Ecology and Environment ›› 2021, Vol. 30 ›› Issue (5): 984-994.DOI: 10.16258/j.cnki.1674-5906.2021.05.011
• Research Articles • Previous Articles Next Articles
HONG Yingying1(), CHEN Chen2, BAO Hongyan3, SHEN Jin4,*(
)
Received:
2020-12-19
Online:
2021-05-18
Published:
2021-08-06
Contact:
SHEN Jin
通讯作者:
沈劲
作者简介:
洪莹莹(1990年生),女,工程师,硕士,从事空气质量数值模拟研究。E-mail:hongyy3@mail2.sysu.edu.cn
基金资助:
CLC Number:
HONG Yingying, CHEN Chen, BAO Hongyan, SHEN Jin. Sources and Sensitivity Analysis of Ozone in Spring Over the Southwestern Part of Pearl River Delta Region[J]. Ecology and Environment, 2021, 30(5): 984-994.
洪莹莹, 陈辰, 保鸿燕, 沈劲. 珠三角西南部春季臭氧来源与敏感性分析[J]. 生态环境学报, 2021, 30(5): 984-994.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.05.011
Fig. 2 Variations of the 90th percentile of O3-8 h mass concentrations in April at monitoring sites in southwestern cities of Pearl River Delta from 2013 to 2017
O3-8 h质量浓度 O3-8 h mass concentration | 日照时数 Sunshine duration | 相对湿度 Relative humidity | 气温日较差 Daily temperature difference |
---|---|---|---|
江门东湖 Jiangmen Donghu | 0.761 | -0.727 | 0.747 |
中山紫马岭 Zhongshan Zimaling | 0.819 | -0.731 | 0.746 |
珠海吉大 Zhuhai Jida | 0.727 | -0.706 | 0.471 |
珠海斗门 Zhuhai Doumen | 0.634 | -0.776 | 0.768 |
Table 1 Correlation coefficients between daily O3-8 h mass concentrations and meteorological factors in April of 2017
O3-8 h质量浓度 O3-8 h mass concentration | 日照时数 Sunshine duration | 相对湿度 Relative humidity | 气温日较差 Daily temperature difference |
---|---|---|---|
江门东湖 Jiangmen Donghu | 0.761 | -0.727 | 0.747 |
中山紫马岭 Zhongshan Zimaling | 0.819 | -0.731 | 0.746 |
珠海吉大 Zhuhai Jida | 0.727 | -0.706 | 0.471 |
珠海斗门 Zhuhai Doumen | 0.634 | -0.776 | 0.768 |
Fig. 7 Wind rose map for O3 mass concentrations at the representative stations in April of 2017The Radius represents the wind speeds, and the color represents the O3 mass concentration at the wind speed and direction
Fig. 8 Hourly cluster analysis results of the 72-h backward trajectory during the daytime (08:00-20:00) at the representative stations in AprilThe bar graphs in the figures represent the average O3 mass concentrations for each trajectory
[1] |
BAO J Z, YANG X P, ZHAO Z Y, et al., 2015. The spatial-temporal characteristics of air pollution in China from 2001-2014 [J]. International Journal of Environmental Research and Public Health, 12(12): 15875-15887.
DOI URL |
[2] |
BU Q L, HONG Y Y, TAN H B, et al., 2021. The Modulation of Meteorological Parameters on Surface PM2.5 and O3 Concentrations in Guangzhou, China[J]. Aerosol and Air Quality Research, DOI:10.4209/aaqr.2020.03.0084.
DOI |
[3] |
CHEN L, RABITZ H, CONSIDINE D B, et al., 1997. Chemical reaction rate sensitivity and uncertainty in a two-dimensional middle atmospheric ozone model[J]. Journal of Geophysical Research: Atmospheres, 102(D13): 16201-16214.
DOI URL |
[4] |
CIARELLI G, AKSOYOGLU S, EL HADDAD I, et al., 2017. Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments[J]. Atmospheric Chemistry and Physics, 17(12): 1-34.
DOI URL |
[5] |
COLLET S, MINOURA H, KIDOKORO T, et al., 2014. Future year ozone source attribution modeling studies for the eastern and western United States[J]. Journal of the Air and Waste Management Association, 64(10): 1174-1185.
DOI URL |
[6] |
GAO D, XIE M, CHEN X, et al., 2019. Modeling the effects of climate change on surface ozone during summer in the Yangtze River Delta region, China[J]. International Journal of Environmental Research and Public Health, DOI:10.3390/ijerph16091528.
DOI |
[7] |
HE J J, GONG S L, YU Y, et al., 2017. Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities [J]. Environmental pollution, 223: 484-496.
DOI URL |
[8] | HONG S Y, KIM J H, LIM J O, et al., 2006. The WRF single moment microphysics scheme (WSM)[J]. Journal of the Korean Meteorological Society, 42: 129-151. |
[9] |
HOSSEIN S, SAJJAD K, VAHID H, et al., 2018. A novel regression imputation framework for Tehran air pollution monitoring network using outputs from WRF and CAMx models[J]. Atmospheric Environment, 187: 24-33.
DOI URL |
[10] |
HU J, LI Y C, ZHAO T L, et al., 2018. An important mechanism of regional O3 transport for summer smog over the Yangtze River Delta in eastern China[J]. Atmospheric Chemistry and Physics, 18(22): 16239-16251.
DOI URL |
[11] |
JIANG Y C, ZHAO T L, LIU J, et al., 2015. Why does surface ozone peak before a typhoon landing in southeast China?[J]. Atmospheric Chemistry and Physics, 15(23): 13331-13338.
DOI URL |
[12] |
KE L, JACOB D, LIAO H, et al., 2019. Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China [J]. Proceedings of the National Academy of Sciences, 116(2): 422-427.
DOI URL |
[13] |
KUROKAWA J, OHARA T, MORIKAWA T, et al.2013. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2 [J]. Atmospheric Chemistry and Physics, 13(21): 11019-11058.
DOI URL |
[14] |
LIU N W, LIN W L, MA J Z, et al., 2018. Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China[J]. Journal of Environmental Sciences, 77: 291-302.
DOI URL |
[15] |
LIU Y H, WANG H L, JING S G, et al., 2019. Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport[J]. Atmospheric Environment, 215: 116902.
DOI URL |
[16] |
LU K D, FUCHS H, HOFZUMAHAUS A, et al., 2019. Fast photochemistry in wintertime haze: Consequences for pollution mitigation strategies[J]. Environmental Science and Technology, 53(18): 10676-10684.
DOI URL |
[17] |
LU K D, ROHRER F, HOLLAND F, et al., 2012. Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: A missing OH source in a VOC rich atmosphere[J]. Atmospheric Chemistry and Physics, 12(3): 1541-1569.
DOI URL |
[18] |
MCGOWAN H, CLARK A, 2008. Identification of dust transport pathways from Lake Eyre, Australia using Hysplit[J]. Atmospheric Environment, 42(29): 6915-6925.
DOI URL |
[19] | OU J M, ZHENG J Y, LI R R, et al.2015. Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China[J]. Science of the Total Environment, 530-531: 393-402. |
[20] |
SHU L, XIE M, WANG T J, et al., 2016. Integrated studies of a regional ozone pollution synthetically affected by subtropical high and typhoon system in the Yangtze River Delta region, China[J]. Atmospheric Chemistry and Physics, 16(24): 15801-15819.
DOI URL |
[21] |
SINGH A A, AGRAWAL S B, 2017. Tropospheric ozone pollution in India: effects on crop yield and product quality[J]. Environmental Science and Pollution Research, 24(5): 4367-4382.
DOI URL |
[22] |
SONG C B, WU L, XIE Y C, et al., 2017. Air pollution in China: Status and spatiotemporal variations[J]. Environmental Pollution, 227: 334-347.
DOI URL |
[23] |
SONG M D, LIU X G, ZHANG Y H, et al., 2019. Sources and abatement mechanisms of VOCs in southern China[J]. Atmospheric Environment, 201: 28-40.
DOI URL |
[24] |
TANAKA S, 2015. Environmental regulations on air pollution in China and their impact on infant mortality[J]. Journal of Health Economics, 42: 90-103.
DOI URL |
[25] |
TELESNICKI M C, MARTÍNEZ-GHERSA M A, GHERSA C M, 2018. Plant oxidative status under ozone pollution as predictor for aphid population growth: The case of Metopolophium dirhodum (Hemiptera: Aphididae) in Triticum aestivum (Poales: Poaceae)[J]. Biochemical Systematics and Ecology, 77: 51-56.
DOI URL |
[26] |
WANG M, QIN W, CHEN W T, et al., 2020. Seasonal variability of VOCs in Nanjing, Yangtze River Delta: Implications for emission sources and photochemistry[J]. Atmospheric Environment, DOI:10.1016/j. atmosenv. 2019.117254.
DOI |
[27] |
WANG N, LYU X P, DENG X J, et al., 2019. Aggravating O3 pollution due to NOx emission control in eastern China[J]. Science of the Total Environment, 677: 732-744.
DOI URL |
[28] |
WANG T, XUE L K, BRIMBLECOMBE P, et al., 2017. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects[J]. Science of the Total Environment, 575: 1582-1596.
DOI URL |
[29] |
WU J, XU Y, ZHANG B, 2015. Projection of PM2.5 and Ozone Concentration Changes over the Jing-Jin-Ji Region in China[J]. Atmospheric and Oceanic Science Letters, 8(3): 143-146.
DOI URL |
[30] |
XIE Y, DAI H C, ZHANG Y X, et al., 2019. Comparison of health and economic impacts of PM2.5 and ozone pollution in China[J]. Environment International, 130: 104881.
DOI URL |
[31] |
ZHANG Q, ZHENG Y X, TONG D, et al., 2019. Drivers of improved PM2.5 air quality in China from 2013 to 2017 [J]. Proceedings of the National Academy of Sciences, 116(49): 24463-24469.
DOI URL |
[32] |
ZHANG Y H, SU H, ZHONG L J, et al., 2008. Regional ozone pollution and observation-based approach for analyzing ozone-precursor relationship during the PRIDE-PRD2004 campaign[J]. Atmospheric Environment, 42(25): 6203-6218.
DOI URL |
[33] |
ZHANG Y N, XIANG Y R, CHAN L Y, et al., 2011. Procuring the regional urbanization and industrialization effect on ozone pollution in Pearl River Delta of Guangdong, China[J]. Atmospheric Environment, 45(28): 4898-4906.
DOI URL |
[34] |
ZHAO W, FAN S J, GUO H, et al., 2016. Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000-2015 using quantile and multiple line regression models [J]. Atmospheric Environment, 144: 182-193.
DOI URL |
[35] |
ZHONG Z M, ZHENG J Y, ZHU M N, et al., 2018. Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China[J]. Science of the Total Environment, 627: 1080-1092.
DOI URL |
[36] | 洪莹莹, 翁佳烽, 谭浩波, 等, 2021. 珠江三角洲秋季典型O3污染的气象条件及贡献量化[J]. 中国环境科学, 41(1): 1-10. |
HONG Y Y, WENG J F, TAN H B, et al., 2021. Meteorological conditions and contribution quantification of typical ozone pollution during autumn in Pearl River Delta[J]. China Environmental Science, 41(1): 1-10. | |
[37] | 沈劲, 陈多宏, 汪宇, 等, 2018. 基于情景分析的珠三角臭氧与前体物排放关系研究[J]. 生态环境学报, 27(10): 1925-1932. |
SHEN J, CHEN D H, WANG Y, et al., 2018. Study on the relationship between ozone and precursors emission in the Pearl River Delta based on scenario analysis[J]. Ecology and Environmental Sciences, 27(10): 1925-1932. | |
[38] | 沈劲, 何灵, 程鹏, 等, 2019. 珠三角北部背景站臭氧浓度变化特征[J]. 生态环境学报, 28(10): 2006-2011. |
SHEN J, HE L, CHENG P, et al., 2019. Characteristics of ozone concentration variation in the northern background site of the Pearl River Delta[J]. Ecology and Environmental Sciences, 28(10): 2006-2011. | |
[39] | 岳海燕, 顾桃峰, 王春林, 等, 2018. 台风“妮妲”过程对广州臭氧浓度的影响分析[J]. 环境科学学报, 38(12): 4565-4572. |
YUE H Y, GU T F, WANG C L, et al., 2018. Influence of typhoon Nida process on ozone concentration in Guangzhou[J]. Acta Scientiae Circumstantiae, 38(12): 4565-4572. | |
[40] | 张远航, 郑君瑜, 陈长虹, 等, 2020. 中国大气臭氧污染防治蓝皮书(2020年)[R]. 北京:中国环境科学学会臭氧污染控制专业委员会. |
ZHANG Y H, ZHENG J Y, CHEN C H, et al., 2020. China blue book of atmospheric ozone pollution prevention and control (2020)[R]. Beijing:Professional Committee of Ozone Pollution Control, Chinese Society of Environmental Sciences. | |
[41] | 郑君瑜, 张礼俊, 钟流举, 等, 2009. 珠江三角洲大气面源排放清单及空间分布特征[J]. 中国环境科学, 29(5): 455-460. |
ZHENG J Y, ZHANG L J, ZHONG L J, et al., 2020. Area source emission inventory of air pollutant and its spatial distribution characteristics in Pearl River Delta[J]. China Environmental Science, 29(5): 455-460. |
[1] | YAN Xuejun, HAO Saimei, ZHANG Rongrong, QIN Hua, GAO Sulian, WANG Feng, JIN Xianzhong, SUN Youmin, ZHANG Guiqin. Composition Spectrum and Emission Estimation of VOCs from Furniture Malls [J]. Ecology and Environment, 2023, 32(6): 1070-1077. |
[2] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environment, 2023, 32(5): 825-834. |
[3] | LI Chuanfu, ZHU Taochuan, MING Yufei, YANG Yuxuan, GAO Shu, DONG Zhi, LI Yongqiang, JIAO Shuying. Effect of Organic Fertilizer and Desulphurized Gypsum on Soil Aggregates and Organic Carbon and Its Fractions Contents in the Saline-alkali Soil of the Yellow River Delta [J]. Ecology and Environment, 2023, 32(5): 878-888. |
[4] | XU Xiaoyun, RAO Zhihan, JIANG Hongbin, ZHANG Wei, CHEN Chao, YANG Yongan, HU Yanli, WEI Haichuan. Pollution Characteristics and Formation Potential for O3 and SOA of Ambient VOCs in Suining Industrial Zone in Summer [J]. Ecology and Environment, 2023, 32(5): 956-968. |
[5] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[6] | ZHANG Pingjiang, DANG Guofeng. Construction of Ecological Security Pattern of Tao River Basin Based on MCR Model and ant Colony Algorithm [J]. Ecology and Environment, 2023, 32(3): 481-491. |
[7] | WEN Lirong, JIANG Ming, HUANG Bo, YUAN Luan, ZHOU Yan, LU Weimei, ZHANG Ying, LIU Ming, ZHANG Liyun. Analysis of Ozone Pollution Causes and Source Analysis of VOCs in Typical Areas of Pearl River Delta: A Case Study of Zhongshan City [J]. Ecology and Environment, 2023, 32(3): 500-513. |
[8] | QIAN Haiming, ZHANG Yunlin, LI Na, WANG Weijia, SUN Xiao, ZHANG Yibo, SHI Kun, FENG Sheng, GAO Yanghui. High Frequency Monitoring of Water Quality Dynamics for River Drinking Water Source during the Typical Rainfall Process [J]. Ecology and Environment, 2023, 32(3): 579-589. |
[9] | YANG Qili, DOU Weili, LIU Zhiwen, GUO Jing, LÜ Gang. Analysis of Petroleum Hydrocarbon Pollution Characteristics and Influencing Factors Based on N-alkanes Tracing in the River Channel of Fuxin Xihe River [J]. Ecology and Environment, 2023, 32(3): 599-608. |
[10] | FU Chuanbo, DAN Li, TONG Jinhe, CHEN Hong. Characteristics and Potential Source Analysis of Ozone pollution in Haikou City [J]. Ecology and Environment, 2023, 32(2): 331-340. |
[11] | LI Haiyan, YANG Xiaoqin, JAN Meipeng, ZHANG Xiaoran. [J]. Ecology and Environment, 2023, 32(2): 407-420. |
[12] | XIAO Yihua, FU Zhigao, XU Han, SHI Xin, TANG Haiming, CHEN Bufeng. Effects of Urbanization on Leaf Functional Traits of Different Functional Groups in Pearl River Delta [J]. Ecology and Environment, 2022, 31(9): 1783-1793. |
[13] | JIANG Ming, ZHANG Ziyang, LI Tingting, LIN Boji, ZHANG Zhengen, LIAO Tong, YUAN Luan, PAN Suhong, LI Jun, ZHANG Gan. Source Apportionment of Ammonium in Atmospheric PM2.5 in the Pearl River Delta Based on Nitrogen Isotope [J]. Ecology and Environment, 2022, 31(9): 1840-1848. |
[14] | HAO Beibei, WANG Nan, WU Haoping, ZHOU Zhixin, ZHANG Siyi, HE Bin. Research on the Reduction Function of Ecological Ditches on Runoff Pollution from Rice Field in the Pearl River Delta [J]. Ecology and Environment, 2022, 31(9): 1856-1864. |
[15] | WU Haoping, QIN Hongjie, HE Bin, YOU Yi, CHEN Jinfeng, ZOU Chunping, YANG Siyu, HAO Beibei. A Brief Discussion on the Development Trend of the Agricultural Non-point Source Pollution Control Model Based on Carbon Neutrality [J]. Ecology and Environment, 2022, 31(9): 1919-1926. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn