Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (9): 1361-1372.DOI: 10.16258/j.cnki.1674-5906.2025.09.004
• Papers on Carbon Cycling and Carbon Emission Reduction • Previous Articles Next Articles
XU Da1,2(), GONG Chengcheng3, ZHANG Zaiyong1,2,*(
), RAN Bin1,2, HU Yue1,2, WANG Hanbing4,5, CHEN Chen4,5
Received:
2024-09-23
Online:
2025-09-18
Published:
2025-09-05
许达1,2(), 宫程程3, 张在勇1,2,*(
), 冉彬1,2, 胡月1,2, 王寒冰4,5, 陈晨4,5
通讯作者:
*E-mail: zaiyongzhang@126.com
作者简介:
许达(1999年生),男,硕士研究生,研究方向为旱区水文生态环境演化与调控技术。E-mail: 305137025@qq.com
基金资助:
CLC Number:
XU Da, GONG Chengcheng, ZHANG Zaiyong, RAN Bin, HU Yue, WANG Hanbing, CHEN Chen. The Spatiotemporal Variation Patterns of Vegetation Net Primary Productivity and Its Influencing Factors in the Mu Us Sandy Land[J]. Ecology and Environmental Sciences, 2025, 34(9): 1361-1372.
许达, 宫程程, 张在勇, 冉彬, 胡月, 王寒冰, 陈晨. 毛乌素沙地植被净初级生产力的时空变化规律及影响因素[J]. 生态环境学报, 2025, 34(9): 1361-1372.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.09.004
判据 | 交互作用 |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)]<q(X1∩X2)<Max[q(X1), q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max[q(X1), q(X2)] | 双因子增强 |
q(X1∩X2)=q(X1)+q(X2) | 独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
Table 1 Criteria for judging interaction effects
判据 | 交互作用 |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)]<q(X1∩X2)<Max[q(X1), q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max[q(X1), q(X2)] | 双因子增强 |
q(X1∩X2)=q(X1)+q(X2) | 独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
Figure 4 Spatial variation patterns of vegetation multi-year averages NPP, change rates, and coefficients of variation in the Mu Us Sandy Land from 2001 to 2023
波动等级 | 变异系数 | 面积占比/% |
---|---|---|
最低波动 | 0-0.08 | 0.02 |
较低波动 | 0.08-0.14 | 5.50 |
适中波动 | 0.14-0.20 | 46.6 |
较高波动 | 0.20-0.26 | 41.2 |
最高波动 | 0.26-1.10 | 6.68 |
Table 2 Classification of vegetation NPP coefficient of variation in the Mu Us Sandy Land
波动等级 | 变异系数 | 面积占比/% |
---|---|---|
最低波动 | 0-0.08 | 0.02 |
较低波动 | 0.08-0.14 | 5.50 |
适中波动 | 0.14-0.20 | 46.6 |
较高波动 | 0.20-0.26 | 41.2 |
最高波动 | 0.26-1.10 | 6.68 |
影响因素 | 影响因素的绝对贡献在不同区间的面积占比/% | ||||
---|---|---|---|---|---|
−1.00-0 | 0-0.01 | 0.01-0.02 | 0.02-0.04 | 0.04-1.00 | |
人类活动 | 4.10 | 13.6 | 24.5 | 53.5 | 4.30 |
降水 | 1.16 | 77.0 | 20.2 | 1.48 | 0.16 |
气温 | 27.7 | 67.8 | 3.90 | 0.51 | 0.09 |
实际日照时数 | 11.9 | 83.5 | 4.47 | 0.11 | 0.02 |
空气相对湿度 | 46.7 | 45.6 | 6.30 | 1.26 | 0.14 |
Table 3 Statistical analysis of the absolute contributions of different factors with different interval areas from 2001 to 2020
影响因素 | 影响因素的绝对贡献在不同区间的面积占比/% | ||||
---|---|---|---|---|---|
−1.00-0 | 0-0.01 | 0.01-0.02 | 0.02-0.04 | 0.04-1.00 | |
人类活动 | 4.10 | 13.6 | 24.5 | 53.5 | 4.30 |
降水 | 1.16 | 77.0 | 20.2 | 1.48 | 0.16 |
气温 | 27.7 | 67.8 | 3.90 | 0.51 | 0.09 |
实际日照时数 | 11.9 | 83.5 | 4.47 | 0.11 | 0.02 |
空气相对湿度 | 46.7 | 45.6 | 6.30 | 1.26 | 0.14 |
[1] | CAO D, ZHANG J H, ZHANG T, et al., 2023. Spatiotemporal variations and driving factors of global terrestrial vegetation productivity gap under the changing of climate, CO2, landcover and N deposition[J]. Science of The Total Environment, 880: 162753. |
[2] | GAO N, LIANG W, GOU F, et al., 2024. Assessing the impact of agriculture, coal mining, and ecological restoration on water sustainability in the Mu Us Sandy Land[J]. Science of The Total Environment, 929: 172513. |
[3] | GONG H B, CAO L, DUAN Y F, et al., 2023. Multiple effects of climate changes and human activities on NPP increase in the Three-North Shelter Forest Program area[J]. Forest Ecology and Management, 529: 120732. |
[4] | GUO D, SONG X N, HU R H, et al., 2021. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors[J]. Science of The Total Environment, 775: 145644. |
[5] | GUO Q, FU B H, SHI P L, et al., 2017. Satellite monitoring the spatial-temporal dynamics of desertification in response to climate change and human activities across the Ordos Plateau, China[J]. Remote Sensing, 9(6): 525. |
[6] | HAO L, WANG S, CUI X P, et al., 2021. Spatiotemporal dynamics of vegetation net primary productivity and its response to climate change in Inner Mongolia from 2002 to 2019[J]. Sustainability, 13(23): 13310. |
[7] | HAO X P, WANG X L, MA J Q, et al., 2023. Spatiotemporal characteristic prediction and driving factor analysis of vegetation net primary productivity in central China covering the period of 2001-2019[J]. Land, 12(12): 2121. |
[8] | HOERL A E, KENNARD R W, 1970. Ridge regression: Biased estimation for nonorthogonal problems[J]. Technometrics, 12(1): 55-67. |
[9] | JIA F F, LU R J, GAO S Y, et al., 2015. Holocene aeolian activities in the southeastern Mu Us Desert, China[J]. Aeolian Research, 19(Part B): 267-274. |
[10] | LI G, WU C Y, CHEN Y A, et al., 2023. Increasing temperature regulates the advance of peak photosynthesis timing in the boreal ecosystem[J]. Science of The Total Environment, 882: 163587. |
[11] | LIN J, BO W H, DONG X P, et al., 2024. Evolution of vegetation cover and impacts of climate change and human activities in arid regions of Northwest China: a Mu Us Sandy Land case[J]. Environment, Development and Sustainability, 2024: 1-20. |
[12] | LIU C X, SHI S, WANG T, et al., 2023. Analysis of net primary productivity variation and quantitative assessment of driving forces-A case study of the Yangtze River Basin[J]. Plants, 12(19): 3412. |
[13] | LIU Q Y, ZHANG T L, LI Y Z, et al., 2018. Comparative analysis of fractional vegetation cover estimation based on multi-sensor data in a semi-arid sandy area[J]. Chinese Geographical Science, 29(1): 166-180. |
[14] |
JOSE D M, VINCENT A M, DWARAKISH G S, 2022. Improving multiple model ensemble predictions of daily precipitation and temperature through machine learning techniques[J]. Scientific Reports, 12(1): 4678.
DOI PMID |
[15] | PENG S Z, DING Y X, LIU W Z, et al., 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 11(4): 1931-1946. |
[16] | QI K, ZHU J J, ZHENG X, et al., 2023. Impacts of the world’s largest afforestation program (Three-North Afforestation Program) on desertification control in sandy land of China[J]. GIScience and Remote Sensing, 60(1): 2167574. |
[17] | SUN Z H, MAO Z A, YANG L Y, et al., 2021. Impacts of climate change and afforestation on vegetation dynamic in the Mu Us Desert, China[J]. Ecological Indicators, 129: 108020. |
[18] | WALKER E, BIRCH J B, 1988. Influence measures in ridge regression[J]. Technometrics, 30(2): 221-227. |
[19] | WANG Y S, LIU Y S, 2020. New material for transforming degraded sandy land into productive farmland[J]. Land Use Policy, 92: 104477. |
[20] | WU W C, DE PAUW E, ZUCCA C, 2013. Using remote sensing to assess impacts of land management policies in the Ordos rangelands in China[J]. International Journal of Digital Earth, 6(sup2): 81-102. |
[21] | XIE J L, LU Z X, FENG K, 2022. Effects of climate change and human activities on aeolian desertification reversal in Mu Us Sandy Land, China[J]. Sustainability, 14(3): 1669. |
[22] | XIE S D, MO X G, HU S, et al., 2020. Contributions of climate change, elevated atmospheric CO2 and human activities to ET and GPP trends in the Three-North Region of China[J]. Agricultural and Forest Meteorology, 295: 108183. |
[23] | XU D H, WANG M L, QI Z, et al., 2025. Spatiotemporal characteristics and meteorological driving factors of flash droughts in the Yellow River Basin, China[J]. Ecological Indicators, 177: 113745. |
[24] | XUE Y Y, BAI X Y, ZHAO C W, et al., 2023. Spring photosynthetic phenology of Chinese vegetation in response to climate change and its impact on net primary productivity[J]. Agricultural and Forest Meteorology, 342: 109734. |
[25] | YAN Y C, LIU X P, WEN Y Y, et al., 2019. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China[J]. Ecological Indicators, 103: 542-553. |
[26] | YANG J, HUANG X, 2021. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 13(8): 3097-3925. |
[27] | YIN C H, CHEN X Q, LUO M, et al., 2023. Quantifying the contribution of driving factors on distribution and change of net primary productivity of vegetation in the Mongolian Plateau[J]. Remote Sensing, 15(8): 1986. |
[28] | YU D Y, SHAO H B, SHI P J, et al., 2009. How does the conversion of land cover to urban use affect net primary productivity? A case study in Shenzhen city, China[J]. Agricultural and Forest Meteorology, 149(11): 2054-2060. |
[29] | YUAN X M, GUO B, LU M, 2023. The responses of vegetation NPP dynamics to the influences of climate-human factors on Qinghai-Tibet Plateau from 2000 to 2020[J]. Remote Sensing, 15(9): 2419. |
[30] | ZHANG M M, WU X Q, 2020. The rebound effects of recent vegetation restoration projects in Mu Us Sandy Land of China[J]. Ecological Indicators, 113: 106228. |
[31] | ZHANG Z Y, WANG W K, GONG C C, et al., 2021. Salix psammophila afforestations can cause a decline of the water table, prevent groundwater recharge and reduce effective infiltration[J]. Science of The Total Environment, 780: 146336. |
[32] | ZHAO M, GERUO A, ZHANG J E, et al., 2021. Ecological restoration impact on total terrestrial water storage[J]. Nature Sustainability, 4(1): 56-62. |
[33] | ZHAO N Z, CURRIT N, SAMSON E, 2011. Net primary production and gross domestic product in China derived from satellite imagery[J]. Ecological Economics, 70(5): 921-928. |
[34] | ZHAO Y, CHEN Y A, WU C Y, et al., 2023. Exploring the contribution of environmental factors to evapotranspiration dynamics in the Three-River-Source region, China[J]. Journal of Hydrology, 626(Part A): 130222. |
[35] | 曹艳萍, 庞营军, 贾晓红, 2019. 2001-2016年毛乌素沙地植被的生长状况[J]. 水土保持通报, 39(2): 29-37. |
CAO Y P, PANG Y J, JIA X H, 2019. Vegetation growth in Mu Us Sandy Land from 2001 to 2016[J]. Bulletin of Soil and Water Conservation, 39(2): 29-37. | |
[36] | 柴文雯, 贾夏, 赵永华, 等, 2024. 黄土高原人类活动强度与植被覆盖时空关联性[J]. 生态学报, 44(15): 6708-6721. |
CHAI W W, JIA X, ZHAO Y H, et al., 2024. Spatio-temporal correlation between human activity intensity and vegetation cover on the Loess Plateau[J]. Acta Ecologica Sinica, 44(15): 6708-6721. | |
[37] | 桂子洋, 秦树高, 胡朝, 等, 2021. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 45(6): 583-593. |
GUI Z Y, QIN S G, HU Z, et al., 2021. Foliar condensate absorption and its pathways of two typical shrub species in the Mu Us Desert[J]. Chinese Journal of Plant Ecology, 45(6): 583-593. | |
[38] | 孔俊杰, 刘海新, 王晓, 等, 2024. 气候变化和人类活动对太行山区植被NPP变化的影响[J]. 山东林业科技, 54(3): 8-15, 35. |
KONG J J, LIU H X, WANG X, et al., 2024. Impact of climate change and human activities on vegetation NPP changes in Taihang Mountains[J]. Journal of Shandong Forestry Science and Technology, 54(3): 8-15, 35. | |
[39] | 兰小丽, 孙慧兰, 曹丽君, 等, 2021. 典型干旱区植被净初级生产力的变化特征与气候因子的相关性[J]. 东北林业大学学报, 49(5): 76-83. |
LAN X L, SUN H L, CAO L J, et al., 2021. Variation characteristics and climatic factors of vegetation NPP in typical arid region[J]. Journal of Northeast Foresrty University, 49(5): 76-83. | |
[40] |
刘宪锋, 潘耀忠, 朱秀芳, 等, 2015. 2000-2014年秦巴山区植被覆盖时空变化特征及其归因[J]. 地理学报, 70(5): 705-716.
DOI |
LIU X F, PAN Y Z, ZHU X F, et al., 2015. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors[J]. Acta Geographica Sinica, 70(5): 705-716.
DOI |
|
[41] | 芦鑫, 殷淑燕, 2018. 毛乌素沙地周边地区相对湿度与NDVI变化研究[J]. 西北大学学报(自然科学版), 48(3): 449-458. |
LU X, YIN S Y, 2018. Changes of relative humidity and NDVI in Mu Us peripheral area[J]. Journal of Northwest University (Natural Science Edition), 48(3): 449-458. | |
[42] | 罗玉昌, 2019. 毛乌素沙地气候变化特征分析及对畜牧业的影响[J]. 农家参谋 (19): 138. |
LUO Y C, 2019. Analysis of climate change characteristics in Mu Us Sandy Land and its impact on animal husbandry[J]. The Farmers Consultant (19): 138. | |
[43] |
马彩虹, 刘园园, 杨航, 等, 2023. 宁夏灵武市 “生态-经济” 双网格局演变及互作关系[J]. 应用生态学报, 34(11): 3095-3104.
DOI |
MA C H, LIU Y Y, YANG H, et al., 2023. Evolution and interaction relationship of “eco-economy” dual grid pattern in Lingwu City, Ningxia, China[J]. Chinese Journal of Applied Ecology, 34(11): 3095-3104.
DOI |
|
[44] | 穆少杰, 李建龙, 陈奕兆, 等, 2012. 2001-2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 67(9): 1255-1268. |
MU S J, LIU J L, CHEN Y Z, et al., 2012. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010[J]. Acta Geographica Sinica, 67(9): 1255-1268.
DOI |
|
[45] | 冉彬, 张在勇, 杨京博, 等, 2023. 毛乌素沙地沙蒿凝结水形成规律及其对水均衡的影响[J]. 农业工程学报, 39(8): 111-119. |
RAN B, ZHANG Z Y, YANG J B, et al., 2023. Dew formation characteristics of Artemisia ordosica and its influence on water balance in the Mu Us Sandy Land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 39(8): 111-119. | |
[46] |
石智宇, 王雅婷, 赵清, 等, 2022. 2001-2020年中国植被净初级生产力时空变化及其驱动机制分析[J]. 生态环境学报, 31(11): 2111-2123.
DOI |
SHI Z Y, WANG Y T, ZHAO Q, et al., 2022. The spatiotemporal changes of NPP and its driving mechanisms in China from 2001 to 2020[J]. Ecology and Environmental Sciences, 31(11): 2111-2123. | |
[47] | 王翠萍, 韩小红, 王昊琛, 等, 2023. 1982-2020年毛乌素沙地植被对气候变化的响应[J]. 林业资源管理 (3): 80-89. |
WANG C P, HAN X H, WANG H C, et al., 2023. Responses of vegetation in Mu Us Sandy Land to climate change from 1982 to 2020[J]. Forest Resources Management (3): 80-89. | |
[48] | 王德富, 董凌勃, 李澳, 等, 2024. 毛乌素沙地不同植被恢复类型的土壤碳水效应[J]. 水土保持学报, 38(3): 101-110, 120. |
WANG D F, DONG L B, LI A, et al., 2024. Soil organic carbon and moisture effects of on different vegetation restoration types in the Mu Us Sandy Land[J]. Journal of Soiland Water Conservation, 38(3): 101-110, 120. | |
[49] |
王捷纯, 邓玉娇, 朱怀卫, 等, 2024. 广东省不同生态系统植被NPP时空变化及对气候因子的响应[J]. 生态环境学报, 33(6): 831-840.
DOI |
WANG J C, DENG Y J, ZHU H W, et al., 2024. Spatiotemporal variations of vegetation NPP of different ecosystems in Guangdong Province and its response to climate factors[J]. Ecology and Environmental Sciences, 33(6): 831-840. | |
[50] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
WANG J F, XU C D, 2017. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 72(1): 116-134.
DOI |
|
[51] | 吴丽媛, 神祥金, 刘奕雯, 等, 2024. 青藏高原草本沼泽植被净初级生产力时空变化及其对气候变化的响应[J]. 生态学报, 44(5): 2115-2126. |
WU L Y, SHEN X J, LIU Y W, et al., 2024. Spatio-temporal variation in vegetation net primary productivity and its response to climate change in herbaceous marshes on the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 44(5): 2115-2126. | |
[52] | 徐勇, 黄海艳, 戴强玉, 等, 2023. 西南地区陆地植被生态系统NPP时空演变及驱动力分析[J]. 环境科学, 44(5): 2704-2714. |
XU Y, HUANG H Y, DAI Q Y, et al., 2023. Spatial-temporal variation in net primary productivity in terrestrial vegetation ecosystems and its driving forces in Southwest China[J]. Environmental Science, 44(5): 2704-2714. | |
[53] | 徐勇, 郑志威, 戴强玉, 等, 2022. 顾及时滞效应的西南地区植被NPP变化归因分析[J]. 农业工程学报, 38(9): 297-305, 339. |
XU Y, ZHENG Z W, DAI Q Y, et al., 2022. Attribution analysis of vegetation NPP variation in Southwest China considering time-lag effects[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 38(9): 297-305, 339. | |
[54] | 杨改强, 张志强, 辛鑫, 等, 2023. 山西省耕地NPP时空变化及其气候因子驱动分析[J]. 科学技术与工程, 23(24): 10557-10567. |
YANG G Q, ZHANG Z Q, XIN X, et al., 2023. Spatio-temporal variation of farmland NPP and climate factor-driven analysis in Shanxi Province[J]. Science Technology and Engineering, 23(24): 10557-10567. | |
[55] | 杨楠, 2004. 岭回归分析在解决多重共线性问题中的独特作用[J]. 统计与决策 (3): 14-15. |
YANG N, 2004. The distinctive role of ridge regression analysis in mitigating multicollinearity issues[J]. Statistics and Decision (3): 14-15. | |
[56] | 张子凡, 熊茂秋, 李福杰, 等, 2022. 内蒙古草原自然资源大区植被净初级生产力时空变化及其影响因子分析[J]. 草业科学, 39(12): 2492-2502. |
ZHANG Z F, XIONG M Q, LI F J, et al., 2022. Analysis of the temporal and spatial variations in net primary productivity of vegetation in the grassland region of Inner Mongolia and the factors influencing those changes[J]. Pratacultural Science, 39(12): 2492-2502. |
[1] | LI Dongyi, LI Tingting, XUE Wanyi, XIA Yongzhi, WANG Zhengxiang. Prediction and Analysis of Potential Habitat Distribution of Taxus wallichiana var. Chinensis under Climate Change: A Case Study of Hubei Province [J]. Ecology and Environmental Sciences, 2025, 34(9): 1398-1409. |
[2] | HUANG Yi, LAN Ting, SHENG Jiliang. Changes in Human Activity Intensity on the Spatial and Temporal Distribution of PM2.5 in Chengdu-Chongqing Economic Circle [J]. Ecology and Environmental Sciences, 2025, 34(7): 1111-1120. |
[3] | LIU Zeyuan, WEI Youhai, YAN Xufa, CHENG Liang, HOU Lu, YAN Ziwei, GUO Liangzhi. Impact of Climate Change on the Potential Geographic Distribution of the Invasive Weed Sonchus asper [J]. Ecology and Environmental Sciences, 2025, 34(6): 845-852. |
[4] | ZHANG Yali, HUANG Zhujun, TIAN Yichao, LIN Junliang, QIN Caihuan. Time-lag and Accumulation Responses of Fractional Vegetation Coverage Change to Extreme Climate in Southwestern China [J]. Ecology and Environmental Sciences, 2025, 34(5): 665-677. |
[5] | CHEN Peng, MA Yujun, ZHANG Mengya, CHEN Wanting, JIANG Xiaopeng. Analysis of Vegetation Dynamic in Guangdong Province Based on kNDVI [J]. Ecology and Environmental Sciences, 2025, 34(4): 499-510. |
[6] | YE Junhong, LIU Zhenhuan, LIU Ziyu. Scenarios Simulation of Territorial Space Ecological Restoration Zoning in the Pearl River Delta Urban Agglomeration Area [J]. Ecology and Environmental Sciences, 2025, 34(1): 4-12. |
[7] | GAO Wenming, SONG Qian, ZHANG Haoxiang, WANG Shiru. Selection of Priority Conservation Areas Based on Ecosystem Service Functions and Wildlife Habitat Suitability Evaluation: A Case Study in the Sanjiang-yuan Region [J]. Ecology and Environmental Sciences, 2024, 33(8): 1318-1328. |
[8] | XU Jiale, YANG Xingchuan, ZHAO Wenji, YANG Zhiqiang, ZHONG Yixue, SHI Leyan, MA Pengfei. Evolution Characteristics of Vegetation Coverage in Central and Western Inner Mongolia under the Background of Climate Change [J]. Ecology and Environmental Sciences, 2024, 33(7): 1008-1018. |
[9] | LI Hui, DENG Jiawei, LI Yaxin, MU Yingqi. Impacts of Climate and Land Use Change on Runoff in Typical Basin of Northern Foothills of Qinling Mountains: Case Study of Bahe River Basin [J]. Ecology and Environmental Sciences, 2024, 33(5): 802-811. |
[10] | TIAN Xuchen, WEI Hongling, XIE Shengnan, CHU Qiming, YANG Jing, ZHANG Ying, XIAO Siqiu, TANG Zonghua, LIU Ying, LI Dewen. Potential Geographical Distribution of Acer in Northeast China Based on the MaxEnt Model [J]. Ecology and Environmental Sciences, 2024, 33(4): 509-519. |
[11] | LI Hu, ZHAO Sha, HUANG Fuyi, SU Jianqiang. Variations in Composition and Distribution of Viruses in Soils with Different Human Activity [J]. Ecology and Environmental Sciences, 2023, 32(8): 1433-1439. |
[12] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environmental Sciences, 2023, 32(5): 898-909. |
[13] | HAO Lei, ZHAI Yongguang, QI Wenchao, LAN Qiongqiong. Spatial-temporal Dynamics of Vegetation Carbon Sources/sinks in Inner Mongolia from 2001 to 2020 and Its Response to Climate Change [J]. Ecology and Environmental Sciences, 2023, 32(5): 825-834. |
[14] | LI Hui, LI Bilong, GE Lili, HAN Chenhui, YANG Qian, ZHANG Yuejun. Temporal and Spatial Characteristics of Vegetation Evolution and Topographic Effects in Fenhe River Basin from 2000 to 2021 [J]. Ecology and Environmental Sciences, 2023, 32(3): 439-449. |
[15] | DENG Tianle, XIE Liyong, ZHANG Fengzhe, ZHAO Hongliang, JIANG Yutong. Competition for Growth Space between Barnyard Grass and Rice under Elevated Atmospheric CO2 Concentration [J]. Ecology and Environmental Sciences, 2022, 31(8): 1566-1572. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn