 0.095 |
STN | -0.196 | CAT | -0.261 |
NH4+-N | -0.066 | EC | 0.066 |
NO3--N | -0.842** | NP | 0.571** |
STP | -0.005 | Ure | -0.373 |
Table 4 Pearson correlation analysis of density of Ligularia virgaurea and soil indicator
土壤指标 | 密度 | 土壤指标 | 密度 |
---|---|---|---|
pH | -0.766** | RAP | 0.402 |
SWC | -0.026 | STK | 0.040 |
TOC | 0.192 | RAK | 0.095 |
STN | -0.196 | CAT | -0.261 |
NH4+-N | -0.066 | EC | 0.066 |
NO3--N | -0.842** | NP | 0.571** |
STP | -0.005 | Ure | -0.373 |
[1] |
BURNS R G, DEFOREST J L, MARXSEN J, et al., 2013. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology & Biochemistry, 58: 216-234.
DOI URL |
[2] |
CUI Y X, FANG L C, GUO X B, et al., 2019. Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes[J]. The Science of the Total Environment, 648: 388-397.
DOI PMID |
[3] |
EHRENFELD J G, 2003. Effects of exotic plant invasions on soil nutrient cycling processes[J]. Ecosystems, 6(6): 503-523.
DOI URL |
[4] |
FALK M, MÜNGER A, ZBINDEN RS, et al., 2018. Effects of concentrate supplementation in early lactation on nutrient efficiency, ruminal fermentation and reticular pH of zero-grazing dairy cows with differing milk production potentials[J]. Journal of Animal Physiology and Animal Nutrition, 102(6): 1497-1508.
DOI PMID |
[5] |
JANSSENS F, PEETERS A, TALLOWIN J R B, et al., 1998. Relationship between soil chemical factors and grassland diversity[J]. Plant and Soil, 202(1): 69-78.
DOI URL |
[6] |
JIAN S Y, LI J W, CHEN J, et al., 2016. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis[J]. Soil Biology & Biochemistry, 101: 32-43.
DOI URL |
[7] | JIANG Y, LI Y, ZENG Q, et al., 2017. The effect of soil pH on plant growth, leaf chlorophyll fluorescence and mineral element content of two blueberries[J]. Acta Horticulturae, 1180: 269-276. |
[8] |
KIZILKAYA R, ASKIN T, BAYRAKLI B, et al., 2004. Microbiological characteristics of soils contaminated with heavy metals[J]. European Journal of Soil Biology, 40(2): 95-102.
DOI URL |
[9] |
LI Y Y, DONG S K, LIU S, et al., 2014. The interaction between poisonous plants and soil quality in response to grassland degradation in the alpine region of the Qinghai-Tibetan Plateau[J]. Plant Ecology, 215(8): 809-819.
DOI URL |
[10] |
LÓPEZ-AIZPÚN M, ARANGO-MORA C, SANTAMARÍA C, et al., 2018. Atmospheric ammonia concentration modulates soil enzyme and microbial activity in an oak forest affecting soil microbial biomass[J]. Soil Biology & Biochemistry, 116: 378-387.
DOI URL |
[11] |
MALCOLM R E, 1983. Assessment of phosphatase activity in soils[J]. Soil Biology & Biochemistry, 15(4): 403-408.
DOI URL |
[12] |
SHAW L J, MORRIS P, HOOKER J E, 2010. Perception and modification of plant flavonoid signals by rhizosphere microorganisms[J]. Environmental Microbiology, 8(11): 1867-1880.
DOI URL |
[13] |
SHI X M, LI X G, WU R M, et al., 2011. Changes in soil biochemical properties associated with Ligularia virgaurea spreading in grazed alpine meadows[J]. Plant and Soil, 347(1-2): 65-78.
DOI URL |
[14] |
SLESSAREV E W, LIN Y, BINGHAM N L, et al., 2016. Water balance creates a threshold in soil pH at the global scale[J]. Nature, 540: 567-569.
DOI |
[15] |
SUN G, LUO P, WU N, et al., 2009. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China[J]. Soil Biology and Biochemistry, 41(1): 86-91.
DOI URL |
[16] |
ZORNOZA R, GUERRERO C, MATAIX-SOLERA J, et al., 2006. Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions[J]. Soil Biology & Biochemistry, 38(8): 2125-2134.
DOI URL |
[17] | 白津宁, 2020. 樟子松固沙林地土壤pH值变化及其影响因子[D]. 阜新: 辽宁工程技术大学:18-44. |
BAI J N, 2020. Change of soil pH value and its affecting factors in Pinus sylvestris var. mongolica plantation on sandy land[D]. Fux in: Liaoning Technical University: 18-44. | |
[18] |
鲍根生, 王玉琴, 宋梅玲, 等, 2019. 狼毒斑块对狼毒型退化草地植被和土壤理化性质影响的研究[J]. 草业学报, 28(3): 51-61.
DOI |
BAO G S, WANG Y Q, SONG M L, et al., 2019. Effects of Stellera chamaejasme patches on the surrounding grassland community and on soil physical-chemical properties in degraded grasslands susceptible to S. chamaejasme invasion[J]. Acta Prataculturae Sinica, 28(3): 51-61. | |
[19] | 鲍士旦, 2005. 土壤农化分析[M]. 北京: 中国农业出版社:25-106. |
BAO S D, 2005. Soil Agro-Chemistrical Analysis[M]. Beijing: China Agriculture Press:25-106. | |
[20] | 崔雪, 潘瑶, 王亚楠, 等, 2020. 退化草地瑞香狼毒对小尺度群落组成及土壤理化性质的影响[J]. 生态学杂志, 39(8): 2581-2592. |
CUI X, PAN Y, WANG Y N, et al., 2020. Effects of Stellera chamaejasme on small-scale community composition and soil physical and chemical properties in degraded grassland[J]. Chinese Journal of Ecology, 39(8): 2581-2592. | |
[21] | 单贵莲, 尹海燕, 刘洋, 等, 2021. 大狼毒种群扩散增殖对滇西北亚高山草甸土壤养分及微生物特性的影响[J]. 云南农业大学学报 (自然科学), 36(3): 494-499. |
SHAN G L, YIN H Y, LIU Y, et al., 2021. Effect of Euphorbia jolkinii boiss proliferation on soil nutrients and microbial characteristics of subalpine meadow in northwest yunnan[J]. Journal of Yunnan Agricultural University (Natural Science), 36(3): 494-499. | |
[22] |
邓丹丹, 刘棋, 蒋智林, 等, 2015. 紫茎泽兰与不同植物群落土壤养分及酶活性差异[J]. 生态环境学报, 24(9): 1466-1471.
DOI |
DENG D D, LIU Q, JIANG Z L, et al., 2015. Differences in soil enzymatic activities and soil nutrients of Ageratina adenophora and different plant communities[J]. Ecology and Environmental Sciences, 24(9): 1466-1471. | |
[23] | 樊博, 史亮涛, 潘志贤, 等, 2018. 干热河谷土壤酶活性对碳氮添加的响应[J]. 生态学报, 38(23): 8604-8611. |
FAN B, SHI L T, PAN Z X, et al., 2018. Response of soil enzyme activities to carbon and nitrogen addition in an arid, hot valley[J]. Acta Ecologica Sinica, 38(23): 8604-8611. | |
[24] | 冯瑞章, 周万海, 龙瑞军, 等, 2007. 江河源区不同建植期人工草地土壤养分及微生物量磷和磷酸酶活性研究[J]. 草业学报, 16(6): 1-6. |
FENG R Z, ZHOU W H, LONG R J, et al., 2007. Study on the changes of soil nutrients, microbial biomass P and neutral phosphatase activity of artificial grassland sown in different years in the headwaters of the Yangtze and Yellow Rivers[J]. Acta Prataculturae Sinica, 16(6): 1-6. | |
[25] |
高海宁, 张勇, 秦嘉海, 等, 2014. 祁连山黑河上游不同退化草地有机碳和酶活性分布特征[J]. 草地学报, 22(2): 283-290.
DOI |
GAO H N, ZHANG Y, QIN J H, et al., 2014. Organic carbon distribution and enzyme activities of different degraded meadows soil in upstream of Heihe of Qilian mountains[J]. Acta Agrestia Sinica, 22(2): 283-290. | |
[26] | 郭雅婧, 2015. 氮素添加对青藏高原高寒草甸植被和土壤氮素供应能力的影响[D]. 兰州: 兰州大学:13-21. |
GUO Y J, 2015. Effects of nitrogen adding on plant community and soil nitrogen supply ability of alpine meadow in Qinghai-Tibet Plateau[D]. Lanzhou: Lan Zhou University:13-21. | |
[27] | 金媛媛, SAMAN B, 田沛, 等, 2019. 禾草-内生真菌共生对土壤理化性质及其微生物影响的研究进展[J]. 草业科学, 36(5): 1292-1307. |
JIN Y Y, SAMAN B, TIAN P, et al., 2019. Research developments on the effects of grass-endophyte fungi symbiosis on soil physical and chemical properties and microbes[J]. Pratacultural Science, 36(5): 1292-1307. | |
[28] | 李会娜, 刘万学, 戴莲, 等, 2009. 紫茎泽兰入侵对土壤微生物、酶活性及肥力的影响[J]. 中国农业科学, 42(11): 3964-3971. |
LI H N, LIU W X, DAI L, et al., 2009. Invasive Impacts of Ageratina adenophora (Asteraceae) on the changes of microbial community structure, enzyme activity and fertility in soil ecosystem[J]. Scientia Agricultura Sinica, 42(11): 3964-3971. | |
[29] | 李绍良, 陈有君, 关世英, 等, 2002. 土壤退化与草地退化关系的研究[J]. 干旱区资源与环境, 16(1): 92-95. |
LI S L, CHEN Y J, GUAN S Y, et al., 2002. Relationships between soil degradation and rangeland degradation[J]. Journal of Arid Land Resources and Environment, 16(1): 92-95. | |
[30] | 梁德飞, 蒋宏宇, 李宏林, 2022. 黄帚橐吾对高寒草甸凋落物分解及氮释放的影响[J]. 生态学杂志, 41(5): 895-902. |
LIANG D F, JIANG H Y, LI H L, 2022. Effects of Ligularia virgaurea on litter decomposition and nitrogen release in alpine meadow[J]. Chinese Journal of Ecology, 41(5): 895-902. | |
[31] | 林先贵, 2010. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社:250-255. |
LIN X G, 2010. Principles and methods of soil microbiology research[M]. Beijing: Higher Education Press:250-255. | |
[32] |
刘建康, 张克斌, 冯湘, 等, 2021. 封育方式对荒漠草原群落特征及土壤理化性质的影响[J]. 生态环境学报, 30(3): 445-452.
DOI |
LIU J K, ZHANG K B, FENG X, et al., 2021. Effects of enclosure regimes on community characteristics and soil physicochemical properties in desert grasslands[J]. Ecology and Environmental Sciences, 30(3): 445-452. | |
[33] |
刘小文, 周益林, 齐成媚, 等, 2012. 入侵植物薇甘菊对土壤养分和酶活性的影响[J]. 生态环境学报, 21(12): 1960-1965.
DOI |
LIU X W, ZHOU Y L, QI C M, et al., 2012. Effects of Mikania micrantha invasion on soil nutrient contents and enzyme activities[J]. Ecology and Environmental Sciences, 21(12): 1960-1965. | |
[34] | 马建国, 侯扶江, SAMAN B, 2019. 青藏高原高寒草甸有毒植物对土壤理化性质和土壤微生物丰度的影响[J]. 草业科学, 36(12): 3033-3040. |
MA J G, HOU F J, BOWATTE S, 2019. Effects of toxic plants on soil physicochemical properties and soil microbial abundance in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Pratacultural Science, 36(12): 3033-3040. | |
[35] | 马寿福, 邓君, 刁治民, 等, 2007. 青海省狼毒研究现状、综合利用及防治[J]. 青海草业, 16(1): 17-21. |
MA S F, DENG J, DIAO Z M, et al., 2007. Present research situation, comprehensive utilization and control countermeasures of Stellera chamaejasmel in Qinghai[J]. Qinghai Prataculture, 16(1): 17-21. | |
[36] |
马源, 李林芝, 张德罡, 等, 2019. 退化高寒草甸优势植物根际与非根际土壤养分及微生物量的分布特征[J]. 草地学报, 27(4): 797-804.
DOI |
MA Y, LI L Z, ZHANG D G, et al., 2019. Distribution characteristics of nutrients and microbial biomass in rhizosphere and non-rhizosphere soils of dominant plants in degraded Alpine meadow[J]. Acta Agrestia Sinica, 27(4): 797-804.
DOI |
|
[37] |
石国玺, 王文颖, 蒋胜竞, 等, 2018. 黄帚橐吾种群扩张对土壤理化特性与微生物功能多样性的影响[J]. 植物生态学报, 42(1): 126-132.
DOI |
SHI G X, WANG W Y, JIANG S J, et al., 2018. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity[J]. Chinese Journal of Plant Ecology, 42(1): 126-132.
DOI URL |
|
[38] | 孙天舒, 2013. 草地瑞香狼毒种群扩散对土壤养分有效性的影响[D]. 沈阳: 东北大学: 4-28. |
SUN T S, 2013. The effects of dispersion of Stellera chamaejasme L.population on soil nutrient availability of grassland[D]. Shenyang: Northeastern University:4-28. | |
[39] | 王发园, 林先贵, 尹睿, 2006. 不同施铜水平下接种AM真菌对海州香薷根际pH的影响[J]. 植物营养与肥料学报, 12(6): 922-925. |
WANG F Y, LIN X G, YIN R, 2006. Effect of arbuscular mycorrhizal inoculation on rhizosphere pH of Elsholtzia splendens under different Cu levels[J]. Plant Nutrition and Fertilizer Science, 12(6): 922-925. | |
[40] |
王丽娜, 于永强, 芦东旭, 等, 2022. 土壤pH调控固氮植物和非固氮植物间的氮转移[J]. 植物生态学报, 46(1): 1-17.
DOI |
WANG L N, YU Y Q, LIU D X, et al., 2022. Soil pH modulates nitrogen transfer from nitrogen-fixing plants to non-nitrogen-fixing plants[J]. Chinese Journal of Plant Ecology, 46(1): 1-17.
DOI URL |
|
[41] |
王盼盼, 郭海峰, 许江环, 等, 2021. 湛江沿海盐渍田土壤-稻米系统重金属含量与土壤酶活性的特征及其相关分析[J]. 生态环境学报, 30(4): 857-865.
DOI |
WANG P P, GUO H F, XU J H, et al., 2021. Characteristics and correlation analysis of heavy metal content and soil enzyme activity in soil-rice system of Zhanjiang coastal salinized farmland[J]. Ecology and Environmental Sciences, 30(4): 857-865. | |
[42] | 王文颖, 马永贵, 徐进, 等, 2012. 高寒矮嵩草(Kobresia humilis)草甸植物吸收土壤氮素的多元化途径研究[J]. 中国科学: 地球科学, 42(8): 1264-1272. |
WANG W Y, MA Y G, XU J, et al., 2012. The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau[J]. Scientia Sinica (Terrae), 42(8): 1264-1272. | |
[43] | 王长庭, 龙瑞军, 王根绪, 等, 2010. 高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究[J]. 草业学报, 19(6): 25-34. |
WANG C T, LONG R J, WANG G X, et al., 2010. Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows[J]. Acta Prataculturae Sinica, 19(6): 25-34. | |
[44] | 杨剑虹, 王成林, 代亨林, 2008. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社:20-72. |
YANG J H, WANG C L, DAI H L, 2008. Soil Agrochemical Analysis and Environmental Monitoring[M]. Beijing: China Land Press:20-72. | |
[45] |
杨军, 刘秋蓉, 王向涛, 2020. 青藏高原高山嵩草高寒草甸不同退化阶段植物群落与土壤养分[J]. 应用生态学报, 31(12): 4067-4072.
DOI |
YANG J, LIU Q R, WANG X T, 2020. Plant community and soil nutrient of alpine meadow in different degradation stages on the Tibetan Plateau, China[J]. Chinese Journal of Applied Ecology, 31(12): 4067-4072.
DOI |
|
[46] | 游惠明, 2022. 氮添加对秋茄植物-土壤-微生物碳氮化学计量学及其稳态特征的影响[J]. 生态学杂志, 41(10): 1909-1915. |
YOU H M, 2022. Effects of N addition on carbon and nitrogen stoichiometry and homeostasis characteristics of Kandelia obovata plants-soil-microbial system[J]. Chinese Journal of Ecology, 41(10): 1909-1915. | |
[47] |
张定海, 李新荣, 张鹏, 2017. 生态水文阈值在中国沙区人工植被生态系统管理中的意义[J]. 中国沙漠, 37(4): 678-688.
DOI |
ZHANG D H, LI X R, ZHANG P, 2017. Significance of eco-hydrological threshold in artificial vegetation ecosystem management in China desert area[J]. Journal of Desert Research, 37(4): 678-688.
DOI |
|
[48] | 张美曼, 范少辉, 官凤英, 等, 2020. 竹阔混交林土壤微生物生物量及酶活性特征研究[J]. 土壤, 52(1): 97-105. |
ZHANG M M, FAN S H, GUAN F Y, et al., 2020. Study on soil microbial biomass and enzyme activities in mixed forest of bamboo and broad-leaved trees[J]. Soils, 52(1): 97-105. | |
[49] | 周华坤, 赵新全, 周立, 等, 2005. 青藏高原高寒草甸的植被退化与土壤退化特征研究[J]. 草业学报, 14(3): 31-40. |
ZHOU H K, ZHAO X Q, ZHOU L, et al., 2005. A study on correlations between vegetation degradation and soil degradation in the ‘Alpine Meadow’ of the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 14(3): 31-40. |
[1] | YANG Chunliang, LIU Minxia, WANG Qianyue, MIAO Lele, XIAO Yindi, WANG Min. Spatial Pattern and Correlation of Populations of Anemone rivularis and Kobresia myosuroides under Single-household Management and Multi-household Management Grazing Patterns [J]. Ecology and Environment, 2023, 32(4): 651-659. |
[2] | ZHOU Xuanbo, WANG Xiaoli, MA Yushou, WANG Yanlong, LUO Shaohui, XIE Lele. Niche of Main Plant Populations in Alpine Meadow Under the Rest-grazing in the Green-Up Period [J]. Ecology and Environment, 2022, 31(8): 1547-1555. |
[3] | WANG Lei, WEN Yuanguang, ZHOU Xiaoguo, ZHU Hongguang, SUN Dongjing. Effects of Mixing Eucalyptus urophylla×E. grandis with Castanopsis hystrix on Understory Vegetation and Soil Properties [J]. Ecology and Environment, 2022, 31(7): 1340-1349. |
[4] | WANG Yingcheng, YAO Shiting, JIN Xin, YU Wenzhen, LU Guangxin, WANG Junbang. Comparative Study on Soil Bacterial Diversity of Degraded Alpine Meadow in the Sanjiangyuan Region [J]. Ecology and Environment, 2022, 31(4): 695-703. |
[5] | WANG Rui, SONG Xiangyun, LIU Xinwei. Seasonal Characteristics of Soil Enzymes in Different Vegetations in the Yellow River Delta [J]. Ecology and Environment, 2022, 31(1): 62-69. |
[6] | YAO Shiting, LU Guangxin, DENG Ye, DANG Ning, WANG Yingcheng, ZHANG Haijuan, YAN Huilin. Effects of Simulated Warming on Soil Fungal Community Composition and Diversity [J]. Ecology and Environment, 2021, 30(7): 1404-1411. |
[7] | LIN Li, DAI Lei, LIN Zebei, WU Jitong, YAN Wei, WANG Zhijie. Plant Diversity and Its Relationship with Soil Physicochemical Properties of Urban Forest Communities in Central Guizhou [J]. Ecology and Environment, 2021, 30(11): 2130-2141. |
[8] | XU Wenyin, ZHANG Yupeng, DUAN Chengwei, CHAI Yu, SONG Xian, LI Xilai. Spatial Variability of Soil Nutrients in Degraded Alpine Meadows in Different Regions of the Yellow River [J]. Ecology and Environment, 2021, 30(10): 1968-1975. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn