Ecology and Environment ›› 2022, Vol. 31 ›› Issue (7): 1340-1349.DOI: 10.16258/j.cnki.1674-5906.2022.07.006
• Research Articles • Previous Articles Next Articles
WANG Lei1(), WEN Yuanguang1,2,3, ZHOU Xiaoguo2,*(
), ZHU Hongguang1,3, SUN Dongjing2
Received:
2021-09-06
Online:
2022-07-18
Published:
2022-08-31
Contact:
ZHOU Xiaoguo
王磊1(), 温远光1,2,3, 周晓果2,*(
), 朱宏光1,3, 孙冬婧2
通讯作者:
周晓果
作者简介:
王磊(1985年生),男,工程师,博士研究生,主要研究方向为森林生态。E-mail: 395457176@qq.com
基金资助:
CLC Number:
WANG Lei, WEN Yuanguang, ZHOU Xiaoguo, ZHU Hongguang, SUN Dongjing. Effects of Mixing Eucalyptus urophylla×E. grandis with Castanopsis hystrix on Understory Vegetation and Soil Properties[J]. Ecology and Environment, 2022, 31(7): 1340-1349.
王磊, 温远光, 周晓果, 朱宏光, 孙冬婧. 尾巨桉与红锥混交对林下植被和土壤性质的影响[J]. 生态环境学报, 2022, 31(7): 1340-1349.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.07.006
林分类型 Stand type | 海拔 Altitude/ m | 坡度Slope/ (°) | 郁闭度 Canopy density | 胸径 DBH/cm | 树高 Height/m | 胸高断面积Basal area/ (m2∙hm-2) | 乔木生物量 Tree biomass/ (t∙hm-2) |
---|---|---|---|---|---|---|---|
尾巨桉纯林 Pure Eucalyptus urophylla×E. grandis plantations | 241 | 14 | 0.49±0.01c | 13.61±0.20a | 19.38±0.20a | 18.35±0.59b | 130.47±5.65b |
红锥纯林 Pure Castanopsis hystrix plantations | 281 | 16 | 0.75±0.02a | 7.34±0.16c | 9.52±0.14c | 8.87±0.90c | 35.79±4.20c |
尾巨桉-红锥混交林 Mixed E. urophylla×E. grandis and C. hystrix plantations | 245 | 14 | 0.68±0.02b | 13.01±0.18b | 18.39±0.29b | 24.57±0.95a | 175.80±8.68a |
尾巨桉 E. urophylla×E. grandis | 14.28±0.30 | 20.79±0.77 | 20.99±0.60* | 159.45±6.68* | |||
红锥 C. hystrix | 9.49±1.12* | 11.68±2.26* | 3.58±0.45* | 16.35±2.91* |
Table 1 Characteristics of the experiment plots in different stands
林分类型 Stand type | 海拔 Altitude/ m | 坡度Slope/ (°) | 郁闭度 Canopy density | 胸径 DBH/cm | 树高 Height/m | 胸高断面积Basal area/ (m2∙hm-2) | 乔木生物量 Tree biomass/ (t∙hm-2) |
---|---|---|---|---|---|---|---|
尾巨桉纯林 Pure Eucalyptus urophylla×E. grandis plantations | 241 | 14 | 0.49±0.01c | 13.61±0.20a | 19.38±0.20a | 18.35±0.59b | 130.47±5.65b |
红锥纯林 Pure Castanopsis hystrix plantations | 281 | 16 | 0.75±0.02a | 7.34±0.16c | 9.52±0.14c | 8.87±0.90c | 35.79±4.20c |
尾巨桉-红锥混交林 Mixed E. urophylla×E. grandis and C. hystrix plantations | 245 | 14 | 0.68±0.02b | 13.01±0.18b | 18.39±0.29b | 24.57±0.95a | 175.80±8.68a |
尾巨桉 E. urophylla×E. grandis | 14.28±0.30 | 20.79±0.77 | 20.99±0.60* | 159.45±6.68* | |||
红锥 C. hystrix | 9.49±1.12* | 11.68±2.26* | 3.58±0.45* | 16.35±2.91* |
Figure 1 Plant diversity indices in the understory of different stands PEU, Pure Eucalyptus urophylla×E. grandis plantations; MEC, Mixed E. urophylla×E. grandis and Castanopsis hystrix plantations; PCH, Pure C. hystrix plantations. Different lowercase letters indicate significant difference between different stands at the same layer at 0.05 level,n=5
Figure 2 Biomass of understory vegetation in different stands SAB, Shrub aboveground biomass; SBB, Shrub belowground biomass; HAB, Herb aboveground biomass; HBB, Herb belowground biomass; UB, Understory biomass. Different lowercase letters indicate significant differences among different stands of the same component at 0.05 level, n=5
林分类型 Stand type | 土层深度 Soil depth/ cm | pH | 土壤含水率 Soil moisture content/% | 土壤容重 Soil bulk density/ (g∙cm-3) | 有机碳 w(organic carbon)/ (g∙kg-1) | 全氮 w(total nitrogen)/ (g∙kg-1) | 全钾 w(total potassium)/ (g∙kg-1) | 全磷 w(total phosphorus)/ (g∙kg-1) | 速效钾 w(available potassium)/ (mg∙kg-1) | 有效磷 w(available phosphorus)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
尾巨桉纯林Pure Eucalyptus urophylla×E. grandis plantations | 0‒20 | 4.41±0.07Bb | 24.42±2.32Ab | 1.33±0.05Ca | 19.97±1.99Ac | 2.00±0.15Aa | 10.12±3.33Ba | 0.30±0.06Aa | 44.06±2.03Aa | 4.52±0.18Ac |
20‒40 | 4.62±0.28ABb | 21.57±6.03ABa | 1.59±0.22Ba | 7.51±1.92Bb | 1.53±0.27Ba | 13.55±4.56ABa | 0.25±0.05Aa | 25.92±2.35Ba | 1.43±0.30Bc | |
40‒60 | 4.80±0.16Ab | 20.82±6.67ABa | 1.58±0.11Ba | 6.57±1.29BCb | 1.27±0.23BCa | 16.90±4.15Aa | 0.27±0.07Aa | 25.92±3.11Ba | 1.89±1.78Bb | |
60‒80 | 4.69±0.38ABb | 18.12±3.87ABb | 1.69±0.09ABa | 2.95±1.75Db | 1.06±0.30Cab | 15.75±6.41ABa | 0.23±0.09Aa | 23.06±4.12Ba | 1.17±0.51Bc | |
80‒100 | 4.91±0.18Ab | 15.56±3.72Bb | 1.78±0.12Aa | 4.69±1.25CDb | 1.17±0.08Ca | 18.45±2.88Aa | 0.25±0.08Aa | 24.49±1.25Ba | 0.85±0.27Bc | |
尾巨桉-红锥混交林Mixed E. urophylla× E. grandis and Castanopsis hystrix plantations | 0‒20 | 5.00±0.13Ca | 27.64±0.69Aa | 1.25±0.02Cb | 27.00±3.89Ab | 2.08±0.36Aa | 8.77±5.20Ba | 0.29±0.09Aa | 44.88±14.56Aa | 7.87±0.60Aa |
20‒40 | 5.12±0.14BCa | 25.12±2.66ABa | 1.44±0.09Bab | 15.81±2.52Ba | 1.40±0.35Ba | 10.13±4.6ABa | 0.25±0.08Aa | 27.96±8.5Ba | 4.57±0.93Ba | |
40‒60 | 5.27±0.14ABa | 25.18±1.71ABa | 1.50±0.03ABab | 13.85±3.86BCa | 1.28±0.32Ba | 11.65±5.46ABa | 0.27±0.08Aa | 26.26±6.06Ba | 3.88±0.15Ba | |
60‒80 | 5.39±0.22Aa | 24.99±3.01ABa | 1.52±0.06ABb | 11.66±3.47BCa | 1.22±0.18Ba | 13.13±4.6ABa | 0.29±0.08Aa | 25.10±4.83Ba | 4.55±1.95Ba | |
80‒100 | 5.41±0.18Aa | 24.26±3.36Ba | 1.56±0.08Ab | 10.99±2.14Cab | 1.24±0.25Ba | 15.77±4.39Aa | 0.24±0.04Aa | 26.19±4.63Ba | 4.08±1.06Ba | |
红锥纯林 Pure C. hystrix plantations | 0‒20 | 4.55±0.10ABb | 25.82±0.93Aab | 1.22±0.05Cb | 33.95±3.43Aa | 2.29±0.09Aa | 2.16±0.96Ab | 0.31±0.06Aa | 50.61±21.57Aa | 5.31±0.70Ab |
20‒40 | 4.34±0.05Cc | 23.12±2.54Aa | 1.33±0.06BCb | 18.90±3.05Ba | 1.21±0.32Ba | 2.73±1.22Ab | 0.36±0.24Aa | 22.86±15.83Ba | 3.20±0.59Bb | |
40‒60 | 4.47±0.10Bc | 23.33±2.31Aa | 1.40±0.07ABb | 12.06±4.39Ca | 0.83±0.14Cb | 3.06±1.22Ab | 0.25±0.01Aa | 15.71±12.26Ba | 2.97±0.56Bab | |
60‒80 | 4.57±0.11ABb | 23.61±3.12Aa | 1.39±0.15ABb | 8.98±2.71Ca | 0.83±0.13Cb | 3.19±1.23Ab | 0.24±0.03Aa | 13.06±10.54Bb | 2.86±0.49Bb | |
80‒100 | 4.60±0.09Ac | 24.30±3.00Aa | 1.47±0.07Ab | 11.93±7.86Ca | 0.79±0.15Cb | 3.30±1.30Ab | 0.25±0.05Aa | 10.61±6.79Bb | 2.75±0.72Bb |
Table 2 Soil physicochemical properties in different stands
林分类型 Stand type | 土层深度 Soil depth/ cm | pH | 土壤含水率 Soil moisture content/% | 土壤容重 Soil bulk density/ (g∙cm-3) | 有机碳 w(organic carbon)/ (g∙kg-1) | 全氮 w(total nitrogen)/ (g∙kg-1) | 全钾 w(total potassium)/ (g∙kg-1) | 全磷 w(total phosphorus)/ (g∙kg-1) | 速效钾 w(available potassium)/ (mg∙kg-1) | 有效磷 w(available phosphorus)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
尾巨桉纯林Pure Eucalyptus urophylla×E. grandis plantations | 0‒20 | 4.41±0.07Bb | 24.42±2.32Ab | 1.33±0.05Ca | 19.97±1.99Ac | 2.00±0.15Aa | 10.12±3.33Ba | 0.30±0.06Aa | 44.06±2.03Aa | 4.52±0.18Ac |
20‒40 | 4.62±0.28ABb | 21.57±6.03ABa | 1.59±0.22Ba | 7.51±1.92Bb | 1.53±0.27Ba | 13.55±4.56ABa | 0.25±0.05Aa | 25.92±2.35Ba | 1.43±0.30Bc | |
40‒60 | 4.80±0.16Ab | 20.82±6.67ABa | 1.58±0.11Ba | 6.57±1.29BCb | 1.27±0.23BCa | 16.90±4.15Aa | 0.27±0.07Aa | 25.92±3.11Ba | 1.89±1.78Bb | |
60‒80 | 4.69±0.38ABb | 18.12±3.87ABb | 1.69±0.09ABa | 2.95±1.75Db | 1.06±0.30Cab | 15.75±6.41ABa | 0.23±0.09Aa | 23.06±4.12Ba | 1.17±0.51Bc | |
80‒100 | 4.91±0.18Ab | 15.56±3.72Bb | 1.78±0.12Aa | 4.69±1.25CDb | 1.17±0.08Ca | 18.45±2.88Aa | 0.25±0.08Aa | 24.49±1.25Ba | 0.85±0.27Bc | |
尾巨桉-红锥混交林Mixed E. urophylla× E. grandis and Castanopsis hystrix plantations | 0‒20 | 5.00±0.13Ca | 27.64±0.69Aa | 1.25±0.02Cb | 27.00±3.89Ab | 2.08±0.36Aa | 8.77±5.20Ba | 0.29±0.09Aa | 44.88±14.56Aa | 7.87±0.60Aa |
20‒40 | 5.12±0.14BCa | 25.12±2.66ABa | 1.44±0.09Bab | 15.81±2.52Ba | 1.40±0.35Ba | 10.13±4.6ABa | 0.25±0.08Aa | 27.96±8.5Ba | 4.57±0.93Ba | |
40‒60 | 5.27±0.14ABa | 25.18±1.71ABa | 1.50±0.03ABab | 13.85±3.86BCa | 1.28±0.32Ba | 11.65±5.46ABa | 0.27±0.08Aa | 26.26±6.06Ba | 3.88±0.15Ba | |
60‒80 | 5.39±0.22Aa | 24.99±3.01ABa | 1.52±0.06ABb | 11.66±3.47BCa | 1.22±0.18Ba | 13.13±4.6ABa | 0.29±0.08Aa | 25.10±4.83Ba | 4.55±1.95Ba | |
80‒100 | 5.41±0.18Aa | 24.26±3.36Ba | 1.56±0.08Ab | 10.99±2.14Cab | 1.24±0.25Ba | 15.77±4.39Aa | 0.24±0.04Aa | 26.19±4.63Ba | 4.08±1.06Ba | |
红锥纯林 Pure C. hystrix plantations | 0‒20 | 4.55±0.10ABb | 25.82±0.93Aab | 1.22±0.05Cb | 33.95±3.43Aa | 2.29±0.09Aa | 2.16±0.96Ab | 0.31±0.06Aa | 50.61±21.57Aa | 5.31±0.70Ab |
20‒40 | 4.34±0.05Cc | 23.12±2.54Aa | 1.33±0.06BCb | 18.90±3.05Ba | 1.21±0.32Ba | 2.73±1.22Ab | 0.36±0.24Aa | 22.86±15.83Ba | 3.20±0.59Bb | |
40‒60 | 4.47±0.10Bc | 23.33±2.31Aa | 1.40±0.07ABb | 12.06±4.39Ca | 0.83±0.14Cb | 3.06±1.22Ab | 0.25±0.01Aa | 15.71±12.26Ba | 2.97±0.56Bab | |
60‒80 | 4.57±0.11ABb | 23.61±3.12Aa | 1.39±0.15ABb | 8.98±2.71Ca | 0.83±0.13Cb | 3.19±1.23Ab | 0.24±0.03Aa | 13.06±10.54Bb | 2.86±0.49Bb | |
80‒100 | 4.60±0.09Ac | 24.30±3.00Aa | 1.47±0.07Ab | 11.93±7.86Ca | 0.79±0.15Cb | 3.30±1.30Ab | 0.25±0.05Aa | 10.61±6.79Bb | 2.75±0.72Bb |
Figure 3 Redundancy analysis of understory species diversity, soil factors and biomass (a) and variance partitioning of the influencing factors (b, c) HAB, Herb aboveground biomass; TAB, Tree aboveground biomass; SBB, Shrub belowground biomass; TN, Soil total nitrogen; AK, Available potassium; pH, Soil pH; C:N, Soil C/N ratio; N:P, Soil N/P ratio; R_c, Species richness index of understory plant community; R_s, Species richness index of shrub layer; R_h, Species richness index of herb layer; H_c, Shannon-Wiener index of understory plant community; H_s, Shannon-Wiener index of shrub layer; H_h, Shannon-Wiener index of herb layer; D_c, Simpson index of understory plant community; D_s, Simpson index of shrub layer; D_h, Simpson index of herb layer; J_c, Pielou’s evenness index of understory plant community; J_s, Pielou’s evenness index of shrub layer; J_h, Pielou’s evenness index of herb layer
变量 Variables | RDA1 | RDA2 | r2 | P |
---|---|---|---|---|
灌木层地下部分生物量 Shrub belowground biomass | -0.756 | 0.655 | 0.715 | 0.001 |
草本层地上部分生物量 Herb aboveground biomass | 0.992 | -0.126 | 0.644 | 0.002 |
乔木层地上部分生物量 Tree aboveground biomass | -1.000 | 0.009 | 0.565 | 0.001 |
土壤碳氮比 Soil C:N ratio | 0.779 | -0.627 | 0.640 | 0.003 |
土壤全氮含量 Soil total nitrogen content | -0.988 | 0.153 | 0.534 | 0.014 |
土壤氮磷比 Soil N:P ratio | -0.922 | 0.388 | 0.412 | 0.039 |
土壤pH值 Soil pH | -0.905 | -0.426 | 0.383 | 0.046 |
土壤速效钾含量 Soil available potassium content | -0.948 | 0.319 | 0.337 | 0.088 |
Table 3 Correlation between soil, biomass factors and ordinate axes
变量 Variables | RDA1 | RDA2 | r2 | P |
---|---|---|---|---|
灌木层地下部分生物量 Shrub belowground biomass | -0.756 | 0.655 | 0.715 | 0.001 |
草本层地上部分生物量 Herb aboveground biomass | 0.992 | -0.126 | 0.644 | 0.002 |
乔木层地上部分生物量 Tree aboveground biomass | -1.000 | 0.009 | 0.565 | 0.001 |
土壤碳氮比 Soil C:N ratio | 0.779 | -0.627 | 0.640 | 0.003 |
土壤全氮含量 Soil total nitrogen content | -0.988 | 0.153 | 0.534 | 0.014 |
土壤氮磷比 Soil N:P ratio | -0.922 | 0.388 | 0.412 | 0.039 |
土壤pH值 Soil pH | -0.905 | -0.426 | 0.383 | 0.046 |
土壤速效钾含量 Soil available potassium content | -0.948 | 0.319 | 0.337 | 0.088 |
[1] |
DIXON P, 2003. A package of R functions for community ecology[J]. Journal of Vegetation Science, 14(6): 927-930.
DOI URL |
[2] |
FORRESTER D I, BAUHUS J, COWIE A L, 2005. On the success and failure of mixed-species tree plantations: lessons learned from a model system of Eucalyptus globulus and Acacia mearnsii[J]. Forest Ecology and Management, 209(1-2):147-155.
DOI URL |
[3] |
FORRESTER D I, 2013. Growth responses to thinning, pruning and fertiliser application in Eucalyptus plantations: A review of their production ecology and interactions[J]. Forest Ecology and Management, 310: 336-347.
DOI URL |
[4] |
HUANG X M, LIU S R, WANG H, et al., 2014. Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China[J]. Soil Biology and Biochemistry, 73: 42-48.
DOI URL |
[5] |
CATFORD J A, DAEHLER C C, MURPHY H T, et al., 2012. The intermediate disturbance hypothesis and plant invasions: Implications for species richness and management[J]. Perspectives in Plant Ecology, Evolution and Systematics, 14(3): 231-241.
DOI URL |
[6] |
LAI J S, ZOU Y, ZHANG J L, et al., 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package[J]. Methods in Ecology and Evolution, 13(4): 782-788.
DOI URL |
[7] |
LEVICK, SHAUN, RATCLIFFE, et al., 2015. Tree neighbourhood matters-tree species composition drives diversity-productivity patterns in a near-natural beech forest[J]. Forest Ecology and Management, 335: 225-234.
DOI URL |
[8] |
RIVAIE A A, 2014. The effects of understory vegetation on P availability in Pinus radiate forest stands: A review[J]. Journal of Forestry Research, 25(3): 489-500.
DOI URL |
[9] |
ROTHE A, BINKLEY D, 2001. Nutritional interactions in mixed species forests: a synthesis[J]. Canadian Journal of Forest Research, 31(11): 1855-1870.
DOI URL |
[10] |
SAGAR R, RAGHUBANSHI A S, SINGH J S, 2003. Tree species composition, dispersion and diversity along a disturbance gradient in a dry tropical forest region of India[J]. Forest Ecology and Management, 186(1): 61-71.
DOI URL |
[11] |
TURNBULL, J W, 1999. Eucalypt plantations[J]. New Forests, 17: 37-52.
DOI URL |
[12] |
TRAN V C, THANG N T, HA D T T, et al., 2013. Relationship between aboveground biomass and measures of structure and species diversity in tropical forests of Vietnam[J]. Forest Ecology and Management, 310: 213-218.
DOI URL |
[13] |
WEN Y G, DUO Y, CHEN F, et al., 2010. The changes of understory plant diversity in continuous cropping system of Eucalyptus plantations, South China[J]. Journal of Forest Research, 15(4): 252-258.
DOI URL |
[14] |
WU J P, LIU Z F, WANG X L, et al., 2011. Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China[J]. Functional Ecology, 25(4): 921-931.
DOI URL |
[15] |
ZHOU X G, ZHU H G, WEN Y G, et al., 2020. Intensive management and declines in soil nutrients lead to serious exotic plant invasion in Eucalyptus plantations under successive short-rotation regimes[J]. Land Degradation & Development, 31(3): 297-310.
DOI URL |
[16] | 鲍士旦, 2018. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社:1-120. |
BAO S D, 2018. Soil and agricultural chemistry analysis[M]. 3rd edition. Beijing: China Agriculture Press: 1-120. | |
[17] | 陈科屹, 张会儒, 雷相东, 等, 2017. 基于目标树经营的抚育采伐对云冷杉针阔混交林空间结构的影响[J]. 林业科学研究, 30(5): 718-726. |
CHEN K Y, ZHANG H R, LEI X D, et al., 2017. Effect of thinning on spatial structure of spruce-fir mixed broadleaf-conifer forest base on crop tree management[J]. Forest Research, 30(5): 718-726. | |
[18] | 陈秋海, 周晓果, 朱宏光, 等, 2022. 桉树与红锥混交对土壤养分及林下植物功能群的影响[J]. 广西植物, 42(4): 556-568. |
CHEN Q H, ZHOU X G, ZHU H G, et al., 2022. Effects of a mixture of Eucalyptus and Castanopsis hystrix on soil nutrients and understory plant functional groups[J]. Guihaia, 42(4): 556-568. | |
[19] | 董玉梁, 余胜, 卫芯宇, 等, 2018. 川西平原香樟林和香椿林中小型土壤动物群落结构特征[J]. 四川农业大学学报, 36(3): 344-349. |
DONG Y L, YU S, WEI R Y, et al., 2018. Meso-micro soil fauna community structure in Cinnamomum camphora and Toona sinensis plantations in Western Sichuan plain[J]. Journal of Sichuan Agricultural University, 36(3): 344-349. | |
[20] | 耿玉清, 孙向阳, 亢新刚, 等, 1999. 长白山林区不同森林类型下土壤肥力状况的研究[J]. 北京林业大学学报, 21(6): 97-101. |
GEN Y Q, SUN X Y, KANG X G, et al., 1999. Soil fertility of different forest types in the Changbai Mountains[J]. Journal of Beijing Forestry University, 21(6): 97-101. | |
[21] | 国家林业和草原局, 2019. 中国森林资源报告 (2014-2018)[R]. 北京: 中国林业出版社. |
National Forestry and Grassland Administration, 2019. China forest resources report (2014-2018)[R]. Beijing: China Forestry Press. | |
[22] | 黄宇, 冯宗炜, 汪思龙, 等, 2005. 杉木、火力楠纯林及其混交林生态系统C、N贮量[J]. 生态学报, 25(12): 3146-3154. |
HUANG Y, FENG Z Y, WANG S L, et al., 2005. C and N stocks under three plantation forest ecosystems of Chinese-fir, Michelia macclurei and their mixture[J]. Acta Ecologica Sinica, 25(12): 3146-3154. | |
[23] | 李朝婷, 周晓果, 温远光, 等, 2019. 桉树高代次连栽对林下植物、土壤肥力和酶活性的影响[J]. 广西科学, 26(2): 176-187. |
LI C T, ZHOU X G, WEN Y G, et al., 2019. Effects of high-generation rotations of Eucalyptus on understory, soil fertility and enzyme activities[J]. Guangxi Sciences, 26(2): 176-187. | |
[24] | 李茂金, 闫文德, 李树战, 等, 2012. 改变碳源输入对针阔叶混交林土壤氮矿化的影响[J]. 中南林业科技大学学报, 32(5): 108-112. |
LI M J, YAN W D, LI S Z, et al., 2012. Effects of controlling carbon input on nitrogen mineralization in soils of broadleaved-needle mixed forest plantation[J]. Journal of Central South University of Forestry & Technology, 32(5): 108-112. | |
[25] | 邵文哲, 周晓果, 温远光, 等, 2022. 桉树与红锥混交对土壤水解酶活性及其化学计量特征的影响[J]. 广西植物, 42(4): 543-555. |
SHAO W Z, ZHOU X G, WEN Y G, et al., 2022. Effects of mixing Castanopsis Hystrix and Eucalyptus on soil hydrolytic enzyme activities and ecoenzymatic stoichiometry[J]. Guihaia, 42(4): 543-555. | |
[26] | 舒韦维, 卢立华, 李华, 等, 2021. 林分密度对杉木人工林林下植被和土壤性质的影响[J]. 生态学报, 41(11): 4521-4530. |
SHU W W, LU L H, LI H, et al., 2021. Effects of stand density on understory vegetation and soil properties of Cunninghamia lanceloata plantation[J]. Acta Ecologica Sinica, 41(11): 4521-4530. | |
[27] | 孙冬婧, 温远光, 罗应华, 等, 2015. 近自然化改造对杉木人工林物种多样性的影响[J]. 林业科学研究, 28(2): 202-208. |
SUN D J, WEN Y G, LUO Y H, et al., 2015. Effect of close-to-nature management on species diversity in a Cunninglamia lanceolate plantation[J]. Forest Research, 28(2): 202-208. | |
[28] | 汪殿蓓, 暨淑仪, 陈飞鹏, 2001. 植物群落物种多样性研究综述[J]. 生态学杂志, 20(4): 55-60. |
WANG D B, JI S Y, CHEN F P, et al., 2001. A review on the species diversity of plant community[J]. Chinese Journal of Ecology, 20(4): 55-60. | |
[29] | 王慧敏, 张峰, 庞春花, 等, 2013. 汾河流域中下游植物群落物种多样性与土壤因子的关系[J]. 西北植物学报, 33(10): 2077-2085. |
WANG H M, ZHANG F, PANG C H, et al., 2013. Interrelation between plant species diversity and soil factors in the middle and lower reaches of Fenhe River[J]. Acta Botanica Boreali-Occidentalia Sinica, 33(10): 2077-2085. | |
[30] | 王丽美, 姜永涛, 郭广猛, 2020. 森林生物量的根冠分配特征及其影响因子分析[J]. 南阳师范学院学报, 19(1): 44-50. |
WANG L M, JIANG Y T, GUO G M, 2020. Biomass allocation between root and shoot and its impact factors of forest ecosystems[J]. Journal of Nanyang Normal University, 19(1): 44-50. | |
[31] | 温晶, 张秋良, 李嘉悦, 等, 2019. 间伐强度对兴安落叶松林林下植被多样性及生物量的影响[J]. 中南林业科技大学学报, 39(5): 95-100. |
WEN J, ZHANG Q L, LI J Y, et al., 2019. Effects of thinning intensity on diversity of undergrowth vegetation and biomass in Larix gmelini forest[J]. Journal of Central South University of Forestry & Technology, 39(5): 95-100. | |
[32] | 温远光, 2008. 桉树生态、社会问题与科学发展[M]. 北京: 中国林业出版社: 1-136. |
WEN Y G, 2008. Eucalyptus ecology, social issues and scientific development[M]. Beijing: China Forestry Press: 1-136. | |
[33] | 温远光, 陈放, 刘世荣, 等, 2008. 广西桉树人工林物种多样性与生物量关系[J]. 林业科学, 44(4): 14-19. |
WEN Y G, CHEN F, LIU S R, et al., 2008. Relationship between species diversity and biomass of Eucalyptus plantation in Guangxi[J]. Scientia Silvae Sinicae, 44(4): 14-19. | |
[34] | 温远光, 刘世荣, 陈放, 2005. 连栽对桉树人工林下物种多样性的影响[J]. 应用生态学报, 16(9): 1667-1671. |
WEN Y G, LIU S R, CHEN F, 2005. Effects of continuous cropping on understory species diversity in Eucalypt plantations[J]. Chinese Journal of Applied Ecology, 16(9): 1667-1671. | |
[35] | 温远光, 张祖峰, 周晓果, 等, 2020a. 珍贵乡土树种与桉树混交对生态系统生物量和碳储量的影响[J]. 广西科学, 27(2): 111-119. |
WEN Y G, ZHANG Z F, ZHOU X G, et al., 2020. Effects of mixing precious indigenous tree species and Eucalyptus on ecosystem biomass and carbon stocks[J]. Guangxi Sciences, 27(2):111-119. | |
[36] | 温远光, 周晓果, 喻素芳, 等, 2018. 全球桉树人工林发展面临的困境与对策[J]. 广西科学, 25(2): 107-116. |
WEN Y G, ZHOU X G, YU S F, et al., 2018. The predicament and countermeasures of development of global Eucalyptus plantations[J]. Guangxi Sciences, 25(2):107-116. | |
[37] | 温远光, 周晓果, 朱宏光, 2020b. 桉树生态营林理论、技术与实践[M]. 北京: 科学出版社: 1-254. |
WEN Y G, ZHOU X G, ZHU H G, 2020. Theory, technology and practice of Eucalyptus ecological forestry[M]. Beijing: Science Press: 1-254. | |
[38] | 中国林学会, 2016. 桉树科学发展问题调研报告[R]. 北京: 中国林业出版社. |
Chinese Society of Forestry, 2016. Investigation report on scientific development of Eucalyptus [R]. Beijing: China Forestry Press. | |
[39] | 周晓果, 2016. 林下植物功能群丧失对桉树人工林土壤生态系统多功能性的影响[D]. 南宁: 广西大学. |
ZHOU X G, 2016. Effects of understory plant functional groups loss on soil ecosystem multifunctionality in Eucalyptus plantations[D]. Nanning: Guangxi University. |
[1] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[2] | CHEN Keyi, LIN Tianmiao, WANG Jianjun, HE Youjun, ZHANG Liwen. Effects of Natural Forest Conservation Project on Forest Carbon Pool of Key State-Owned Forest Region of Daxing’anling, Heilongjiang Province in the Past 20 Years [J]. Ecology and Environment, 2023, 32(6): 1016-1025. |
[3] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[4] | SONG Zhibin, ZHOU Jiacheng, TAN Lu, TANG Tao. Altitudinal Patterns of Benthic Algal Communities in Plateau Rivers: A Case Study of Heiqu and Xuequ in Tibet [J]. Ecology and Environment, 2023, 32(2): 274-282. |
[5] | LI Weiwen, HUANG Jinquan, QI Yujie, LIU Xiaolan, LIU Jigen, MAO Zhichao, GAO Xiufang. Meta-analysis of Soil Microbial Biomass Carbon Content and Its Influencing Factors under Soil Erosion [J]. Ecology and Environment, 2023, 32(1): 47-55. |
[6] | HUANG Weijia, LIU Chun, LIU Yue, HUANG Bin, LI Dingqiang, YUAN Zaijian. Soil Ecological Stoichiometry and Its Influencing Factors at Different Elevations in Nanling Mountains [J]. Ecology and Environment, 2023, 32(1): 80-89. |
[7] | CHEN Keyi, WANG Jianjun, HE Youjun, ZHANG Liwen. Estimations of Forest Carbon Storage and Carbon Sequestration Potential of Key State-Owned Forest Region in Daxing’anling, Heilongjiang Province [J]. Ecology and Environment, 2022, 31(9): 1725-1734. |
[8] | LIU Zhendi, SONG Yanyu, WANG Xianwei, TAN Wenwen, ZHANG Hao, GAO Jinli, GAO Siqi, DU Yu. Effects of Simulated Warming on Plant Growth and Carbon and Nitrogen Characteristics in Permafrost Peatland [J]. Ecology and Environment, 2022, 31(9): 1765-1772. |
[9] | CHEN Le, WEI Wei. Spatiotemporal Changes in Land Use and Habitat Quality in A Typical Dryland Watershed of Northwest China [J]. Ecology and Environment, 2022, 31(9): 1909-1918. |
[10] | CAI Guojun, YUAN Guixiang, FU Hui. Status and Trends on Ecological Networks Research: A Review Based on Bibliometric Analysis [J]. Ecology and Environment, 2022, 31(8): 1690-1699. |
[11] | CUI Qiao, LI Zongxing, ZHANG Baijuan, ZHAO Yue, NAN Fusen. A Meta-analysis of the Effects of Freezing and Thawing on Soil Dissolved Carbon and Nitrogen and Microbial Biomass Carbon and Nitrogen Contents [J]. Ecology and Environment, 2022, 31(8): 1700-1712. |
[12] | YU Yanghua, WU Yingu, SONG Yanping, LI Yitong. Stoichiometric Characteristics of Soil Microbial Concentration and Biomass in Zanthoxylum planispinum var. Dintanensis Plantations of Different Ages [J]. Ecology and Environment, 2022, 31(6): 1160-1168. |
[13] | SUN Jianbo, CHANG Wenjun, LI Wenbin, ZHANG Shiqing, LI Chunqiang, PENG Ming. Dynamics of Soil Microbial Biomass and Enzyme Activities in Rhizosphere Soil at Different Growing Stages of Banana [J]. Ecology and Environment, 2022, 31(6): 1169-1174. |
[14] | LIANG Jiawei, YU Weimin, YAO Yuling, HU Qiqi, LU Danmian, WANG Rongping, LIAO Xinrong, HUANG Saihua. Effects of a Bio-organic Fertilizer on Soil Quality and Vegetable Yield [J]. Ecology and Environment, 2022, 31(3): 497-503. |
[15] | WANG Xiaona, XU Danghui, WANG Xiejun, FANG Xiangwen. Changes of Shrub Community Structure with Altitudinal Gradient and Longitude in Qilian Mountains [J]. Ecology and Environment, 2022, 31(2): 231-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn