Ecology and Environment ›› 2022, Vol. 31 ›› Issue (9): 1783-1793.DOI: 10.16258/j.cnki.1674-5906.2022.09.008
• Research Articles • Previous Articles Next Articles
XIAO Yihua1(), FU Zhigao1, XU Han1, SHI Xin1, TANG Haiming2, CHEN Bufeng1
Received:
2022-05-22
Online:
2022-09-18
Published:
2022-11-07
肖以华1(), 付志高1, 许涵1, 史欣1, 唐海明2, 陈步峰1
作者简介:
肖以华(1976年生),男,副研究员,主要从事城市森林生态效益监测研究等。E-mail: jxxiaoyihua@126.com
基金资助:
CLC Number:
XIAO Yihua, FU Zhigao, XU Han, SHI Xin, TANG Haiming, CHEN Bufeng. Effects of Urbanization on Leaf Functional Traits of Different Functional Groups in Pearl River Delta[J]. Ecology and Environment, 2022, 31(9): 1783-1793.
肖以华, 付志高, 许涵, 史欣, 唐海明, 陈步峰. 城市化对珠江三角洲不同功能群植物叶片功能性状的影响[J]. 生态环境学报, 2022, 31(9): 1783-1793.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.09.008
研究区名称 Site | 郁闭度 Canopy density | 平均林龄 Averageage/ a | 平均胸径 Averge diameter at breast height/cm | 平均树高Averge height/ m | 林分密度 Stand density/ (plant·hm-2) | 坡度 Slope | 经度和纬度 Longitude and latitude | 海拔 Elevation/ m |
---|---|---|---|---|---|---|---|---|
广州帽峰山森林公园 Guangzhou Maofengshan forest park | 0.78 | 80 | 22.1 | 12.6 | 3325 | 23 | 113°28′22″E, 23°17′32″N | 153 |
从化流溪河森林公园 Conghua Maofengshan forest park | 0.85 | 85 | 24.3 | 13.5 | 3000 | 25 | 113°48′31″E, 23°44′4″N | 390 |
新丰云髻山自然保护区 Xinfeng Yunjishan Nature Reserve | 0.8 | 85 | 22.9 | 13.2 | 3100 | 28 | 114°9′42″E, 24°5′16″N | 378 |
Table 1 Characteristics of forests site and stand structure along urban-rural gradient
研究区名称 Site | 郁闭度 Canopy density | 平均林龄 Averageage/ a | 平均胸径 Averge diameter at breast height/cm | 平均树高Averge height/ m | 林分密度 Stand density/ (plant·hm-2) | 坡度 Slope | 经度和纬度 Longitude and latitude | 海拔 Elevation/ m |
---|---|---|---|---|---|---|---|---|
广州帽峰山森林公园 Guangzhou Maofengshan forest park | 0.78 | 80 | 22.1 | 12.6 | 3325 | 23 | 113°28′22″E, 23°17′32″N | 153 |
从化流溪河森林公园 Conghua Maofengshan forest park | 0.85 | 85 | 24.3 | 13.5 | 3000 | 25 | 113°48′31″E, 23°44′4″N | 390 |
新丰云髻山自然保护区 Xinfeng Yunjishan Nature Reserve | 0.8 | 85 | 22.9 | 13.2 | 3100 | 28 | 114°9′42″E, 24°5′16″N | 378 |
功能群 Functional groups | 中文名 Chinese name | 拉丁名 Latin name |
---|---|---|
草本 Herb | 淡竹叶 | Lophatherum gracile |
金毛狗 | Cibotium barometz | |
华山姜 | Alpinia chinensis | |
乌毛蕨 | Blechnum orientale | |
灌木 Shrub | 罗伞树 | Ardisia quinquegona |
鼠刺 | Itea chinensis | |
九节 | Psychotria rubra | |
红鳞蒲桃 | Syzyglum hancei | |
秤星树 | Ilex asprella | |
乔木 Tree | 黄杞 | Engelhardtia roxburghiana |
枫香 | Liquidambar formosana | |
猴耳环 | Pithecellobium clypearia | |
黄樟 | Cinnamomum porrectum | |
华润楠 | Machilus chinensis | |
木荷 | Schima superba | |
锥 | Castanopsis chinensis | |
楝叶吴茱萸 | Evodia glabrifolia |
Table 2 Basic information of dominant species of different plant functional groups along urban-rural gradient
功能群 Functional groups | 中文名 Chinese name | 拉丁名 Latin name |
---|---|---|
草本 Herb | 淡竹叶 | Lophatherum gracile |
金毛狗 | Cibotium barometz | |
华山姜 | Alpinia chinensis | |
乌毛蕨 | Blechnum orientale | |
灌木 Shrub | 罗伞树 | Ardisia quinquegona |
鼠刺 | Itea chinensis | |
九节 | Psychotria rubra | |
红鳞蒲桃 | Syzyglum hancei | |
秤星树 | Ilex asprella | |
乔木 Tree | 黄杞 | Engelhardtia roxburghiana |
枫香 | Liquidambar formosana | |
猴耳环 | Pithecellobium clypearia | |
黄樟 | Cinnamomum porrectum | |
华润楠 | Machilus chinensis | |
木荷 | Schima superba | |
锥 | Castanopsis chinensis | |
楝叶吴茱萸 | Evodia glabrifolia |
Figure 3 Effects of urbanization on Maximum photosynthetic rate, Chlorophyll content, Photosynthetic phosphorus use efficiency, Photosynthetic nitrogen use efficiency
叶性状 Leaf traits | lgSLA | lgLT | lgLTD | lgLPC | lgLNC | lgLMDC | lgN:P | lgAmax | lgCHL | lgPNUE | lgPPUE |
---|---|---|---|---|---|---|---|---|---|---|---|
lgSLA | 1 | ||||||||||
lgLT | -0.300* | 1 | |||||||||
lgLTD | -0.792** | 0.338** | 1 | ||||||||
lgLPC | 0.296* | -0.198** | -0.163** | 1 | |||||||
lgLNC | 0.285* | -0.123* | -0.200** | 0.620** | 1 | ||||||
lgLMDC | -0.398* | 0.100* | 0.324* | -0.026 | -0.045 | 1 | |||||
lgN:P | -0.019 | 0.09 | -0.039 | -0.252 | 0.419** | 0.101 | 1 | ||||
lgAmax | 0.464** | 0.004 | -0.108 | 0.104 | 0.316** | -0.154 | -0.710** | 1 | |||
lgCHL | -0.017 | 0.062 | 0.004 | -0.081 | 0.086 | -0.067 | -0.292* | -0.066 | 1 | ||
lgPNUE | 0.307* | -0.326** | -0.049 | -0.028 | 0.312** | -0.035 | 0.387** | 0.854** | 0.172 | 1 | |
lgPPUE | 0.019 | -0.042 | -0.068 | 0.222** | 0.110* | 0.088 | 0.379** | 0.062 | 0.013 | 0.344** | 1 |
Table 3 Pearson correlation coefficients among leaf traits along urban-rural gradient
叶性状 Leaf traits | lgSLA | lgLT | lgLTD | lgLPC | lgLNC | lgLMDC | lgN:P | lgAmax | lgCHL | lgPNUE | lgPPUE |
---|---|---|---|---|---|---|---|---|---|---|---|
lgSLA | 1 | ||||||||||
lgLT | -0.300* | 1 | |||||||||
lgLTD | -0.792** | 0.338** | 1 | ||||||||
lgLPC | 0.296* | -0.198** | -0.163** | 1 | |||||||
lgLNC | 0.285* | -0.123* | -0.200** | 0.620** | 1 | ||||||
lgLMDC | -0.398* | 0.100* | 0.324* | -0.026 | -0.045 | 1 | |||||
lgN:P | -0.019 | 0.09 | -0.039 | -0.252 | 0.419** | 0.101 | 1 | ||||
lgAmax | 0.464** | 0.004 | -0.108 | 0.104 | 0.316** | -0.154 | -0.710** | 1 | |||
lgCHL | -0.017 | 0.062 | 0.004 | -0.081 | 0.086 | -0.067 | -0.292* | -0.066 | 1 | ||
lgPNUE | 0.307* | -0.326** | -0.049 | -0.028 | 0.312** | -0.035 | 0.387** | 0.854** | 0.172 | 1 | |
lgPPUE | 0.019 | -0.042 | -0.068 | 0.222** | 0.110* | 0.088 | 0.379** | 0.062 | 0.013 | 0.344** | 1 |
Figure 4 Effects of urbanization on maximum photosynthetic rate (Amax) vs. specific leaf area, Amax vs. N:P, Amax vs. Photosynthetic nitrogen use efficiency and Amax vs. leaf nitrogen content SLA: Specific leaf area, N:P: ratio of nitrogen and phosphate, PNUE: Photosynthetic nitrogen use efficiency, LNC: Leaf nitrogen content, Amax: Maximum photosynthetic rate, U: Urban, S: Suburban, R: Rural
载荷 Loading | 比叶面积SLA | 叶厚度 LT | 叶组织密度LTD | 叶磷含量LPC | 叶氮含量LNC | 叶干物质含量LDMC | 叶氮磷比N:P | 单位面积最大光合速率Amax | 叶绿素含量CHL | 光合氮利用效率PNUE | 光合磷利用效率PPUE | 城市化Urbanization |
---|---|---|---|---|---|---|---|---|---|---|---|---|
主成分1 Principal component 1 | -0.86 | 0.83 | 0.74 | -0.25 | -0.88 | 0.52 | 0.29 | -0.47 | 0.54 | -0.19 | 0.23 | 0.18 |
主成分2 Principal component 2 | 0.29 | -0.13 | 0.21 | -0.47 | 0.21 | 0.17 | 0.36 | 0.82 | 0.37 | 0.84 | 0.34 | -0.49 |
Table 4 Loadings of leaf functional traits in principal components analyses
载荷 Loading | 比叶面积SLA | 叶厚度 LT | 叶组织密度LTD | 叶磷含量LPC | 叶氮含量LNC | 叶干物质含量LDMC | 叶氮磷比N:P | 单位面积最大光合速率Amax | 叶绿素含量CHL | 光合氮利用效率PNUE | 光合磷利用效率PPUE | 城市化Urbanization |
---|---|---|---|---|---|---|---|---|---|---|---|---|
主成分1 Principal component 1 | -0.86 | 0.83 | 0.74 | -0.25 | -0.88 | 0.52 | 0.29 | -0.47 | 0.54 | -0.19 | 0.23 | 0.18 |
主成分2 Principal component 2 | 0.29 | -0.13 | 0.21 | -0.47 | 0.21 | 0.17 | 0.36 | 0.82 | 0.37 | 0.84 | 0.34 | -0.49 |
Figure 5 Results of principle component analyses (PCA) of leaf functional traits along urban-rural gradient T: tree; S: shrub; H: herb;u:urban, s: suburban, r: rural
[1] |
CALFAPIETRA C, PEÑUELAS J, NIINEMETS Ü, 2015. Urban plant physiology: adaptation-mitigation strategies under permanent stress[J]. Trends in plant science, 20(2): 72-75.
DOI PMID |
[2] |
CORNELISSEN J H C, LAVOREL S, GARNIER E, et al., 2003. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 51: 335-380.
DOI URL |
[3] |
DOMINGUES T F, MARTINELLI L A, EHLERINGER J R, 2007. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia Brazil[J]. Plant Ecology, 193(1): 101-112.
DOI URL |
[4] |
DOU H Y, ZHAO X Y, 2011. Climate change and its human dimensions based on GIS and meteorological statistics in Pearl River Delta, Southern China[J]. Meteorological Applications, 18(1): 111-122.
DOI URL |
[5] |
FENN M E, POTH M A, JOHNSON D W, 1996. Evidence for nitrogen saturation in the San Bernardino Mountains in Southern California[J]. Forest Ecology and Management, 82(1-3): 211-230.
DOI URL |
[6] |
FANG Y T, YOH M, KOBA K, et al., 2011. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China[J]. Global Change Biology, 17(2): 872-885.
DOI URL |
[7] |
GOLUBIEWSKI N E, 2006. Urbanization increases grassland carbon pools: Effects of landscaping in Colorado’s front range[J]. Ecology Application, 16(2): 555-571.
DOI URL |
[8] |
GÜSEWELL S, 2004. N: P ratios in terrestrial plants: Variation and functional significance[J]. New Phytologist, 164(2): 243-266.
DOI URL |
[9] |
HAN W X, FANG J Y, GUO D L, et al., 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 168: 377-385.
PMID |
[10] |
HIKOSAKA K, SHIGENO A, 2009. The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity[J]. Oecologia, 160(3): 443-451.
DOI PMID |
[11] | KIMM H, RYU Y, 2015. Seasonal variations in photosynthetic parameters and leaf area index in an urban park[J]. Urban Forestry & Urban Greening, 14(4): 1059-1067. |
[12] |
LI L, MCCORMACK M L, MA C G, et al., 2015. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecology letters, 18: 899-906.
DOI PMID |
[13] |
LI Y R, LIU J Y, CHEN G Y, et al., 2014. Water-use efficiency of four native trees under CO2 enrichment and N addition in subtropical model forest ecosystems[J]. Journal of Plant Ecology, 8(4): 411-419.
DOI URL |
[14] |
LIU N, GUAN L L, SUN F F, et al., 2014. Alterations of chemical composition, construction cost and payback time in needles of Masson pine (Pinus massoniana L.) trees grown under pollution[J]. Journal of plant Research, 127(4): 491-501.
DOI URL |
[15] |
MAGILL A H, ABER J D, CURRIE W S, et al., 2004. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA[J]. Forest Ecology and Management, 196(1): 7-28.
DOI URL |
[16] | NOWAK D J, MCHALE P J, IBARRA M, et al., 1998. Modeling the effects of urban vegetation on air pollution[M]. In Air pollution modeling and its application XII. Boston, MA: Springer. |
[17] |
ORDOÑEZ J C, BODEGOM P M, WITTE J P M, et al., 2009. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility[J]. Global Ecology and Biogeography, 18: 137-149.
DOI URL |
[18] |
OSONE Y, TATENO M, 2005. Nitrogen absorption by roots as a cause of interspecific variations in leaf nitrogen concentration and photosynthetic capacity[J]. Functional Ecology, 19(3): 460-470.
DOI URL |
[19] |
QUIGLEY M F, 2002. Franklin Park: 150 years of changing design, disturbances, and impact on tree growth[J]. Urban Ecosystem, 6(3): 223-235.
DOI URL |
[20] |
QUIGLEY M F, 2004. Street trees and rural conspecifics: Will long-lived trees reach full size in urban conditions?[J]. Urban Ecosystem, 7(2): 29-39.
DOI URL |
[21] |
REICH P B, 2014. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto[J]. Journal of Ecology, 102(2): 275-301.
DOI URL |
[22] |
REICH P B, WRIGHT I J, CAVENDER-BARES J, et al., 2003. The evolution of plant functional variation: Traits, spectra, and strategies[J]. International Journal of Plant Sciences, 164(3): S143-S164.
DOI URL |
[23] |
SCOFFONI C, RAWLS M, MCKOWN A, et al., 2011. Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture[J]. Plant Physiology, 156(2): 832-843.
DOI PMID |
[24] |
SHANG B, XU Y S, DAI L L, et al., 2019. Elevated ozone reduced leaf nitrogen allocation to photosynthesis in poplar[J]. Science of the Total Environment, 657: 169-178.
DOI URL |
[25] |
THOMAS R B, SPAL S E, SMITH K R, et al., 2013. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act[J]. Proceedings of the National Academy of Sciences, 110(38): 15319-15324.
DOI URL |
[26] | WANG X M, LIN W S, YANG L M, et al., 2007. A numerical study of influences of urban land-use change on ozone distribution over the Pearl River Delta Region, China[J]. Tellus B, 59B: 633-641. |
[27] |
WILLIAMS N S, HAHS A K, VESK P A, 2015. Urbanisation, plant traits and the composition of urban floras[J]. Perspectives in Plant Ecology, Evolution and Systematics, 17(1): 78-86.
DOI URL |
[28] | WILSON P J, THOMPSON K, HODGSON J G, 1999. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 143(1): 55-162. |
[29] |
WRIGHT I J, GROOM P K, LAMONT B B, 2004. Leaf traits relationships in Australian plant species[J]. Functional Plant Biology, 31(5): 551-558.
DOI URL |
[30] |
WRIGHT J P, SUTTON-GRIER A, 2012. Does the leaf economic spectrum hold within local species pools across varying environmental conditions?[J]. Functional Ecology, 26(6): 1390-1398.
DOI URL |
[31] |
XIAO Y H, TONG F C, KUANG Y W, et al., 2014. Distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in forest soils from urban to rural areas in the Pearl River Delta of southern China[J]. International Journal of Environmental Research and Public Health, 11(3): 2642-2656.
DOI PMID |
[32] |
YANG J, CI X Q, LU M M, et al., 2014. Functional traits of tree species with phylogenetic signal co-vary with environmental niches in two large forest dynamics plots[J]. Journal of Plant Ecology, 7(2): 115-125.
DOI URL |
[33] |
ZANDALINAS S I, MITTLER R, BALFAGÓN D, et al., 2018. Plant adaptations to the combination of drought and high temperatures[J]. Physiologia plantarum, 162(1): 2-12.
DOI URL |
[34] |
ZHAO S Q, LIU S G, ZHOU D C, 2016. Prevalent vegetation growth enhancement in urban environment[J]. Proceedings of the National Academy of Sciences, 113(22): 6313-6318.
DOI URL |
[35] |
ZISKA L H, BUNCE J A, GOINS E W, 2004. Characterization of an urban-rural CO2/temperature gradient and associated changes in initial plant productivity during secondary succession[J]. Oecologia, 139(3): 454-458.
PMID |
[36] | 列淦文, 薛立, 2014. 臭氧与其他环境因子对植物的交互作用[J]. 生态学杂志, 33(6): 1678-1687. |
LIE G W, XUE L, 2014. Interactions of ozone stress and other environmental factors on plants[J]. Chinese Journal of Ecology, 33(6): 1678-1687. | |
[37] | 刘文亭, 卫智军, 吕世杰, 等, 2016. 内蒙古荒漠草原短花针茅叶片功能性状对不同草地经营方式的响应[J]. 生态环境学报, 25(3): 385-392. |
LIU W T, WEI Z J, LÜ S J, et al., 2016. Response of grassland using modes to leaf trait of Stipa breviflora in desert steppe of Inner Mongolia[J]. Ecology and Environmental Sciences, 25(3): 385-392 | |
[38] | 刘宇, 2009. 广东省二氧化碳排放现状及对策[J]. 开放导报 (5): 40-43. |
LIU Y, 2009. On current CO2 emission in Guangdong and policy trends[J]. China Opening Herald (5): 40-43. | |
[39] | 舒展, 张晓紊, 陈娟, 等, 2010. 叶绿素含量测定的简化[J]. 植物生理学通讯, 46(4): 399-402. |
SHU Z, ZHANG X X, CHEN J, et al., 2010. The simplification of chlorophyll content measurement[J]. Plant Physiology Communications, 46(4): 399-402. | |
[40] |
刘洋, 张健, 陈亚梅, 等, 2013. 氮磷添加对巨桉幼苗生物量分配和C:N:P化学计量特征的影响[J]. 植物生态学报, 37(10): 933-941.
DOI |
LIU Y, ZHANG J, CHEN Y M, et al., 2013. Effect of nitrogen and phosphorus fertilization on biomass allocation and C:N:P stoichiometric characteristics of Eucalyptus grandis seedlings[J]. Chinese Journal of Plant Ecology, 37(10): 933-941.
DOI URL |
|
[41] | 孙梅, 田昆, 张贇, 等, 2017. 植物叶片功能性状及其环境适应研究[J]. 植物科学学报, 35(6): 940-949. |
SUN M, TIAN K, ZHANG Y, et al., 2017. Research on leaf functional traits and their environmental adaptation[J]. Plant Science Journal, 35(6): 940-949. | |
[42] | 陶豫萍, 吴宁, 罗鹏, 等, 2007. 森林植被截留对大气污染物湿沉降的影响[J]. 中国生态农业学报, 15(4): 9-12. |
TAO Y P, WU N, LUO P, et al., 2007. Effect of forest interception on wet pollutant deposition[J]. Chinese Journal of Eco-Agriculture, 15(4): 9-12. | |
[43] |
王常顺, 汪诗平, 2015. 植物叶片性状对气候变化的响应研究进展[J]. 植物生态学报, 39(2): 206-216.
DOI |
WANG C S, WANG S P, 2015. A review of research on responses of leaf traits to climate change[J]. Chinese Journal of Plant Ecology, 39(2): 206-216.
DOI URL |
|
[44] | 王义婧, 李岩, 徐胜, 等, 2019. 高浓度臭氧对美国薄荷 (Monarda didyma L.) 叶片光合及抗性生理特征的影响[J]. 生态学杂志, 38(3): 696-703. |
WANG Y J, LI Y, XU S, et al., 2019. Effects of elevated ozone concentrations on photosynthetic and resistant physiological characteristics of Monarda didyma L. leaves[J]. Chinese Journal of Ecology, 38(3): 696-703. | |
[45] | 王亚婷, 范连连, 2011. 热岛效应对植物生长的影响以及叶片形态构成的适应性[J]. 生态学报, 30(20): 5992-5998. |
WANG Y T, FAN L L, 2011. Effect of urban heat island on plant growth and adaptability of leaf morphology constitute[J]. Acta Ecologica Sinica, 30(20): 5992-5998. | |
[46] |
肖迪, 王晓洁, 张凯, 等, 2016. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响[J]. 植物生态学报, 40(7): 686-701.
DOI |
XIAO D, WANG X J, ZHANG K, et al., 2016. Effects of nitrogen addition on leaf traits of common species in natural Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China[J]. Chinese Journal of Plant Ecology, 40(7): 686-701.
DOI |
|
[47] | 肖以华, 习丹, 佟富春, 等, 2013. 广州市城乡梯度森林公园雨季空气PM2.5浓度及水溶性离子特征[J]. 应用生态学报, 24(10): 2905-2911. |
XIAO Y H, XI D, TONG F C, et al., 2013. Characteristics of rain season atmospheric PM2.5 concentration and its water-soluble ions contents in forest parks along an urban-rural gradient in Guangzhou City of South China[J]. Chinese Journal of Applied Ecology, 24(10): 2905-2911. | |
[48] |
赵新风, 徐海量, 张鹏, 等, 2014. 养分与水分添加对荒漠草地植物钠猪毛菜功能性状的影响[J]. 植物生态学报, 38(2): 134-146.
DOI |
ZHAN X F, XU H L, ZHANG P, et al., 2014. Influence of nutrient and water additions on functional traits of Salsola nitraria in desert grassland[J]. Chinese Journal of Plant Ecology, 38(2): 134-146.
DOI URL |
|
[49] | 张林, 罗天祥, 邓坤枚, 等, 2008. 云南松比叶面积和叶干物质含量随冠层高度的垂直变化规律[J]. 北京林业大学学报, 30(1): 40-44. |
ZHANG L, LUO T X, DENG K M, et al., 2008. Vertical variations in specific leaf area and leaf dry matter content with canopy height in Pinus yunnanensis [J]. Journal of Beijing Forestry University, 30(1): 40-44. | |
[50] | 赵丹, 李锋, 王如松, 2010. 城市地表硬化对植物生理生态的影响研究进展[J]. 生态学报, 30(14): 3923-3932. |
ZHAO D, LI F, WANG R S, 2010. Effects of ground surface hardening on plant eco-physiological processes in urban landscapes[J]. Acta Ecologica Sinica, 30(14): 3923-3932. | |
[51] | 朱济友, 于强, 刘亚培, 等, 2018. 植物功能性状及其叶经济谱对城市热环境的响应[J]. 北京林业大学学报, 40(9): 72-81. |
ZHU J Y, YU Q, LIU Y P, et al., 2018. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 40(9): 72-81. |
[1] | ZHENG Qingzhou, HE Jun, LI Shenzhi, DENG Chengzhi, WU Zhipeng, HUANG Xiaolin, WU Xia. Analysis on the Differences and Influencing Factors of Human Comfort between Urban and Rural Areas in Chongqing [J]. Ecology and Environment, 2023, 32(6): 1089-1097. |
[2] | JIANG Ming, ZHANG Ziyang, LI Tingting, LIN Boji, ZHANG Zhengen, LIAO Tong, YUAN Luan, PAN Suhong, LI Jun, ZHANG Gan. Source Apportionment of Ammonium in Atmospheric PM2.5 in the Pearl River Delta Based on Nitrogen Isotope [J]. Ecology and Environment, 2022, 31(9): 1840-1848. |
[3] | RUAN Huihua, XU Jianhui, ZHANG Feifei. Spatiotemporal Changes of Vegetation and Land Surface Temperature during 2001 and 2020 in the Guangdong-Hong Kong-Macao Greater Bay Area of China [J]. Ecology and Environment, 2022, 31(8): 1510-1520. |
[4] | FAN Keyu, GAO Yuan, LAI Zini, ZENG Yanyi, LIU Qianfu, LI Haiyan, MAI Yongzhan, YANG Wanling, WEI Jingxin, SUN Jinhui, WANG Chao. Characteristics of Microplastic Pollution in Fish in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1590-1598. |
[5] | SU Yongsong, SONG Song, CHEN Ye, YE Ziqiang, ZHONG Runfei, WANG Zhaoyao. Temporal and Spatial Characteristics of Net Anthropogenic Nitrogen Input and Its Influencing Factors in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(8): 1599-1609. |
[6] | LIANG Junfen, CAI Xun, FENG Shanshan, TAO Liang. Evaluation of the Development Degree and Restriction Factors of Agricultural and Rural Modernization in the Pearl River Delta Region [J]. Ecology and Environment, 2022, 31(8): 1680-1689. |
[7] | ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta [J]. Ecology and Environment, 2022, 31(6): 1253-1262. |
[8] | WEN Dian, ZHAO Peihua, CHEN Chuguo, LI Furong, DU Ruiying, HUANG Yongdong, LI Lei, WANG Fuhua. Study on Safety Threshold of Soil Cadmium in the Vegetable Producing Areas of the Pearl River Delta [J]. Ecology and Environment, 2022, 31(3): 603-609. |
[9] | WU Xianwen, CHEN Yingbiao. Ecological Sensitivity Assessment Based on Natural Resource Data [J]. Ecology and Environment, 2021, 30(5): 976-983. |
[10] | HONG Yingying, CHEN Chen, BAO Hongyan, SHEN Jin. Sources and Sensitivity Analysis of Ozone in Spring Over the Southwestern Part of Pearl River Delta Region [J]. Ecology and Environment, 2021, 30(5): 984-994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn