Ecology and Environment ›› 2022, Vol. 31 ›› Issue (1): 62-69.DOI: 10.16258/j.cnki.1674-5906.2022.01.008
• Research Articles • Previous Articles Next Articles
WANG Rui(), SONG Xiangyun, LIU Xinwei*(
)
Received:
2021-02-16
Online:
2022-01-18
Published:
2022-03-10
Contact:
LIU Xinwei
通讯作者:
柳新伟
作者简介:
王瑞(1995年生),男,硕士研究生,主要从事土壤研究。E-mail: 390875731@qq.com
基金资助:
CLC Number:
WANG Rui, SONG Xiangyun, LIU Xinwei. Seasonal Characteristics of Soil Enzymes in Different Vegetations in the Yellow River Delta[J]. Ecology and Environment, 2022, 31(1): 62-69.
王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.01.008
植被类型 Vegetation type | 经度 Longitude | 纬度 Latitude |
---|---|---|
碱蓬 Suaeda salsa | 119°9′17″E | 37°46′7″N |
柽柳 Tamarix chinensis | 119°8′19″E | 37°44′40″N |
芦苇 Phragmites communis | 119°3′7″E | 37°45′46″N |
刺槐 Black Locust | 119°0′44″E | 37°47′58″N |
高粱 Sorghum | 119°0′46″E | 37°47′56″N |
Table1 Soil geographic coordinates under different vegetation
植被类型 Vegetation type | 经度 Longitude | 纬度 Latitude |
---|---|---|
碱蓬 Suaeda salsa | 119°9′17″E | 37°46′7″N |
柽柳 Tamarix chinensis | 119°8′19″E | 37°44′40″N |
芦苇 Phragmites communis | 119°3′7″E | 37°45′46″N |
刺槐 Black Locust | 119°0′44″E | 37°47′58″N |
高粱 Sorghum | 119°0′46″E | 37°47′56″N |
季节 Season | 植被类型 Vegetation types | w(有机质 Organic matter)/ (g∙kg-1) | w(碱解氮 Available nitrogen)/ (mg∙kg-1) | w(有效磷 Available phosphorus)/ (mg∙kg-1) | w(速效钾 Available potassium)/ (mg∙kg-1) | pH |
---|---|---|---|---|---|---|
春季 Spring | 碱蓬 Suaeda salsa | 8.03±0.14Ac | 10.5±3Bd | 3.25±1.04Bb | 209.32±5.72Aa | 8.76±0.03Ac |
柽柳Tamarix chinensis | 18.03±0.57Da | 99.17±14Bb | 3.75±0.30BCb | 163.04±9.91Ab | 8.85±0.03Bb | |
芦苇 Phragmites communis | 8.82±0.15Bc | 22.17±4Ad | 3.45±0.30BCb | 73.79±4.96Ac | 8.99±0.03Aa | |
刺槐 Black Locust | 18.69±0.97Aa | 249.66±9Aa | 6.24±0.86Aa | 151.47±2.86Ab | 8.45±0.03Ad | |
高粱 Sorghum | 15.88±0.71Cb | 73.5±14Bc | 4.35±1.07Bb | 96.93±7.57Ac | 8.08±0.05De | |
夏季 Summer | 碱蓬 Suaeda salsa | 7.99±0.38Ac | 7.93±2Bd | 3.46±0.79Bab | 209.32±5.72Aa | 8.34±0.03Bd |
柽柳 Tamarix chinensis | 21.49±0.95Ca | 74.67±8Cb | 5.05±0.45Ba | 163.04±9.91Ab | 8.89±0.06Bb | |
芦苇 Phragmites communis | 4.12±0.48Dd | 4.2±1Cd | 4.65±0.89Bab | 73.78±4.96Ad | 8.99±0.02Aa | |
刺槐 Black Locust | 10.15±0.56Bb | 196±12Ba | 3.26±0.75Bb | 151.47±2.86Ab | 8.33±0.06Ad | |
高粱 Sorghum | 11.25±0.82Db | 22.83±2Cc | 5.05±1.20Ba | 96.92±7.57Ac | 8.64±0.07Bc | |
秋季 Autumn | 碱蓬 Suaeda salsa | 9.21±0.39Ad | 15.17±5cBd | 5.74±1.34Aa | 161.39±2.86Ca | 8.33±0.03Be |
柽柳 Tamarix chinensis | 28.88±0.05Aa | 107.33±12Bb | 2.56±0.30Cb | 129.98±7.57Bb | 9.15±0.04Aa | |
芦苇 Phragmites communis | 17.84±0.72Ac | 12.83±2Bd | 2.96±0.45Cb | 50.64±2.86Bd | 8.70±0.03Bc | |
刺槐 Black Locust | 17.51±0.68Ac | 226.33±14Aa | 3.55±1.20Bb | 129.98±11.45Bb | 8.47±0.04Ad | |
高粱 Sorghum | 19.90±0.52Ab | 31.5±9Cc | 2.16±0.17Cb | 72.13±7.57Bc | 8.91±0.07Ab | |
冬季 Winter | 碱蓬 Suaeda salsa | 8.68±1.18Ac | 35±3Ad | 6.34±0.45Ac | 179.57±10.32Ba | 8.76±0.07Aa |
柽柳 Tamarix chinensis | 24.30±0.72Ba | 134.17±4Ab | 8.73±1.69Ab | 125.03±2.86Bc | 8.36±0.02Cb | |
芦苇 Phragmites communis | 5.64±0.38Cd | 16.33±5ABe | 6.64±0.91Ac | 57.26±10.32Be | 8.32±0.04Cb | |
刺槐 Black Locust | 17.95±0.09Ab | 233.33±14Aa | 7.23±0.69Abc | 144.86±7.57Ab | 8.34±0.05Ab | |
高粱 Sorghum | 17.81±0.68Bb | 106.17±5Ac | 16.68±1.24Aa | 96.93±5.72Ad | 8.41±0.04Cb |
Table 2 Basic physical and chemical properties of soil table
季节 Season | 植被类型 Vegetation types | w(有机质 Organic matter)/ (g∙kg-1) | w(碱解氮 Available nitrogen)/ (mg∙kg-1) | w(有效磷 Available phosphorus)/ (mg∙kg-1) | w(速效钾 Available potassium)/ (mg∙kg-1) | pH |
---|---|---|---|---|---|---|
春季 Spring | 碱蓬 Suaeda salsa | 8.03±0.14Ac | 10.5±3Bd | 3.25±1.04Bb | 209.32±5.72Aa | 8.76±0.03Ac |
柽柳Tamarix chinensis | 18.03±0.57Da | 99.17±14Bb | 3.75±0.30BCb | 163.04±9.91Ab | 8.85±0.03Bb | |
芦苇 Phragmites communis | 8.82±0.15Bc | 22.17±4Ad | 3.45±0.30BCb | 73.79±4.96Ac | 8.99±0.03Aa | |
刺槐 Black Locust | 18.69±0.97Aa | 249.66±9Aa | 6.24±0.86Aa | 151.47±2.86Ab | 8.45±0.03Ad | |
高粱 Sorghum | 15.88±0.71Cb | 73.5±14Bc | 4.35±1.07Bb | 96.93±7.57Ac | 8.08±0.05De | |
夏季 Summer | 碱蓬 Suaeda salsa | 7.99±0.38Ac | 7.93±2Bd | 3.46±0.79Bab | 209.32±5.72Aa | 8.34±0.03Bd |
柽柳 Tamarix chinensis | 21.49±0.95Ca | 74.67±8Cb | 5.05±0.45Ba | 163.04±9.91Ab | 8.89±0.06Bb | |
芦苇 Phragmites communis | 4.12±0.48Dd | 4.2±1Cd | 4.65±0.89Bab | 73.78±4.96Ad | 8.99±0.02Aa | |
刺槐 Black Locust | 10.15±0.56Bb | 196±12Ba | 3.26±0.75Bb | 151.47±2.86Ab | 8.33±0.06Ad | |
高粱 Sorghum | 11.25±0.82Db | 22.83±2Cc | 5.05±1.20Ba | 96.92±7.57Ac | 8.64±0.07Bc | |
秋季 Autumn | 碱蓬 Suaeda salsa | 9.21±0.39Ad | 15.17±5cBd | 5.74±1.34Aa | 161.39±2.86Ca | 8.33±0.03Be |
柽柳 Tamarix chinensis | 28.88±0.05Aa | 107.33±12Bb | 2.56±0.30Cb | 129.98±7.57Bb | 9.15±0.04Aa | |
芦苇 Phragmites communis | 17.84±0.72Ac | 12.83±2Bd | 2.96±0.45Cb | 50.64±2.86Bd | 8.70±0.03Bc | |
刺槐 Black Locust | 17.51±0.68Ac | 226.33±14Aa | 3.55±1.20Bb | 129.98±11.45Bb | 8.47±0.04Ad | |
高粱 Sorghum | 19.90±0.52Ab | 31.5±9Cc | 2.16±0.17Cb | 72.13±7.57Bc | 8.91±0.07Ab | |
冬季 Winter | 碱蓬 Suaeda salsa | 8.68±1.18Ac | 35±3Ad | 6.34±0.45Ac | 179.57±10.32Ba | 8.76±0.07Aa |
柽柳 Tamarix chinensis | 24.30±0.72Ba | 134.17±4Ab | 8.73±1.69Ab | 125.03±2.86Bc | 8.36±0.02Cb | |
芦苇 Phragmites communis | 5.64±0.38Cd | 16.33±5ABe | 6.64±0.91Ac | 57.26±10.32Be | 8.32±0.04Cb | |
刺槐 Black Locust | 17.95±0.09Ab | 233.33±14Aa | 7.23±0.69Abc | 144.86±7.57Ab | 8.34±0.05Ab | |
高粱 Sorghum | 17.81±0.68Bb | 106.17±5Ac | 16.68±1.24Aa | 96.93±5.72Ad | 8.41±0.04Cb |
Figure 1 Seasonal dynamics of soil enzyme activity in different vegetation Capital letters indicate that the same community has significant difference in different seasons (P<0.05); Lowercase letters indicate significant difference among different communities in the same season (P<0.05)
Figure 2 Soil enzyme activity at different depths in different vegetation Capital letters indicate that the same community has significant difference in different seasons (P<0.05); Lowercase letters indicate significant difference among different communities in the same season (P<0.05)
酶活性 Enzyme activity | 过氧化 氢酶 Catalase | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase | 脱氢酶 Dehydrogenase |
---|---|---|---|---|---|
过氧化氢酶 Catalase | 1 | ||||
脲酶 Urease | 0.833** | 1 | |||
蔗糖酶 Sucrase | 0.912** | 0.781** | 1 | ||
碱性磷酸酶 Alkaline phosphatase | 0.730** | 0.683** | 0.626** | 1 | |
脱氢酶 Dehydrogenase | -0.326 | -0.291 | -0.284 | -0.358 | 1 |
Table 3 Correlation of soil enzymes
酶活性 Enzyme activity | 过氧化 氢酶 Catalase | 脲酶 Urease | 蔗糖酶 Sucrase | 碱性磷酸酶 Alkaline phosphatase | 脱氢酶 Dehydrogenase |
---|---|---|---|---|---|
过氧化氢酶 Catalase | 1 | ||||
脲酶 Urease | 0.833** | 1 | |||
蔗糖酶 Sucrase | 0.912** | 0.781** | 1 | ||
碱性磷酸酶 Alkaline phosphatase | 0.730** | 0.683** | 0.626** | 1 | |
脱氢酶 Dehydrogenase | -0.326 | -0.291 | -0.284 | -0.358 | 1 |
因子 Parameters | 有机质 Organic matter | 碱解氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | pH |
---|---|---|---|---|---|
过氧化氢酶 Catalase | 0.760** | 0.670** | -0.079 | -0.084 | 0.155 |
脱氢酶 Dehydrogenase | -0.024 | -0.303 | 0.458* | 0.335 | -0.455* |
脲酶 Urease | 0.753** | 0.659** | 0.055 | -0.088 | -0.008 |
碱性磷酸酶 Alkaline phosphatase | 0.408 | 0.923** | 0.039 | 0.173 | -0.051 |
蔗糖酶 Sucrase | 0.712** | 0.548** | -0.013 | -0.162 | 0.232 |
Table 4 Correlation between soil enzymes and physical and chemical properties
因子 Parameters | 有机质 Organic matter | 碱解氮 Available nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium | pH |
---|---|---|---|---|---|
过氧化氢酶 Catalase | 0.760** | 0.670** | -0.079 | -0.084 | 0.155 |
脱氢酶 Dehydrogenase | -0.024 | -0.303 | 0.458* | 0.335 | -0.455* |
脲酶 Urease | 0.753** | 0.659** | 0.055 | -0.088 | -0.008 |
碱性磷酸酶 Alkaline phosphatase | 0.408 | 0.923** | 0.039 | 0.173 | -0.051 |
蔗糖酶 Sucrase | 0.712** | 0.548** | -0.013 | -0.162 | 0.232 |
[1] | CAO D, SHI F C, KOIKE T, et al., 2014. Halophyte plant communities affecting enzyme activity and microbes in saline soils of the Yellow River Delta in China[J]. CLEAN-Soil Air Water, 8: 1433-1440. |
[2] |
JING C L, XU Z C, ZOU P, et al., 2019. Coastal halophytes alter properties and microbial community structure of the saline soils in the Yellow River Delta, China[J]. Applied Soil Ecology, 134: 1-7.
DOI URL |
[3] |
TIAN L, SHI W, 2014. Short-term effects of plant litter on the dynamics, amount, and stoichiometry of soil enzyme activity in agroecosystems[J]. European Journal of Soil Biology, 65: 23-29.
DOI URL |
[4] | XU X F, SONG C C, SONG X, et al., 2004. Carbon mineralization and the related enzyme activity of soil in wetland[J]. Ecology and Environment, 13(1): 40-42. |
[5] |
ZHENG L D, ZHANG M X, XIAO R, et al., 2017. Impact of salinity and Pb on enzyme activities of a saline soil from the Yellow River delta: A microcosm study[J]. Physics and Chemistry of the Earth, Parts A/B/C, 97: 77-87.
DOI URL |
[6] | 鲍士旦, 2000. 土壤农化分析[M]. 北京: 中国农业出版社: 25-114. |
BAO S D, 2000. Soil agrochemical analysis[M]. Beijing: China Agriculture Press: 25-114. | |
[7] | 陈为峰, 周维芝, 史衍玺, 2003. 黄河三角洲湿地面临的问题及其保护[J]. 农业环境科学学报, 22(4): 499-502. |
CHEN W F, ZHOU W Z, SHI Y X, 2003. Crisis of wetlands in the Yellow River Delta and its protection[J]. Journal of Agro- Environment Science, 22(4): 499-502. | |
[8] | 陈为峰, 史衍玺, 2010. 黄河三角洲新生湿地不同植被类型土壤的微生物分布特征[J]. 草地学报, 18(6): 859-864. |
CHEN W F, SHI Y X, 2010. Distribution characteristics of microbes in new-born wetlands of the Yellow River Delta[J]. Acta Agrestia Sinica, 18(6): 859-864. | |
[9] | 关松荫, 1986. 土壤酶及其研究法[M]. 北京: 农业出版社: 274-320. |
GUAN S Y, 1986, Soil enzymes and their research methods[M]. Beijing: Agricultural Press: 274-320. | |
[10] | 李传荣, 许景伟, 宋海燕, 等, 2006. 黄河三角洲滩地不同造林模式的土壤酶活性[J]. 植物生态学报, 30(5): 802-809. |
LI C R, XU J W, SONG H Y, et al., 2006. Soil enzyme activities in different plantations in lowlands of The Yellow River Delta, China[J]. Chinese Journal of Plant Ecology, 30(5): 802-809.
DOI URL |
|
[11] | 李晓红, 2019. 鄱阳湖湿地不同植物群落土壤养分和土壤酶活性垂直分布特征[J]. 水土保持研究, 26(1): 69-75. |
LI X H, 2019. Profile distribution characteristics of soil nutrients and enzymes in the Wetland of Poyang Lake[J]. Research of Soil and Water Conservation, 26(1): 69-75. | |
[12] | 刘超, 赵光影, 宋艳宇, 等, 2019. 气候变化背景下湿地土壤酶活性研究进展[J]. 中国农学通报, 35(33): 91-97. |
LIU C, ZHAO G Y, SONG Y Y, et al., 2019. Soil enzyme activity in wetland under the background of climate change: research progress[J]. Chinese Agricultural Science Bulletin, 35(33): 91-97. | |
[13] | 刘善江, 夏雪, 陈桂梅, 2011. 土壤酶的研究进展[J]. 中国农学通报, 27(21): 1-7. |
LIU S J, XIA X, CHEN G M, 2011. Study progress on functions and affecting factors of soil enzymes[J]. Chinese Agricultural Science Bulletin, 27(21): 1-7. | |
[14] | 刘艳, 马风云, 宋玉民, 等, 2008. 黄河三角洲冲积平原湿地土壤酶活性与养分相关性研究[J]. 水土保持研究, 15(1): 60-61. |
LIU Y, MA F Y, SONG Y M, et al., 2008. Correlative research on the activity of enzyme and soil nutrient of different wetlands in Yellow River Delta[J]. Research of Soil and Water Conservation, 15(1): 60-61. | |
[15] | 刘杨, 王小沁, 沈丹杰, 等, 2019. 水分梯度下川西高寒湿地土壤酶活性变化特征[J]. 四川农业大学学报, 37(4): 517-524. |
LIU Y, WANG X Q, SHEN D J, et al., 2019. Soil enzymatic activities dynamics along a moisture gradient in alpine wetland in western Sichuan province[J]. Journal of Sichuan Agricultural University, 37(4): 517-524. | |
[16] | 罗慧, 冯程程, 岳中辉, 等, 2020. 植被修复对重度盐碱地土壤酶活性和酶反应热力学特征的影响[J]. 应用生态学报, 31(12): 4243-4250. |
LUO H, FENG C C, YUE Z H, et al., 2020. Effects of phytoremediation on soil enzyme activity and thermodynamic characteristics of enzymatic reaction in severe saline-alkali land[J]. Chinese Journal of Applied Ecology, 31(12): 4243-4250. | |
[17] | 马宁, 齐继薇, 刘长发, 等, 2018. 辽河口潮滩湿地不同植被土壤4种碳代谢酶活性及其与有机碳含量、pH值关系[J]. 中国农学通报, 34(1): 90-97. |
MA N, QI J W, LIU C F, et al., 2018. Relationship between 4 carbon metabolism enzymes and organic carbon, pH value under different vegetation in Liaohe estuary tidal flat wetland[J]. Chinese Agricultural Science Bulletin, 34(1): 90-97. | |
[18] | 马云波, 牛聪傑, 许中旗, 2016. 人工与自然植被恢复下尾矿土壤微生物及酶活性的时空变化[J]. 林业科学, 52(6): 93-100. |
MA Y B, NIU C J, XU Z Q, 2016. Temporal and spatial variation of soil microbes and enzyme activities in iron tailings under natural restoration and plantation[J]. Scientia Silvae Sinicae, 52(6): 93-100. | |
[19] | 毛志刚, 谷孝鸿, 刘金娥, 等, 2010. 盐城海滨湿地盐沼植被及农作物下土壤酶活性特征[J]. 生态学报, 30(18): 5043-5049. |
MAO Z G, GU X H, LIU J E, et al., 2010. Distribution of the soil enzyme activities in different vegetation zones and farms in Yancheng coastal wetland[J]. Acta Ecologica Sinica, 30(18): 5043-5049. | |
[20] | 牛世全, 李君锋, 杨婷婷, 等, 2010. 甘南玛曲沼泽湿地土壤微生物量、理化因子与土壤酶活的关系[J]. 冰川冻土, 32(5): 1022-1029. |
NIU S Q, LI J F, YANG T T, et al., 2010. The relationships of soil microbial biomass, physicochemical factors and soil enzyme activities in Maqu Swamp Wetland of Gannan prefecture[J]. Journal of Glaciology and Geocryology, 32(5): 1022-1029. | |
[21] | 庞威, 方晰, 2018. 湘中丘陵区森林土壤酶活性的季节变化研究[J]. 南方农机, 49(2): 178-181. |
PANG W, FANG X, 2018. Seasonal variation of forest soil enzyme activity in hilly region of central Hunan[J]. China Southern Agricultural Machinery, 49(2): 178-181. | |
[22] | 荣国华, 2018. 秸秆还田对土壤酶活性、微生物量及群落功能多样性的影响[D]. 哈尔滨: 东北农业大学: 44-45. |
RONG G H, 2018. Effects of straw incorporation on soil enzyme activities, microbial biom ass and functional diversity of com munities[D]. Harbin: Northeast Agricultural University: 44-45. | |
[23] | 孙英杰, 徐广平, 沈育伊, 等, 2018. 桂林会仙喀斯特湿地芦苇群落区土壤酶活性[J]. 湿地科学, 16(2): 196-203. |
SUN Y J, XU G P, SHEN Y Y, et al., 2018. Soil enzyme activities of phragmites australis community area in Huixian karst wetland, Guilin[J]. Wetland Science, 16(2): 196-203. | |
[24] | 田平雅, 沈聪, 赵辉, 等, 2020. 银北盐碱区植物根际土壤酶活性及微生物群落特征研究[J]. 土壤学报, 57(1): 217-226. |
TIAN P Y, SHEN C, ZHAO H, et al., 2020. Enzyme activities and microbial communities in rhizospheres of plants in salinized soil in North Yinchuan, China[J]. Acta Pedologica Sinica, 57(1): 217-226. | |
[25] | 田应兵, 宋光煜, 艾天成, 2002. 湿地土壤及其生态功能[J]. 生态学杂志, 21(6): 36-39. |
TIAN Y B, SONG G Y, AI T C, 2002, Wetland soil and its ecological functions[J]. Chinese Journal of Ecology, 21(6): 36-39. | |
[26] | 咸义, 2017. 竺山湾湖泊缓冲带退化湿地生态系统调控研究[D]. 南京: 南京师范大学: 53-54. |
XIAN Y, 2017. Regulation of degraded wetland ecosystem in lake buffer zone of Zhushan Bay[D]. Nanjing: Nanjing Normal University: 53-54. | |
[27] | 张勇, 杜华栋, 张振国, 等, 2014. 黄土丘陵区自然植被恢复下土壤微生物学质量演变特征[J]. 水土保持研究, 21(1): 7-17. |
ZHANG Y, DU H D, ZHANG Z G, et al., 2014. Evolution characteristics of soil biological property in Loess Hilly Region under natural vegetation restoration[J]. Research of Soil and Water Conservation, 21(1): 7-17. | |
[28] | 赵兰坡, 姜岩, 1986. 土壤磷酸酶活性测定方法的探讨[J]. 土壤通报 (3): 138-141. |
ZHAO L P, JIANG Y, 1986. Discussion on the determination method of soil phosphatase activity[J]. Chinese Journal of Soil Science (3): 138-141. | |
[29] | 郑佳玉, 2018. 辽河口湿地土壤酶活性及其盐分的影响[D]. 沈阳: 沈阳大学: 46-47. |
ZHENG J Y, 2018. Soil Enzyme and Salinity Impacts in Wetland of the Liaohe Estuary[D]. Shenyang: Shenyang University: 46-47. | |
[30] | 周晓明, 2018. 黄河三角洲湿地土壤微生物多样性及土壤酶活性的研究[D]. 曲阜: 曲阜师范大学: 28-29. |
ZHOU X M, 2018. Study on soil microbial diversity and soil enzyme activity in Yellow River Delta wetland[D]. Qufu: Qufu Normal University: 28-29. |
[1] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[2] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environment, 2023, 32(3): 439-449. |
[3] | ZHANG Huaicheng, HAN Hong, WANG Zaifeng, HAN Lizhao, LIU Ke, ZHANG Guiqin, FAN Jing, WEI Xiaofeng. Micromorphology Characteristics and Chemical Composition of Urban Dust in Ji'nan [J]. Ecology and Environment, 2023, 32(3): 545-555. |
[4] | ZHANG Shanwen, YANG Ran, HOU Wenxing, WANG Lili, LIU Shuang, SONG Hanyang, ZHAO Wenji, LI Lingjun. Analysis of Fractional Vegetation Cover Changes and Driving Forces on Both Banks of Yongding River Before and After Ecological Water Replenishment [J]. Ecology and Environment, 2023, 32(2): 264-273. |
[5] | SHENG Meijun, LI Shengjun, YANG Xinyue, WANG Rui, LI Jie, LI Gang, XIU Weiming. Changes of Soil Enzyme Activities in Cropland with Different Land Use Intensities in Fluvo-aquic Soil Area, North China [J]. Ecology and Environment, 2023, 32(2): 299-308. |
[6] | LI Shaoning, LI Tingting, TAO Xueying, ZHAO Na, XU Xiaotian, LU Shaowei. Comparative Study on the Release of Beneficial Volatile Organic Compounds from Four Deciduous Tree Species [J]. Ecology and Environment, 2023, 32(1): 123-128. |
[7] | ZHANG Lijin, DU Hu, ZENG Fuping, HUANG Guoqin, SONG Min, SONG Tongqing. Discussion on the Relationship between Productivity and Diversity during Vegetation Restoration in the Karst Peak-cluster Depression [J]. Ecology and Environment, 2023, 32(1): 26-35. |
[8] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[9] | WU Shengyi, WANG Fei, XU Ganjun, MA Hao, DANG Yujie, WU Fei. Study on Forest Carbon Storage and Spatial Distribution in the Alpine Gorge Region of Northwest Sichuan: Take Sichuan Luoxu Nature Reserve as An Example [J]. Ecology and Environment, 2022, 31(9): 1735-1744. |
[10] | QIN Yanpei, XU Shaojun, TIAN Yaowu. The Spatial Differentiation of Vegetation and Soil Carbon Density in Henan Section of the Yellow River Basin [J]. Ecology and Environment, 2022, 31(9): 1745-1753. |
[11] | CHEN Xiaonan, LI Qiongwen, YU Jianping, YU Shunhai, LI Shuang, CAO Mingchang. Habitat Suitability Assessment of Syrmaticus ellioti in the Qiangjiangyuan National Park [J]. Ecology and Environment, 2022, 31(9): 1832-1839. |
[12] | RUAN Huihua, XU Jianhui, ZHANG Feifei. Spatiotemporal Changes of Vegetation and Land Surface Temperature during 2001 and 2020 in the Guangdong-Hong Kong-Macao Greater Bay Area of China [J]. Ecology and Environment, 2022, 31(8): 1510-1520. |
[13] | CHEN Wenyu, XIA Lihua, XU Guoliang, YU Shiqin, CHEN Hang, CHEN Jinfeng. Dynamic Variation of NDVI and Its Influencing Factors in the Pearl River Basin from 2000 to 2020 [J]. Ecology and Environment, 2022, 31(7): 1306-1316. |
[14] | LI Menghua, HAN Yingjuan, ZHAO Hui, WANG Yunxia. Analysis on Spatial-temporal Variation Characteristics and Driving Factors of Fractional Vegetation Cover in Ningxia Based on Geographical Detector [J]. Ecology and Environment, 2022, 31(7): 1317-1325. |
[15] | SUN Mengxin, ZHANG Yue, XIN Yu, ZHONG Dingjie, YANG Cunjian. Changes of Vegetation Phenology and Its Response to Climate Change in the West Sichuan Plateau in the Past 20 Years [J]. Ecology and Environment, 2022, 31(7): 1326-1339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn