Ecology and Environment ›› 2021, Vol. 30 ›› Issue (7): 1404-1411.DOI: 10.16258/j.cnki.1674-5906.2021.07.009
• Research Articles • Previous Articles Next Articles
YAO Shiting1(), LU Guangxin1,*(
), DENG Ye2,3, DANG Ning1, WANG Yingcheng1, ZHANG Haijuan1, YAN Huilin1
Received:
2021-02-03
Online:
2021-07-18
Published:
2021-10-09
Contact:
LU Guangxin
姚世庭1(), 芦光新1,*(
), 邓晔2,3, 党宁1, 王英成1, 张海娟1, 颜珲璘1
通讯作者:
芦光新
作者简介:
姚世庭(1995年生)女,博士研究生,主要研究方向为高寒草地微生物多样性及功能利用。E-mail: 2317523428@qq.com
基金资助:
CLC Number:
YAO Shiting, LU Guangxin, DENG Ye, DANG Ning, WANG Yingcheng, ZHANG Haijuan, YAN Huilin. Effects of Simulated Warming on Soil Fungal Community Composition and Diversity[J]. Ecology and Environment, 2021, 30(7): 1404-1411.
姚世庭, 芦光新, 邓晔, 党宁, 王英成, 张海娟, 颜珲璘. 模拟增温对土壤真菌群落组成及多样性的影响[J]. 生态环境学报, 2021, 30(7): 1404-1411.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.07.009
编号 Numbering | 土壤深度 Soil depth | 香农指数 Shannon index | 辛普森指数 Simpson index | Chao值 Chao1 index |
---|---|---|---|---|
Fa | 0‒15 cm | 3.25±0.32a | 7.19±1.89b | 860.98±173.02a |
Fb | 15‒30 cm | 3.38±0.45a | 9.49±4.21b | 799.66±210.38a |
Ma | 0‒15 cm | 3.35±0.56a | 7.62±3.50b | 899.40±209.22a |
Mb | 15‒30 cm | 4.02±0.34a | 22.44±7.16a | 1015.62±366.09a |
Table 1 Alpha diversity index characteristics of fungal communities
编号 Numbering | 土壤深度 Soil depth | 香农指数 Shannon index | 辛普森指数 Simpson index | Chao值 Chao1 index |
---|---|---|---|---|
Fa | 0‒15 cm | 3.25±0.32a | 7.19±1.89b | 860.98±173.02a |
Fb | 15‒30 cm | 3.38±0.45a | 9.49±4.21b | 799.66±210.38a |
Ma | 0‒15 cm | 3.35±0.56a | 7.62±3.50b | 899.40±209.22a |
Mb | 15‒30 cm | 4.02±0.34a | 22.44±7.16a | 1015.62±366.09a |
因子 Factors | Bray-Curtis | Jaccard | |||
---|---|---|---|---|---|
F. Model | Pr (>F) | F. Model | Pr (>F) | ||
Fa vs Fb | 0.8371 | 0.9 | 0.7785 | 0.8 | |
Fa vs Ma | 0.7838 | 0.8 | 0.6862 | 0.5 | |
Fa vs Mb | 0.8095 | 0.3 | 0.7562 | 0.2 | |
Fb vs Ma | 0.8292 | 0.5 | 0.7722 | 1 | |
Fb vs Mb | 0.8548 | 0.8 | 0.8422 | 0.5 | |
Ma vs Mb | 0.8015 | 0.4 | 0.7498 | 0.4 |
Table 2 Dissimilarity test for different samples
因子 Factors | Bray-Curtis | Jaccard | |||
---|---|---|---|---|---|
F. Model | Pr (>F) | F. Model | Pr (>F) | ||
Fa vs Fb | 0.8371 | 0.9 | 0.7785 | 0.8 | |
Fa vs Ma | 0.7838 | 0.8 | 0.6862 | 0.5 | |
Fa vs Mb | 0.8095 | 0.3 | 0.7562 | 0.2 | |
Fb vs Ma | 0.8292 | 0.5 | 0.7722 | 1 | |
Fb vs Mb | 0.8548 | 0.8 | 0.8422 | 0.5 | |
Ma vs Mb | 0.8015 | 0.4 | 0.7498 | 0.4 |
因子 Factor | NH4+-N | NO3--N | TN | AN | OM | pH | TC | SMBC | SMBN | HEIGHT | S | FW | T | SMC | EC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NH4+-N | 1 | ||||||||||||||
NO3--N | 0.62* | 1 | |||||||||||||
TN | 0.60* | 0.31 | 1 | ||||||||||||
AN | 0.89** | 0.63* | 0.81** | 1 | |||||||||||
OM | 0.61* | 0.24 | 0.98 | 0.79** | 1 | ||||||||||
pH | -0.80** | -0.65* | -0.80** | -0.88*** | -0.73** | 1 | |||||||||
TC | -0.61* | -0.53 | -0.81** | -0.86*** | -0.74** | 0.73** | 1 | ||||||||
SMBC | 0.69* | 0.52 | 0.88*** | 0.84*** | 0.81** | -0.92* | -0.80** | 1 | |||||||
SMBN | 0.72** | 0.48 | 0.91 | 0.89 | 0.87*** | -0.81** | -0.88*** | 0.85*** | 1 | ||||||
HEIGHT | -0.34 | -0.15 | -0.07 | -0.20 | -0.13 | 0.10 | 0.13 | 0.13 | -0.11 | 1 | |||||
S | 0.14 | 0.28 | -0.10 | 0.12 | -0.17 | -0.11 | -0.18 | 0.06 | -0.13 | -0.17 | 1 | ||||
FW | 0.38 | 0.19 | -0.11 | 0.22 | -0.05 | -0.14 | -0.04 | 0.14 | -0.14 | -0.16 | 0.42 | 1 | |||
T | 0.36 | 0.09 | -0.04 | 0.25 | -0.0014 | -0.14 | -0.07 | 0.25 | -0.03 | 0.25 | 0.08 | 0.82** | 1 | ||
SMC | -0.01 | -0.01 | -0.41 | -0.17 | -0.34 | 0.23 | 0.32 | -0.14 | -0.45 | 0.25 | 0.08 | 0.82** | 0.86*** | 1 | |
EC | 0.28 | 0.49 | 0.212 | 0.27 | 0.21 | -0.39 | -0.18 | 0.46 | 0.16 | 0.17 | 0.05 | 0.56 | 0.45 | 0.53 | 1 |
Table 3 Correlation between environmental factors
因子 Factor | NH4+-N | NO3--N | TN | AN | OM | pH | TC | SMBC | SMBN | HEIGHT | S | FW | T | SMC | EC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NH4+-N | 1 | ||||||||||||||
NO3--N | 0.62* | 1 | |||||||||||||
TN | 0.60* | 0.31 | 1 | ||||||||||||
AN | 0.89** | 0.63* | 0.81** | 1 | |||||||||||
OM | 0.61* | 0.24 | 0.98 | 0.79** | 1 | ||||||||||
pH | -0.80** | -0.65* | -0.80** | -0.88*** | -0.73** | 1 | |||||||||
TC | -0.61* | -0.53 | -0.81** | -0.86*** | -0.74** | 0.73** | 1 | ||||||||
SMBC | 0.69* | 0.52 | 0.88*** | 0.84*** | 0.81** | -0.92* | -0.80** | 1 | |||||||
SMBN | 0.72** | 0.48 | 0.91 | 0.89 | 0.87*** | -0.81** | -0.88*** | 0.85*** | 1 | ||||||
HEIGHT | -0.34 | -0.15 | -0.07 | -0.20 | -0.13 | 0.10 | 0.13 | 0.13 | -0.11 | 1 | |||||
S | 0.14 | 0.28 | -0.10 | 0.12 | -0.17 | -0.11 | -0.18 | 0.06 | -0.13 | -0.17 | 1 | ||||
FW | 0.38 | 0.19 | -0.11 | 0.22 | -0.05 | -0.14 | -0.04 | 0.14 | -0.14 | -0.16 | 0.42 | 1 | |||
T | 0.36 | 0.09 | -0.04 | 0.25 | -0.0014 | -0.14 | -0.07 | 0.25 | -0.03 | 0.25 | 0.08 | 0.82** | 1 | ||
SMC | -0.01 | -0.01 | -0.41 | -0.17 | -0.34 | 0.23 | 0.32 | -0.14 | -0.45 | 0.25 | 0.08 | 0.82** | 0.86*** | 1 | |
EC | 0.28 | 0.49 | 0.212 | 0.27 | 0.21 | -0.39 | -0.18 | 0.46 | 0.16 | 0.17 | 0.05 | 0.56 | 0.45 | 0.53 | 1 |
因子 Facter | 香农指数 Shannon index | 辛普森指数 Simpson index | Chao1指数 Chao1 index | PD指数 PD index |
---|---|---|---|---|
铵态氮 NH4+-N | -0.359 | 0.132 | -0.489 | -0.49 |
硝态氮 NO3--N | -0.073 | 0.214 | -0.073 | -0.13 |
全氮 TN | 0.0289 | 0.323 | -0.346 | -0.39 |
碱解氮 AN | -0.25 | 0.236 | -0.372 | -0.51 |
有机质 OM | 0.009 | 0.311 | -0.359 | -0.4 |
酸碱度 pH | 0.0827 | -0.26 | 0.411 | 0.342 |
全碳 TC | 0.158 | -0.34 | 0.299 | 0.559 |
微生物量碳SMBC | -0.063 | 0.169 | -0.365 | -0.33 |
微生物量氮SMBN | -0.136 | 0.207 | -0.371 | -0.42 |
高度 HEIGHT | -0.066 | -0.54 | 0.191 | 0.296 |
物种数 S | 0.271 | 0.585* | 0.172 | -0.15 |
鲜重 FW | -0.244 | 0.061 | -0.258 | -0.33 |
温度 T | -0.539 | -0.45 | -0.243 | -0.25 |
土壤含水量SMC | -0.366 | -0.4 | -0.115 | -0.07 |
土壤电导率 EC | -0.032 | 0.107 | -0.371 | -0.2 |
Table 4 Pearson correlation coefficient matrix of microbial diversity and soil environmental factors
因子 Facter | 香农指数 Shannon index | 辛普森指数 Simpson index | Chao1指数 Chao1 index | PD指数 PD index |
---|---|---|---|---|
铵态氮 NH4+-N | -0.359 | 0.132 | -0.489 | -0.49 |
硝态氮 NO3--N | -0.073 | 0.214 | -0.073 | -0.13 |
全氮 TN | 0.0289 | 0.323 | -0.346 | -0.39 |
碱解氮 AN | -0.25 | 0.236 | -0.372 | -0.51 |
有机质 OM | 0.009 | 0.311 | -0.359 | -0.4 |
酸碱度 pH | 0.0827 | -0.26 | 0.411 | 0.342 |
全碳 TC | 0.158 | -0.34 | 0.299 | 0.559 |
微生物量碳SMBC | -0.063 | 0.169 | -0.365 | -0.33 |
微生物量氮SMBN | -0.136 | 0.207 | -0.371 | -0.42 |
高度 HEIGHT | -0.066 | -0.54 | 0.191 | 0.296 |
物种数 S | 0.271 | 0.585* | 0.172 | -0.15 |
鲜重 FW | -0.244 | 0.061 | -0.258 | -0.33 |
温度 T | -0.539 | -0.45 | -0.243 | -0.25 |
土壤含水量SMC | -0.366 | -0.4 | -0.115 | -0.07 |
土壤电导率 EC | -0.032 | 0.107 | -0.371 | -0.2 |
因子 Factor | Bray-Curtis | Jaccard | |||
---|---|---|---|---|---|
r | P | r | P | ||
铵态氮 NH4+-N | -0.0893 | 0.754 | -0.0885 | 0.794 | |
硝态氮 NO3--N | 0.074 | 0.28 | 0.0038 | 0.462 | |
全氮 TN | -0.0013 | 0.462 | 0.0413 | 0.311 | |
碱解氮 AN | 0.0091 | 0.443 | -0.0106 | 0.515 | |
有机质 OM | -0.0978 | 0.799 | -0.056 | 0.648 | |
酸碱度 pH | 0.3571* | 0.017 | 0.3218* | 0.021 | |
全碳 TC | 0.0175 | 0.348 | 0.0347 | 0.293 | |
微生物量碳 SMBC | 0.2493* | 0.034 | 0.2318* | 0.046 | |
微生物量氮 SMBN | -0.0592 | 0.678 | -0.0296 | 0.595 | |
高度 HEIGHT | -0.032 | 0.487 | -0.0143 | 0.474 | |
物种数 S | -0.032 | 0.536 | -0.004 | 0.456 | |
鲜重 FW | -0.0992 | 0.788 | -0.0503 | 0.594 | |
温度 T | -0.1406 | 0.952 | -0.1155 | 0.9 | |
土壤含水量 SMC | -0.1059 | 0.839 | -0.0857 | 0.763 | |
土壤电导率 EC | 0.2692 | 0.052 | 0.1951 | 0.099 |
Table 5 Partial Mantel test analysis of microbial community structure and soil environmental factors
因子 Factor | Bray-Curtis | Jaccard | |||
---|---|---|---|---|---|
r | P | r | P | ||
铵态氮 NH4+-N | -0.0893 | 0.754 | -0.0885 | 0.794 | |
硝态氮 NO3--N | 0.074 | 0.28 | 0.0038 | 0.462 | |
全氮 TN | -0.0013 | 0.462 | 0.0413 | 0.311 | |
碱解氮 AN | 0.0091 | 0.443 | -0.0106 | 0.515 | |
有机质 OM | -0.0978 | 0.799 | -0.056 | 0.648 | |
酸碱度 pH | 0.3571* | 0.017 | 0.3218* | 0.021 | |
全碳 TC | 0.0175 | 0.348 | 0.0347 | 0.293 | |
微生物量碳 SMBC | 0.2493* | 0.034 | 0.2318* | 0.046 | |
微生物量氮 SMBN | -0.0592 | 0.678 | -0.0296 | 0.595 | |
高度 HEIGHT | -0.032 | 0.487 | -0.0143 | 0.474 | |
物种数 S | -0.032 | 0.536 | -0.004 | 0.456 | |
鲜重 FW | -0.0992 | 0.788 | -0.0503 | 0.594 | |
温度 T | -0.1406 | 0.952 | -0.1155 | 0.9 | |
土壤含水量 SMC | -0.1059 | 0.839 | -0.0857 | 0.763 | |
土壤电导率 EC | 0.2692 | 0.052 | 0.1951 | 0.099 |
[1] |
BERGSVEINSON J, PERKY B J, SHEEDY C, et al., 2018. Identifying the core bacterial and fungal communities within four agricultural biobeds used for the treatment of pesticide rinsates[J]. Journal of Applied Microbiology, 125(5): 1333-1342.
DOI URL |
[2] |
CHENG L, ZHANG N F, YUAN M T, et al., 2017. Warming enhances old organic carbon decomposition through altering functional microbial communities[J]. The ISME Journal, 11: 1825-1835.
DOI URL |
[3] | SCHOCH C L, SEIFERT K A, HUHNDORF S, et al., 2012. Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 109(16): 6241-6246. |
[4] | FILIPPIS F D, LAIOLA M, BLAIOTTA G, et al., 2017. Different amplicon targets for sequencing-based studies of fungal diversity[J]. Applied and Environmental Microbiology, 83(17): 5-17. |
[5] |
GANS J, WOLINSKY M, DUNBAR J, 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil[J]. Science, 309(5739): 1387-1390.
DOI URL |
[6] |
GOHL D M, VANGAY P, GARBE J, et al., 2016. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies[J]. Nature Biotechnology, 34(9): 942-949.
DOI URL |
[7] |
GUO Y J, WANG R L, ZHAO YN, et al., 2020. Study on the Relationship Between Microbial Composition and Living Environment in Important Medical Mites Based on Illumina MiSeq Sequencing Technology[J]. Journal of Medical Entomology, DOI: 10.1093/jme/tjaa034.
DOI |
[8] | JANCZAK K J, HRYNKIEWICZ B K, ZNAJEWSKA Z, et al., 2018. Use of rhizosphere microorganisms in the biodegradation of PLA and PET polymers in compost soil[J]. International Biodeterioration & Biodegradation, 130: 65-75. |
[9] |
JENKINSON D S, LADD J N, 1981. Microbial biomass in soil: Measurements and turnover[J]. Soil Biochemistry, 5: 415-471.
DOI URL |
[10] |
MATEOS-RIVERA, YDE C, WILSON B, et al., 2016. The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway)[J]. FEMS Microbiology Ecology, DOI: 10.1093/femsec/fiw038.
DOI |
[11] | MIAO C P, MI Q L, QIAO X G, et al., 2016. Rhizospheric fungi of Panax notoginseng: Diversity and antagonism to host phytopathogens[J]. Joumalof Ginseng Research, 40(2): 127-134. |
[12] |
RODRIGUEZ-BLANCO A, SICARDI M, FRIONI L, et al., 2015. Plant genotype andnitrogen fertilization effects on abundance and diversity of diazotrophic bacteria associated with maize[J]. Biology and Fertility of Soils, 51(3): 391-402.
DOI URL |
[13] |
TEDERSOO L, LINDAHL B, 2016. Fungal identification biases in microbiome projects[J]. Environmental Microbiology Reports, 8(5): 774-779.
DOI URL |
[14] | WATSON T T, NELSON L M, NEILSEN D, et al., 2017. Soil amendments influence Pratylenchus penetrans populations, beneficial rhizosphere microorganisms, and growth of newly planted sweet cherry[J]. Applied Soil Ecology, 117-118: 212-220. |
[15] |
WANG Z J, LU G X, YUAN M T, et al., 2019. Elevated temperature overrides the effects of N amendment in Tibetan grassland on soil microbiome[J]. Pergamon, DOI: 10.1016/j.soilbio.2019.107532.
DOI |
[16] | XUE K, XIE J P, ZHOU A F, et al., 2016. Warming alters expressions of microbial functional genes important to ecosystem functioning[J]. Frontiers in Microbiology, 7: 668-669. |
[17] |
YU H, DENG Y, HE Z L, et al., 2018. Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers[J]. Frontiers in Microbiology, DOI: 10.3389/fmicb.2018.01790.
DOI |
[18] | 鲍士丹, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社: 106-108. |
BAO S D, 2000. Soil Agrochemical Analysis[M]. Third Edition. Beijing: China Agriculture Press: 106-108. | |
[19] | 程虎, 王紫泉, 周琨, 等, 2017. 木醋液对碱性土壤微生物数量及酶活性的影响[J]. 中国环境科学, 37(2): 696-701. |
CHENG H, WANG Z Q, ZHOU K, et al., 2017. The effect of wood vinegar on the number of microorganisms and enzyme activities in alkaline soil[J]. China Environmental Science, 37(2): 696-701. | |
[20] | 李定瑶, 2014. 青藏高原多年冻土区可培养微生物多样性及生长特性研究[D]. 兰州: 兰州大学. |
LI D Y, 2014. Study on the diversity and growth characteristics of cultivable microorganisms in permafrost regions of the Qinghai-Tibet Plateau[D]. Lanzhou: Lanzhou University. | |
[21] | 李容榕, 盛观星, 林小艳, 2020. 凯氏定氮法测定青海省不同地区羌活中全氮含量[J]. 山西大同大学学报(自然科学版), 36(2): 8-9. |
LI R R, SHENG G X, LIN X Y, 2020. Kjeldahl method to determine the total nitrogen content of Qiang huo in different areas of Qinghai Province[J]. Journal of Shanxi Datong University (Natural Science Edition), 36(2): 8-9. | |
[22] | 李欣, 李峰科, 芦光新, 等, 2017. 模拟增温对高寒草甸土壤三大类微生物数量的影响[J]. 青海畜牧兽医杂志, 47(2): 6-11. |
LI X, LI F K, LU G X, et al., 2017. Effects of simulated warming on the quantity of three types of microorganisms in alpine meadow soil[J]. Qinghai Journal of Animal Husbandry and Veterinary Medicine, 47(2): 6-11. | |
[23] | 李金彦, 2010. 土壤水解性氮的测定 (碱解扩散法)[J]. 农业科技与信息 (10): 15. |
LI J Y, 2010. Determination of Soil Hydrolyzable Nitrogen (Alkaline Diffusion Method)[J]. Agricultural Science and Technology and Information (10): 15. | |
[24] | 李志萍, 李维民, 吴福忠, 等, 2013. 川西亚高山森林林窗对不同关键时期土壤硝态氮和铵态氮的影响[J]. 水土保持学报, 27(6): 270-274. |
LI ZH P, LIW M, WU F ZH, et al., 2013. Effects of forest gaps in subalpine forests of western Sichuan on soil nitrate nitrogen and ammonium nitrogen in different key periods[J]. Journal of Soil and Water Conservation, 27(6): 270-274. | |
[25] | 林先贵, 陈瑞蕊, 胡君利, 2010. 土壤微生物资源管理应用技术与学科展望[J]. 生态学报, 30(24): 7029-7037. |
LIN X G, CHEN R R, HU J L, 2010. Soil microbial resource management application technology and subject prospects[J]. Acta Ecologica Sinica, 30(24): 7029-7037. | |
[26] | 刘国华, 叶正芳, 吴为中, 2012. 土壤微生物群落多样性解析法: 从培养到非培养[J]. 生态学报, 32(14): 4421-4433. |
LIU G H, YE Z F, WU W Z, 2012. Analysis of soil microbial community diversity: From cultivated to non-cultured[J]. Acta Ecologica Sinica, 32(14): 4421-4433.
DOI URL |
|
[27] | 马骢毓, 2017. 民勤退耕区次生草地土壤微生物多样性研究及优势植物根际促生菌资源筛选[D]. 兰州: 甘肃农业大学, |
MA C Y, 2017. Study on soil microbial diversity of secondary grassland and screening of dominant plant rhizosphere growth- promoting bacteria resources in the secondary grassland of the Minqin conversion area[D]. Lanzhou: Gansu Agricultural University. | |
[28] | 马婷, 2013. 基于ASTER影像的吉林省土壤耕层生物量碳含量反演[D]. 长春: 吉林农业大学: 26-28. |
MA T, 2013. Retrieval of carbon content of soil cultivated layer biomass in Jilin Province based on ASTER images[D]. Changchun: Jilin Agricultural University, 26-28. | |
[29] | 牟雪洁, 赵昕奕, 饶胜, 等, 2016. 青藏高原生态屏障区近10年生态系统结构变化研究[J]. 北京大学学报 (自然科学版), 52(2): 279-286. |
MOU X J, ZHAO X Y, RAO S, et al., 2016. changes in ecosystem structure and other research nearly 10 years of ecological barrier area of the Tibetan Plateau[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 52(2): 279-286. | |
[30] | 苗杰, 李斐, 张加康, 等, 2019. 紫外分光光度法测定土壤硝态氮校正因数的优化[J]. 华北农学报, 34(S1): 204-212. |
MIAO J, LI F, ZHANG J K, et al., 2019. Optimization of correction factor for determination of soil nitrate nitrogen by ultraviolet spectrophotometry[J]. Acta North China Agricultural Journal, 34(S1): 204-212. | |
[31] | 朴世龙, 方精云, 2002. 1982—1999年青藏高原植被净第一性生产力及其时空变化田[J]. 自然资源学报, 17(3): 373-380. |
PIAO SH L, FANG J Y, 2002. Net primary productivity and its temporal and spatial variation fields over the Tibetan Plateau from 1982 to 1999 [J]. Journal of Natural Resources, 17(3): 373-380. | |
[32] | 斯贵才, 袁艳丽, 王建, 等, 2015. 围封对当雄县高寒草原土壤微生物和酶活性的影响[J]. 草业科学, 32(1): 1-10. |
SI G C, YUAN Y L, WANG J, et al., 2015. Effects of enclosure on soil microbes and enzyme activities in alpine grassland of Dangxiong County[J]. Pratacultural Science, 32(1): 1-10. | |
[33] | 盛玉钰, 丛静, 卢慧, 等, 2018. 神农架国家公园林线过渡带土壤真菌多样性[J]. 生态学报, 38(15): 5322-5330. |
SHENG Y J, CONG J, LU H, et al., 2018. Diversity of soil fungi in the timberline transition zone of Shennongjia National Park[J]. Acta Ecologica Sinica, 38(15): 5322-5330. | |
[34] | 温小成, 芦光新, 2015. 模拟增温和氮素添加对高寒草地植物群落的影响[J]. 草业与畜牧 (2): 38-43. |
WEN X C, LU G X, 2015. Effects of simulated warming and nitrogen addition on plant communities in alpine grassland[J]. Planting and Animal Husbandry (2): 38-43. | |
[35] | 王瑞琨, 2018. 用电位法测定土壤pH值[J]. 山西化工, 38(3): 64-65. |
WANG R K, 2018. Determination of soil pH value by potentiometric method[J]. Shanxi Chemical Industry, 38(3): 64-65. | |
[36] | 王楠, 潘小承, 王传宽, 等, 2020. 模拟酸雨对毛竹阔叶林过渡带土壤真菌结构及其多样性的影响[J]. 环境科学, 41(5): 2476-2484. |
WANG N, PAN X C, WANG C K, et al., 2020. Effects of Simulated Acid Rain on Soil Fungi Diversity in the Transition Zone of Moso Bamboo and Broadleaf Forest[J]. Environmental Science, 41(5): 2476-2484. | |
[37] | 王艳发, 魏士平, 崔鸿鹏, 等, 2016. 青藏高原冻土区土壤垂直剖面中微生物的分布与多样性[J]. 微生物学通报, 43(9): 1902-1917. |
WANG Y F, WEI S P, CUI H P, et al., 2016. Distribution and diversity of microorganisms in vertical sections of soil in permafrost regions of the Qinghai-Tibet Plateau[J]. Microbiology Bulletin, 43(9): 1902-1917. | |
[38] | 姚世庭, 芦光新, 李欣, 等, 2019. 模拟增温对青海省玉树州称多县高寒草甸土壤水分的影响研究[J]. 生态环境学报, 28(11): 2176-2184. |
YAO S T, LU G X, LI X, et al., 2019. Effects of simulated warming on soil moisture of alpine meadows in Chengduo County, Yushu Prefecture, Qinghai Province[J]. Acta Eco-Environmental Sciences, 28(11): 2176-2184. | |
[39] | 姚世庭, 芦光新, 王军邦, 等, 2020. 模拟增温对土壤电导率的影响[J]. 干旱区研究, 37(3): 598-606. |
YAO S T, LU G X, WANG J B, et al., 2020. Effects of simulated warming on soil electrical conductivity[J]. Arid Zone Research, 37(3): 598-606. | |
[40] |
周桔, 雷霆, 2007. 土壤微生物多样性影响因素及研究方法的现状与展望[[J]. 生物多样性, 15(3): 306-311.
DOI |
ZHOU J, LEI T, 2007. The status quo and prospects of soil microbial diversity influencing factors and research methods[J]. Biodiversity, 15(3): 306-311. | |
[41] | 张旭, 牛艳萍, 2014. 油浴加热法测定土壤样品中有机碳[J]. 黑龙江科技信息 (10): 77. |
ZHANG X, NIU Y P, 2014. Determination of organic carbon in soil samples by oil bath heating method[J]. Heilongjiang Science and Technology Information (10): 77. |
[1] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[2] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[3] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[4] | YANG Chunliang, LIU Minxia, WANG Qianyue, MIAO Lele, XIAO Yindi, WANG Min. Spatial Pattern and Correlation of Populations of Anemone rivularis and Kobresia myosuroides under Single-household Management and Multi-household Management Grazing Patterns [J]. Ecology and Environment, 2023, 32(4): 651-659. |
[5] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[6] | LIU Zhendi, SONG Yanyu, WANG Xianwei, TAN Wenwen, ZHANG Hao, GAO Jinli, GAO Siqi, DU Yu. Effects of Simulated Warming on Plant Growth and Carbon and Nitrogen Characteristics in Permafrost Peatland [J]. Ecology and Environment, 2022, 31(9): 1765-1772. |
[7] | XIAO Yihua, FU Zhigao, XU Han, SHI Xin, TANG Haiming, CHEN Bufeng. Effects of Urbanization on Leaf Functional Traits of Different Functional Groups in Pearl River Delta [J]. Ecology and Environment, 2022, 31(9): 1783-1793. |
[8] | CHEN Xiaowan, TIAN Huachuan, CHANG Junjun, CHEN Liqiang, SHU Xingquan, FENG Xiuxiang. Purification Efficiency for Polluted River Water and Microbial Community Characteristics of A Surface-flow Wetland Located at Zhonghe River Estuary near Qilu Lake [J]. Ecology and Environment, 2022, 31(9): 1865-1875. |
[9] | ZHOU Xuanbo, WANG Xiaoli, MA Yushou, WANG Yanlong, LUO Shaohui, XIE Lele. Niche of Main Plant Populations in Alpine Meadow Under the Rest-grazing in the Green-Up Period [J]. Ecology and Environment, 2022, 31(8): 1547-1555. |
[10] | JIANG Nihao, ZHANG Shihao, ZHANG Shihan. Interspecific Associations and Environmental Interpretation of the Dominant Species of the Communities Invaded by Ageratina adenophora in Ailao Mountains [J]. Ecology and Environment, 2022, 31(7): 1370-1382. |
[11] | CHEN Lijuan, ZHOU Wenjun, YI Yanyun, SONG Qinghai, ZHANG Yiping, LIANG Naishen, LU Zhiyun, WEN Handong, MOHD Zeeshan, SHA Liqing. Characteristics of Soil CH4 Flux in the Subtropical Evergreen Broad-leaved Forest in Ailao Mountain, Yunnan, Southwest China [J]. Ecology and Environment, 2022, 31(5): 949-960. |
[12] | LI Chengwei, LIU Zhangyong, GONG Songling, YANG Wei, LI Shaoqiu, ZHU Bo. Effects of Changing Rice Cropping Patterns on CH4 and N2O Emissions from Paddy Fields [J]. Ecology and Environment, 2022, 31(5): 961-968. |
[13] | WANG Yingcheng, YAO Shiting, JIN Xin, YU Wenzhen, LU Guangxin, WANG Junbang. Comparative Study on Soil Bacterial Diversity of Degraded Alpine Meadow in the Sanjiangyuan Region [J]. Ecology and Environment, 2022, 31(4): 695-703. |
[14] | XIA Kai, DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu. Changes of Soil Bacterial Community Structure and Diversity from Conversion of Masson Pine Secondary Forest to Slash Pine and Chinese Fir Plantations [J]. Ecology and Environment, 2022, 31(3): 460-469. |
[15] | LIANG Lei, MA Xiuzhi, HAN Xiaorong, LI Changsheng, ZHANG Zhijie. Effects of Litter on Soil Greenhouse Gas Flux of Pinus tabulaeformis Plantation in Daqing Mountain under Simulated Warming [J]. Ecology and Environment, 2022, 31(3): 478-486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn