Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (9): 1373-1385.DOI: 10.16258/j.cnki.1674-5906.2025.09.005
• Papers on Carbon Cycling and Carbon Emission Reduction • Previous Articles Next Articles
Received:
2024-11-02
Online:
2025-09-18
Published:
2025-09-05
通讯作者:
*李铌。E-mail: lini_zn@csu.edu.cn
作者简介:
温羽婧(1999年生),女,硕士研究生,主要研究方向为城市低碳规划与空间规划。E-mail: iyan1104@csu.edu.cn
基金资助:
CLC Number:
WEN Yujing, LI Ni. Spatiotemporal Differentiation and Zoning of Carbon Storage in Hilly Areas Based on Topographic Gradients: Take Chang-Zhu-Tan Urban Agglomeration As an Example[J]. Ecology and Environmental Sciences, 2025, 34(9): 1373-1385.
温羽婧, 李铌. 基于地形梯度的丘陵地区碳储量时空分异及分区研究——以长株潭城市群为例[J]. 生态环境学报, 2025, 34(9): 1373-1385.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.09.005
土地利用 类型 | 地上生物量碳密度/ (t·hm−2) | 地下生物量碳密度/ (t·hm−2) | 土壤碳密度/ (t·hm−2) | 死亡有机物碳密度/ (t·hm−2) |
---|---|---|---|---|
耕地 | 17.74 | 49.80 | 99.70 | 1.06 |
林地 | 38.21 | 78.49 | 159.22 | 1.29 |
草地 | 14.83 | 47.37 | 95.95 | 0.75 |
水域 | 22.40 | 79.00 | 0.00 | 0.00 |
建设用地 | 6.67 | 28.39 | 40.24 | 0.00 |
未利用地 | 5.10 | 24.30 | 0.00 | 0.00 |
Table 1 Carbon density of each land use type
土地利用 类型 | 地上生物量碳密度/ (t·hm−2) | 地下生物量碳密度/ (t·hm−2) | 土壤碳密度/ (t·hm−2) | 死亡有机物碳密度/ (t·hm−2) |
---|---|---|---|---|
耕地 | 17.74 | 49.80 | 99.70 | 1.06 |
林地 | 38.21 | 78.49 | 159.22 | 1.29 |
草地 | 14.83 | 47.37 | 95.95 | 0.75 |
水域 | 22.40 | 79.00 | 0.00 | 0.00 |
建设用地 | 6.67 | 28.39 | 40.24 | 0.00 |
未利用地 | 5.10 | 24.30 | 0.00 | 0.00 |
级别 | 高程/m | 坡度/° | 地形起伏度/m | 地形位指数 |
---|---|---|---|---|
1级 | <173 | 0-3.26 | 0-41 | 0.0385-0.2910 |
2级 | 173-375 | 3.26-7.71 | 41-90 | 0.2910-0.5294 |
3级 | 375-672 | 7.71-13.19 | 90-148 | 0.5294-0.8310 |
4级 | 672-1119 | 13.19-20.22 | 148-224 | 0.8310-1.1606 |
5级 | 1119-2073 | 20.22-43.70 | 224-585 | 1.1606-1.8339 |
Table 2 Classification standard of topographic data in Chang-Zhu-tan urban agglomeration
级别 | 高程/m | 坡度/° | 地形起伏度/m | 地形位指数 |
---|---|---|---|---|
1级 | <173 | 0-3.26 | 0-41 | 0.0385-0.2910 |
2级 | 173-375 | 3.26-7.71 | 41-90 | 0.2910-0.5294 |
3级 | 375-672 | 7.71-13.19 | 90-148 | 0.5294-0.8310 |
4级 | 672-1119 | 13.19-20.22 | 148-224 | 0.8310-1.1606 |
5级 | 1119-2073 | 20.22-43.70 | 224-585 | 1.1606-1.8339 |
Figure 7 The area proportion of different topographic gradients in Chang-Zhu-Tan urban agglomeration in 2020 and the change area proportion from 2000 to 2020
年份 | 碳储量/ 106 t | 碳储量变化量/106 t | 土地利用强度 | 土地利用强度变化量 | 影响指数(PI) |
---|---|---|---|---|---|
2000 | 658.26 | - | 235.06 | - | - |
2005 | 656.27 | −2.00 | 235.77 | 0.71 | −2.80 |
2010 | 650.82 | −5.45 | 237.60 | 1.82 | −2.99 |
2015 | 647.58 | −3.24 | 238.72 | 1.12 | −2.88 |
2020 | 644.20 | −3.38 | 239.93 | 1.21 | −2.79 |
Table 3 Vulnerability assessment of land use to carbon storage services
年份 | 碳储量/ 106 t | 碳储量变化量/106 t | 土地利用强度 | 土地利用强度变化量 | 影响指数(PI) |
---|---|---|---|---|---|
2000 | 658.26 | - | 235.06 | - | - |
2005 | 656.27 | −2.00 | 235.77 | 0.71 | −2.80 |
2010 | 650.82 | −5.45 | 237.60 | 1.82 | −2.99 |
2015 | 647.58 | −3.24 | 238.72 | 1.12 | −2.88 |
2020 | 644.20 | −3.38 | 239.93 | 1.21 | −2.79 |
高程分级与坡度分级 | 1级(<173 m) | 2级(173-375 m) | 3级(375-672 m) | 4级(672-1119 m) | 5级(>1119 m) |
---|---|---|---|---|---|
1级 (<3.26°) | 低碳储区(2.14) 较低碳储区(2.33) 一般碳储区(2.08) | 高碳储区 (1.02) | 高碳储区 (1.03) | 较高碳储区 (1.99) | 较高碳储区 (3.80) |
2级 (3.26°-7.71°) | 高碳储区 (1.02) | 较高碳储区(1.10) 高碳储区(1.12) | 较高碳储区(1.87) 高碳储区(1.13) | 较高碳储区(5.47) 高碳储区(1.07) | 较高碳储区 (10.42) |
3级 (7.71°-13.19°) | 高碳储区 (1.03) | 较高碳储区(1.84) 高碳储区(1.13) | 较高碳储区(3.15) 高碳储区(1.14) | 较高碳储区(9.19) 高碳储区(1.08) | 较高碳储区 (17.51) |
4级 (13.19°-20.22°) | 较高碳储区(1.18) 高碳储区(1.02) | 较高碳储区(2.81) 高碳储区(1.12) | 较高碳储区(4.79) 高碳储区(1.13) | 较高碳储区(13.99) 高碳储区(1.07) | 较高碳储区 (47.18) |
5级 (>20.22°) | 较高碳储区 (1.92) | 较高碳储区(4.97) 高碳储区(1.08) | 较高碳储区(8.48) 高碳储区(1.09) | 较高碳储区(24.77) 高碳储区(1.03) | 较高碳储区 (47.18) |
Table 4 Distribution of common advantageous carbon storage areas in elevation and slope of Chang-Zhu-Tan urban agglomeration
高程分级与坡度分级 | 1级(<173 m) | 2级(173-375 m) | 3级(375-672 m) | 4级(672-1119 m) | 5级(>1119 m) |
---|---|---|---|---|---|
1级 (<3.26°) | 低碳储区(2.14) 较低碳储区(2.33) 一般碳储区(2.08) | 高碳储区 (1.02) | 高碳储区 (1.03) | 较高碳储区 (1.99) | 较高碳储区 (3.80) |
2级 (3.26°-7.71°) | 高碳储区 (1.02) | 较高碳储区(1.10) 高碳储区(1.12) | 较高碳储区(1.87) 高碳储区(1.13) | 较高碳储区(5.47) 高碳储区(1.07) | 较高碳储区 (10.42) |
3级 (7.71°-13.19°) | 高碳储区 (1.03) | 较高碳储区(1.84) 高碳储区(1.13) | 较高碳储区(3.15) 高碳储区(1.14) | 较高碳储区(9.19) 高碳储区(1.08) | 较高碳储区 (17.51) |
4级 (13.19°-20.22°) | 较高碳储区(1.18) 高碳储区(1.02) | 较高碳储区(2.81) 高碳储区(1.12) | 较高碳储区(4.79) 高碳储区(1.13) | 较高碳储区(13.99) 高碳储区(1.07) | 较高碳储区 (47.18) |
5级 (>20.22°) | 较高碳储区 (1.92) | 较高碳储区(4.97) 高碳储区(1.08) | 较高碳储区(8.48) 高碳储区(1.09) | 较高碳储区(24.77) 高碳储区(1.03) | 较高碳储区 (47.18) |
[1] |
FANG J Y, CHEN A P, PENG C H, et al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 292(5525): 2320-2322.
DOI PMID |
[2] | GONG J, LIU D Q, ZHANG J X, et al., 2019. Tradeoffs/synergies of multiple ecosystem services based on land use simulation in a mountain-basin area, western China[J]. Ecological Indicators, 99: 283-293. |
[3] | HE Y L, MA J M, ZHANG C S, et al., 2023. Spatio-temporal evolution and prediction of carbon storage in Guilin based on FLUS and InVEST models[J]. Remote Sensing, 15(5): 1445. |
[4] | METZGER M J, ROUNSEVELL M D A, ACOSTA-MICHLIK L, et al., 2006. The vulnerability of ecosystem services to land use change[J]. Agriculture Ecosystems & Environment, 114(1): 69-85. |
[5] | MYEONG S, NOWAK D J, DUGGIN M J, 2006. A temporal analysis of urban forest carbon storage using remote sensing[J]. Remote Sensing of Environment, 101(2): 277-282. |
[6] | NIE X, LU B, CHEN Z P, et al., 2020. Increase or decrease? Integrating the CLUMondo and InVEST models to assess the impact of the implementation of the Major Function Oriented Zone planning on carbon storage[J]. Ecological Indicators, 118: 106708. |
[7] | PENG Y L, CHENG W Y, XU X X, et al., 2024. Analysis and prediction of the spatiotemporal characteristics of land-use ecological risk and carbon storage in Wuhan metropolitan area[J]. Ecological Indicators, 158: 111432. |
[8] | REED W P, KAYE M W, 2020. Bedrock type drives forest carbon storage and uptake across the mid-Atlantic Appalachian Ridge and Valley, U.S.A.[J]. Forest Ecology and Management, 460: 117881. |
[9] |
SCHRÖTER D, CRAMER W, LEEMANS R, et al., 2005. Ecosystem service supply and vulnerability to global change in Europe[J]. Science, 310(5752): 1333-1337.
DOI PMID |
[10] | SUN B Q, DU J Q, CHONG F F, et al., 2023. Spatio-temporal variation and prediction of carbon storage in terrestrial ecosystems in the Yellow River Basin[J]. Remote Sensing, 15(15): 3866. |
[11] | SUN W L, LIU X H, 2020. Review on carbon storage estimation of forest ecosystem and applications in China[J]. Forest Ecosystems, 7(1): 1-14. |
[12] |
WANG G, GUAN D S, XIAO L, et al., 2019. Forest biomass-carbon variation affected by the climatic and topographic factors in Pearl River Delta, South China[J]. Journal of Environmental Management, 232: 781-788.
DOI PMID |
[13] | WANG Y F, LI M Y, JIN G Z, 2024. Exploring the optimization of spatial patterns for carbon sequestration services based on multi-scenario land use/cover changes in the Changchun-Jilin-Tumen region, China[J]. Journal of Cleaner Production, 438: 140788. |
[14] | WANG Z Y, LI X, MAO Y T, et al., 2022. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China[J]. Ecological Indicators, 134: 108499. |
[15] | WOLCH J R, BYRNE J, NEWELL J P, 2014. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’[J]. Landscape and Urban Planning, 125: 234-244. |
[16] | WU F, WANG Z Y, 2023. Assessing the impact of urban land expansion on ecosystem carbon storage: A case study of the Changzhutan metropolitan area, China[J]. Ecological Indicators, 154: 110688. |
[17] | WU Q, WANG L, WANG T Y, et al., 2024. Spatial-temporal evolution analysis of multi-scenario land use and carbon storage based on PLUS-InVEST model: A case study in Dalian, China[J]. Ecological Indicators, 166: 112448. |
[18] | WU S N, LI J Q, ZHOU W M, et al., 2018. A statistical analysis of spatiotemporal variations and determinant factors of forest carbon storage under China’s Natural Forest Protection Program[J]. Journal of Forestry Research, 29(2): 415-424. |
[19] |
YANG Y H, SHI Y, SUN W J, et al., 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Science China-life Sciences, 65(5): 861-895.
DOI PMID |
[20] | YUAN H, ZHANG Z H, FENG D D, et al., 2024. Assessment of the impact of land use/land cover change on carbon storage in Chengdu, China, in the context of carbon peaking and carbon neutrality, 2000-2030[J]. Environment Development and Sustainability, 16(2): 1-24. |
[21] | ZHANG H Y, LI X, LUO Y P, et al., 2024. Spatial heterogeneity and driving mechanisms of carbon storage in the urban agglomeration within complex terrain: Multi-scale analyses under localized SSP-RCP narratives[J]. Sustainable Cities and Society, 109: 105520. |
[22] | ZHANG L, ZHOU G S, JI Y H, et al., 2016. Spatiotemporal dynamic simulation of grassland carbon storage in China[J]. Science China Earth Sciences, 59(10): 1946-1958. |
[23] | ZHU J J, HU X J, XU W Z, et al., 2023. Regional carbon stock response to land use structure change and multi-scenario prediction: A case study of Hunan province, China[J]. Sustainability, 15(16): 12178. |
[24] | ZHU M, FENG Q, QIN Y Y, et al., 2019. The role of topography in shaping the spatial patterns of soil organic carbon[J]. Catena, 176: 296-305. |
[25] | 巴曙松, 吴大义, 2010. 能源消费、二氧化碳排放与经济增长——基于二氧化碳减排成本视角的实证分析[J]. 经济与管理研究, 31(6): 5-11, 101. |
BA S S, WU D Y, 2010. Empirical evidence of the relation among energy consumption, carbon dioxide emissions and economic growth based on the abatement costs[J]. Research on Economics and Management, 31(6): 5-11, 101. | |
[26] | 陈一溥, 2022. 空间扩张背景下长株潭城市群热环境变化与空间格局优化研究[D]. 长沙: 中南大学. |
CHEN Y B, 2022. Study on thermal environment changes and spatial pattern optimization of Chang-Zhu-Tan City Cluster in the context of spatial expansion[D]. Changsha: Central South University. | |
[27] | 李代超, 卢嘉奇, 谢晓苇, 等, 2022. 碳中和视角下基于主体功能区分类约束的国土空间分区优化模拟——以福建省为例[J]. 生态学报, 42(24): 10111-10126. |
LI D C, LU J Q, XIE X W, et al., 2022. Optimization simulation of land space zoning based on the classification constraints of main functional zones from the perspective of carbon neutrality: A case study of Fujian Province[J]. Acta Ecologica Sinica, 42(24): 10111-10126. | |
[28] | 李倩, 王成军, 冯涛, 等, 2024. 基于SD-PLUS耦合模型的陕西省土地利用变化及碳储量多情景预测[J]. 水土保持学报, 38(3): 195-206, 215. |
LI Q, WANG C J, FENG T, et al., 2024. Multi-scenario prediction of land use change and carbon storage in Shaanxi Province based on the SD-PLUS coupled model[J]. Journal of Soil and Water Conservation, 38(3): 195-206, 215. | |
[29] | 刘金龙, 马程, 王阳, 等, 2013. 基于径向基函数网络的京津冀地区生态系统服务脆弱性评估[J]. 北京大学学报(自然科学版), 49(6): 1040-1046. |
LIU J L, MA C, WANG Y, et al., 2013. Assessing the vulnerability of ecosystem services of Beijing-Tianjin-Hebei Area based on radial basis function network[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6): 1040-1046. | |
[30] | 马勇洁, 仲俊涛, 米文宝, 等, 2023. 基于青海湖流域土地利用多情景模拟预测的碳储量评估及其脆弱性分析[J]. 干旱区资源与环境, 37(10): 46-55. |
MA Y J, ZHONG J T, MI W B, et al., 2023. Assessment and vulnerability analysis on carbon storage based on multi-scenarios simulation and prediction of land use in Qinghai Lake basin[J]. Journal of Arid Land Resources and Environment, 37(10): 46-55. | |
[31] | 糜毅, 李涛, 吴博, 等, 2023. 基于优化模拟的长株潭3+5城市群碳储量时空演变与预测[J]. 环境工程技术学报, 13(5): 1740-1751. |
MI Y, LI T, WU B, et al., 2023. Spatio-temporal evolution and prediction of carbon storage in Chang-Zhu-Tan 3+5 urban agglomeration based on optimization simulation[J]. Journal of Environmental Engineering Technology, 13(5): 1740-1751. | |
[32] | 唐尧, 祝炜平, 张慧, 等, 2015. InVEST模型原理及其应用研究进展[J]. 生态科学, 34(3): 204-208. |
TANG Y, ZHU W P, ZHANG H, et al., 2015. A review on principle and application of the InVEST model[J]. Ecological Science, 34(3): 204-208. | |
[33] | 万海峰, 蒙友波, 陈洋, 等, 2024. 黔中城市群碳储量对土地利用/覆被变化的响应及脆弱性[J]. 水土保持通报, 44(1): 443-452. |
WAN H F, MENG Y B, CHEN Y, et al., 2024. Response of carbon storage to land use/cover changes and vulnerability for Central Guizhou Urban Agglomeration[J]. Bulletin of Soil and Water Conservation, 44(1): 443-452. | |
[34] | 王芳, 周兴, 2012. 人口结构、城镇化与碳排放——基于跨国面板数据的实证研究[J]. 中国人口科学, 26(2): 47-56, 111. |
WANG F, ZHOU X, 2012. Population structure, urbanization and CO2 emission: An empirical study base on cross-country panel data[J]. Chinese Journal of Population Science, 26(2): 47-56, 111. | |
[35] | 王怀毅, 李忠魁, 2024. 基于LUCC的渭河流域生态系统碳储量动态变化及脆弱性分析[J]. 水土保持研究, 31(6): 252-260, 270. |
WANG H Y, LI Z K, 2024. Dynamic changes and vulnerability analysis of carbon storage in the Weihe River basin ecosystem based on LUCC[J]. Research of Soil and Water Conservation, 31(6): 252-260, 270. | |
[36] | 吴双, 马帅, 王慧勇, 等, 2023. 不同海拔梯度南方丘陵山地带生态系统服务价值的时空演变[J]. 生态学杂志, 42(4): 966-974. |
WU S, MA S, WANG H Y, et al., 2023. Spatiotemporal variations of ecosystem service value in the hill and mountain belt of southern China across different altitude gradients[J]. Chinese Journal of Ecology, 42(4): 966-974.
DOI |
|
[37] |
向书江, 张骞, 王丹, 等, 2022. 近20年重庆市主城区碳储量对土地利用/覆被变化的响应及脆弱性分析[J]. 自然资源学报, 37(5): 1198-1213.
DOI |
XIANG S J, ZHANG Q, WANG D, et al., 2022. Response and vulnerability analysis of carbon storage to LUCC in the main urban area of Chongqing during 2000-2020[J]. Journal of Natural Resources, 37(5): 1198-1213. | |
[38] | 徐彩仙, 巩杰, 李焱, 等, 2020. 基于地形梯度的甘肃白龙江流域典型生态系统服务分布特征[J]. 生态学报, 40(13): 4291-4301. |
XU C X, GONG J, LI Y, et al., 2020. Spatial distribution characteristics of typical ecosystem services based on terrain gradients of Bailongjiang Watershed in Gansu[J]. Acta Ecologica Sinica, 40(13): 4291-4301. | |
[39] | 徐丽, 何念鹏, 于贵瑞, 2019. 2010s中国陆地生态系统碳密度数据集[J]. 中国科学数据(中英文网络版), 4(1): 90-96. |
XU L, HE N P, YU G R, 2019. A dataset of carbon density in Chinese terrestrial ecosystems (2010s)[J]. China Scientific Data, 4(1): 90-96. | |
[40] | 杨子豪, 陈德超, 郎峥, 等, 2024. 土地利用变化对生态系统碳储量的影响研究: 以苏州市为例[J]. 环境科学与技术, 47(2): 206-214. |
YANG Z H, CHEN D C, LANG Z, et al., 2024. Study on the impact of land use change on ecosystem carbon storage: Taking Suzhou city as an example[J]. Environmental Science & Technology, 47(2): 206-214. | |
[41] | 喻红, 曾辉, 江子瀛, 2001. 快速城市化地区景观组分在地形梯度上的分布特征研究[J]. 地理科学, 21(1): 64-69. |
YU H, ZENG H, JIANG Z Y, 2001. Study on distribution characteristics of landscape elements along the terrain gradient[J]. Scientia Geographica Sinica, 21(1): 64-69.
DOI |
|
[42] | 张斌, 夏秋月, 2023. 武汉城市圈碳储量的地形梯度效应及脆弱性[J]. 水土保持研究, 30(5): 443-452. |
ZHANG B, XIA Q Y, 2023. Topographic gradient effect and vulnerability analysis of carbon storage in Wuhan urban circle[J]. Research of Soil and Water Conservation, 30(5): 443-452. | |
[43] | 张爽, 高启晨, 张戎, 等, 2024. 基于PLUS-InVEST模型碳储量时空演变及驱动因素分析——以纳帕海流域为例[J]. 中国环境科学, 44(9): 5192-5201. |
ZHANG S, GAO Q C, ZHANG R, et al., 2024. Evaluating the changes and driving factors of carbon storage using the PLUS-InVEST Model: A case study of Napa Sea Basin[J]. China Environmental Science, 44(9): 5192-5201. | |
[44] | 张艺, 2023. 土地利用变化下的长株潭都市圈碳储量时空演变及模拟研究[D]. 长沙: 中南林业科技大学. |
ZHANG Y, 2023. Spatio-temporal evolution and simulation of carbon storage based on land use change in Chang-Zhu-Tan Metropolitan circle[D]. Changsha: Central South University of Forestry and Technology. | |
[45] | 张哲, 时振钦, 朱文博, 等, 2024. 基于InVEST模型的伏牛山地区生态系统碳储量时空变化模拟[J]. 环境科学, 45(4): 2332-2341. |
ZHANG Z, SHI Z Q, ZHU W B, et al., 2024. Simulation of temporal and spatial changes in ecosystem carbon storage in Funiu mountains based on InVEST model[J]. Environmental Science, 45(4): 2332-2341. | |
[46] | 赵艳霞, 武爱彬, 刘欣, 等, 2014. 浅山丘陵区土地利用地形梯度特征与生态服务价值响应[J]. 水土保持研究, 21(3): 141-145. |
ZHAO Y X, WU A B, LIU X, et al., 2024. Terrain gradient features and response of ecological services value in shallow hilly region[J]. Research of Soil and Water Conservation, 21(3): 141-145. | |
[47] | 周建伟, 罗君, 2023. 安宁河流域土地利用地形梯度分异及其转型驱动因素[J]. 西南农业学报, 36(6): 1318-1327. |
ZHOU J W, LUO J, 2023. Terrain gradient differentiation of land use and driving factors of its change in Anning River Basin[J]. Southwest China Journal of Agricultural Sciences, 36(6): 1318-1327. | |
[48] |
朱文博, 张静静, 崔耀平, 等, 2019. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报, 74(3): 446-459.
DOI |
ZHU W B, ZHANG J J, CUI Y P, et al., 2019. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin[J]. Acta Geographica Sinica, 74(3): 446-459.
DOI |
[1] | WANG Tianwen, LUO Mingliang, BAI Leichao. Dynamic Changes and Trade-off-Synergy Analysis of Ecosystem Services in the Jialing River Basin [J]. Ecology and Environmental Sciences, 2025, 34(6): 888-901. |
[2] | ZHANG Hongbo, YIN Ban, LI Chunyong, CUI Songyun, HE Yan, LI Xiaohong, DENG Lixian. Characteristics and Drivers of the Dynamic Evolution of Water Conservation Function in the Honghe River Basin (China Section) in the Last 40 Years [J]. Ecology and Environmental Sciences, 2025, 34(4): 556-569. |
[3] | LI Man, WU Dongli, HE Hao, YU Huijie, ZHAO Lin, LIU Cong, HU Zhenghua, LI Qi. Spatio-temporal Evolution and Driving Factors of Carbon Storage in the Yellow River Basin from 1990 to 2020 [J]. Ecology and Environmental Sciences, 2025, 34(3): 333-344. |
[4] | ZHANG Ji, YANG Shiqi, ZHAO Lei, FENG Jieling, CHEN Yanying. Spatiotemporal Evolution Characteristics of Habitat Quality in the One Belt and Three Barriers Region of Chongqing City Based on the InVEST Model [J]. Ecology and Environmental Sciences, 2025, 34(2): 167-180. |
[5] | MA Yuewei, CHEN Yumei, ZHANG Shenglan, GUI Yali, CHEN Yanmei. Coupling and Coordination of Habitat Quality and Human Activity Intensity in Jiajin Mountains Giant Panda Sanctuary [J]. Ecology and Environmental Sciences, 2025, 34(2): 197-208. |
[6] | TANG Jianting, YUAN Jie, CHEN Zongyan, LI Xiaoyan, SUN Ziting. Study on Land Use Change and Carbon Stock on the South Slope of Qilian Mountains [J]. Ecology and Environmental Sciences, 2024, 33(9): 1353-1361. |
[7] | ZHANG Wen, ZHENG Tian, LIU Yongchao, ZHONG Jie, SU Jie, LI Jialin. Identification of Key Areas for Ecological Protection and Restoration in Zhejiang Province Based on Circuit Theory [J]. Ecology and Environmental Sciences, 2024, 33(9): 1482-1494. |
[8] | WANG Wen, HOU Qingqing, PEI Tingting. Impact of the Slope on Ecosystem Services in Hedong District of Gansu Province, China [J]. Ecology and Environmental Sciences, 2024, 33(7): 1117-1129. |
[9] | YANG Feifan, HE Hao. Ecological Environment Assessment and Ecological Zoning Construction in the Ili River Valley Based on EVI-ESV [J]. Ecology and Environmental Sciences, 2024, 33(4): 655-664. |
[10] | LUO Guangyu, WANG Zhiyuan. Research on the Carbon Storage Effect and Driving Factors of the Evolution of Territorial Space Pattern in Dongting Lake Ecological and Economic Zone [J]. Ecology and Environmental Sciences, 2024, 33(11): 1672-1685. |
[11] | GAO Wenming, SONG Qian, ZHANG Haoxiang, WANG Shiru. Analysis of Spatial and Temporal Changes and Driving Factors of Ecological Vulnerability in Sanjiangyuan Region [J]. Ecology and Environmental Sciences, 2024, 33(10): 1648-1660. |
[12] | SONG Denghui, FU Di, LI Jianqiang, FU Yishan, XING Xuexia, TIAN Yuan. Estimation of Carbon Loss and Carbon Emissions Caused by Prescribed Burning in Pinus yunnanensis Forest [J]. Ecology and Environmental Sciences, 2023, 32(8): 1376-1383. |
[13] | ZHANG Pingjiang, DANG Guofeng. Construction of Ecological Security Pattern of Tao River Basin Based on MCR Model and ant Colony Algorithm [J]. Ecology and Environmental Sciences, 2023, 32(3): 481-491. |
[14] | CHEN Zhizhong, ZAN Mei, YANG Xuefeng, DONG Yu. Prediction of Forest Vegetation Carbon Storage in Xinjiang [J]. Ecology and Environmental Sciences, 2023, 32(2): 226-234. |
[15] | WANG Chengwu, LUO Junjie, TANG Honghu. Analysis on the Driving Force of Spatial and Temporal Differentiation of Carbon Storage in the Taihang Mountains Based on InVEST Model [J]. Ecology and Environmental Sciences, 2023, 32(2): 215-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn