Ecology and Environment ›› 2024, Vol. 33 ›› Issue (10): 1648-1660.DOI: 10.16258/j.cnki.1674-5906.2024.10.016
• Research Article [Environmental Science] • Previous Articles
GAO Wenming(), SONG Qian*(
), ZHANG Haoxiang, WANG Shiru
Received:
2024-07-30
Online:
2024-10-18
Published:
2024-11-15
Contact:
SONG Qian
通讯作者:
宋芊
作者简介:
高文明(1999年生),男,硕士研究生,主要从事生态遥感研究。E-mail: gao1741452965@163.com
基金资助:
CLC Number:
GAO Wenming, SONG Qian, ZHANG Haoxiang, WANG Shiru. Analysis of Spatial and Temporal Changes and Driving Factors of Ecological Vulnerability in Sanjiangyuan Region[J]. Ecology and Environment, 2024, 33(10): 1648-1660.
高文明, 宋芊, 张皓翔, 王士如. 三江源区生态脆弱性时空演变及驱动因素分析[J]. 生态环境学报, 2024, 33(10): 1648-1660.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.10.016
数据名称 | 数据来源 |
---|---|
DEM数据 | 空间地理数据云 ( |
气象数据 | 国家地球系统科学数据中心 (www.geodata.cn) |
土壤数据 | 世界土壤数据库 (www.fao.org) |
归一化植被指数 | 国家青藏高原数据中心 ( |
产草量 | |
畜牧密度 | |
人均GDP | 资源环境科学数据平台 (www.resdc.cn) |
人口密度 |
Table 1 Data source
数据名称 | 数据来源 |
---|---|
DEM数据 | 空间地理数据云 ( |
气象数据 | 国家地球系统科学数据中心 (www.geodata.cn) |
土壤数据 | 世界土壤数据库 (www.fao.org) |
归一化植被指数 | 国家青藏高原数据中心 ( |
产草量 | |
畜牧密度 | |
人均GDP | 资源环境科学数据平台 (www.resdc.cn) |
人口密度 |
总指标层 | 指标类型 | 指标体系 | 指标名称 | 指标属性 | 指标代码 |
---|---|---|---|---|---|
生态脆弱性评价指标体系 | 敏感性 | 地形因子 | 海拔 | 负向 | X1 |
坡度 | 正向 | X2 | |||
地形起伏度 | 正向 | X3 | |||
土壤因子 | 土壤侵蚀强度 | 正向 | X4 | ||
气象因子 | 年降水量 | 负向 | X5 | ||
年均气温 | 负向 | X6 | |||
干燥度 | 正向 | X7 | |||
相对湿度 | 负向 | X8 | |||
蒸散量 | 正向 | X9 | |||
恢复力 | 植被因子 | NDVI | 负向 | X10 | |
产草量 | 负向 | X11 | |||
压力度 | 人为压力 | 人口密度 | 正向 | X12 | |
经济压力 | 人均GDP密度 | 正向 | X13 | ||
畜牧密度 | 正向 | X14 |
Table 2 Ecological vulnerability evaluation indicator system of Sanjiangyuan Region Based on SRP Model
总指标层 | 指标类型 | 指标体系 | 指标名称 | 指标属性 | 指标代码 |
---|---|---|---|---|---|
生态脆弱性评价指标体系 | 敏感性 | 地形因子 | 海拔 | 负向 | X1 |
坡度 | 正向 | X2 | |||
地形起伏度 | 正向 | X3 | |||
土壤因子 | 土壤侵蚀强度 | 正向 | X4 | ||
气象因子 | 年降水量 | 负向 | X5 | ||
年均气温 | 负向 | X6 | |||
干燥度 | 正向 | X7 | |||
相对湿度 | 负向 | X8 | |||
蒸散量 | 正向 | X9 | |||
恢复力 | 植被因子 | NDVI | 负向 | X10 | |
产草量 | 负向 | X11 | |||
压力度 | 人为压力 | 人口密度 | 正向 | X12 | |
经济压力 | 人均GDP密度 | 正向 | X13 | ||
畜牧密度 | 正向 | X14 |
主成分 | 2000年 | 2010年 | 2020年 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
特征值 | 贡献率/% | 累计贡献率/% | 特征值 | 贡献率/% | 累计贡献率/% | 特征值 | 贡献率/% | 累计贡献率/% | |||
1 | 0.04 | 53.99 | 53.99 | 0.06 | 51.12 | 51.12 | 0.05 | 49.19 | 49.19 | ||
2 | 0.03 | 22.24 | 76.24 | 0.03 | 23.64 | 74.76 | 0.03 | 25.39 | 74.58 | ||
3 | 0.01 | 8.14 | 84.38 | 0.01 | 7.81 | 82.56 | 0.01 | 7.92 | 82.50 | ||
4 | 0.01 | 5.16 | 89.54 | 0.01 | 5.22 | 87.78 | 0.01 | 5.89 | 88.39 | ||
5 | 0.01 | 3.80 | 93.34 | 0.01 | 4.42 | 92.20 | 0.01 | 4.41 | 92.80 | ||
6 | 0.00 | 2.20 | 95.54 | 0.00 | 2.93 | 95.13 | 0.00 | 2.34 | 95.14 | ||
7 | 0.00 | 1.36 | 96.90 | 0.00 | 1.66 | 96.79 | 0.00 | 1.45 | 96.60 | ||
8 | 0.00 | 0.95 | 97.85 | 0.00 | 1.11 | 97.90 | 0.00 | 1.12 | 97.72 | ||
9 | 0.00 | 0.79 | 98.64 | 0.00 | 0.82 | 98.72 | 0.00 | 0.88 | 98.60 | ||
10 | 0.00 | 0.47 | 99.11 | 0.00 | 0.55 | 99.27 | 0.00 | 0.63 | 99.23 | ||
11 | 0.00 | 0.38 | 99.49 | 0.00 | 0.33 | 99.60 | 0.00 | 0.41 | 99.63 | ||
12 | 0.00 | 0.22 | 99.70 | 0.00 | 0.18 | 99.78 | 0.00 | 0.16 | 99.79 | ||
13 | 0.00 | 0.16 | 99.87 | 0.00 | 0.11 | 99.89 | 0.00 | 0.11 | 99.91 | ||
14 | 0.00 | 0.13 | 100.00 | 0.00 | 0.11 | 100.00 | 0.00 | 0.09 | 100 |
Table 3 Results of principal component analysis of ecological vulnerability indicators
主成分 | 2000年 | 2010年 | 2020年 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
特征值 | 贡献率/% | 累计贡献率/% | 特征值 | 贡献率/% | 累计贡献率/% | 特征值 | 贡献率/% | 累计贡献率/% | |||
1 | 0.04 | 53.99 | 53.99 | 0.06 | 51.12 | 51.12 | 0.05 | 49.19 | 49.19 | ||
2 | 0.03 | 22.24 | 76.24 | 0.03 | 23.64 | 74.76 | 0.03 | 25.39 | 74.58 | ||
3 | 0.01 | 8.14 | 84.38 | 0.01 | 7.81 | 82.56 | 0.01 | 7.92 | 82.50 | ||
4 | 0.01 | 5.16 | 89.54 | 0.01 | 5.22 | 87.78 | 0.01 | 5.89 | 88.39 | ||
5 | 0.01 | 3.80 | 93.34 | 0.01 | 4.42 | 92.20 | 0.01 | 4.41 | 92.80 | ||
6 | 0.00 | 2.20 | 95.54 | 0.00 | 2.93 | 95.13 | 0.00 | 2.34 | 95.14 | ||
7 | 0.00 | 1.36 | 96.90 | 0.00 | 1.66 | 96.79 | 0.00 | 1.45 | 96.60 | ||
8 | 0.00 | 0.95 | 97.85 | 0.00 | 1.11 | 97.90 | 0.00 | 1.12 | 97.72 | ||
9 | 0.00 | 0.79 | 98.64 | 0.00 | 0.82 | 98.72 | 0.00 | 0.88 | 98.60 | ||
10 | 0.00 | 0.47 | 99.11 | 0.00 | 0.55 | 99.27 | 0.00 | 0.63 | 99.23 | ||
11 | 0.00 | 0.38 | 99.49 | 0.00 | 0.33 | 99.60 | 0.00 | 0.41 | 99.63 | ||
12 | 0.00 | 0.22 | 99.70 | 0.00 | 0.18 | 99.78 | 0.00 | 0.16 | 99.79 | ||
13 | 0.00 | 0.16 | 99.87 | 0.00 | 0.11 | 99.89 | 0.00 | 0.11 | 99.91 | ||
14 | 0.00 | 0.13 | 100.00 | 0.00 | 0.11 | 100.00 | 0.00 | 0.09 | 100 |
等级 | 取值范围 | 敏感性 | 恢复力 | 脆弱性 |
---|---|---|---|---|
1级 | ≤0.2 | 微度敏感 | 恢复力强 | 微度脆弱 |
2级 | 0.2‒0.4 | 轻度敏感 | 恢复力较强 | 轻度脆弱 |
3级 | 0.4‒0.6 | 中度敏感 | 恢复力一般 | 中度脆弱 |
4级 | 0.6‒0.8 | 重度敏感 | 恢复力较弱 | 重度脆弱 |
5级 | >0.8 | 极度敏感 | 恢复力弱 | 极度脆弱 |
Table 4 Ecological sensitivity, resilience and vulnerability classification standards
等级 | 取值范围 | 敏感性 | 恢复力 | 脆弱性 |
---|---|---|---|---|
1级 | ≤0.2 | 微度敏感 | 恢复力强 | 微度脆弱 |
2级 | 0.2‒0.4 | 轻度敏感 | 恢复力较强 | 轻度脆弱 |
3级 | 0.4‒0.6 | 中度敏感 | 恢复力一般 | 中度脆弱 |
4级 | 0.6‒0.8 | 重度敏感 | 恢复力较弱 | 重度脆弱 |
5级 | >0.8 | 极度敏感 | 恢复力弱 | 极度脆弱 |
判断依据 | 交互作用 |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)] <q(X1∩X2)<Max[q(X1), q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max[q(X1), q(X2)] | 双因子增强 |
q(X1∩X2)=q(X1)+q(X2) | 独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
Table 5 Interaction typers of interactive detectors
判断依据 | 交互作用 |
---|---|
q(X1∩X2)<Min[q(X1), q(X2)] | 非线性减弱 |
Min[q(X1), q(X2)] <q(X1∩X2)<Max[q(X1), q(X2)] | 单因子非线性减弱 |
q(X1∩X2)>Max[q(X1), q(X2)] | 双因子增强 |
q(X1∩X2)=q(X1)+q(X2) | 独立 |
q(X1∩X2)>q(X1)+q(X2) | 非线性增强 |
驱动因子 | 2000年 | 2010年 | 2020年 | |||||
---|---|---|---|---|---|---|---|---|
q值 | q值排序 | q值 | q值排序 | q值 | q值排序 | |||
海拔 (1) | 0.152 | 9 | 0.180 | 8 | 0.160 | 9 | ||
坡度 (2) | 0.320 | 8 | 0.180 | 9 | 0.360 | 8 | ||
地形起伏度 (3) | 0.387 | 6 | 0.414 | 6 | 0.434 | 6 | ||
土壤侵蚀强度 (4) | 0.354 | 7 | 0.114 | 10 | 0.460 | 5 | ||
年降水量 (5) | 0.806 | 1 | 0.840 | 1 | 0.788 | 1 | ||
气温 (6) | 0.122 | 11 | 0.110 | 11 | 0.128 | 11 | ||
干燥度 (7) | 0.768 | 2 | 0.602 | 3 | 0.746 | 2 | ||
相对湿度 (8) | 0.746 | 3 | 0.496 | 4 | 0.600 | 3 | ||
蒸散量 (9) | 0.110 | 12 | 0.099 | 13 | 0.087 | 12 | ||
NDVI (10) | 0.590 | 4 | 0.647 | 2 | 0.485 | 4 | ||
产草量 (11) | 0.448 | 5 | 0.481 | 5 | 0.411 | 7 | ||
人口密度 (12) | 0.138 | 10 | 0.090 | 14 | 0.030 | 14 | ||
GDP密度 (13) | 0.044 | 14 | 0.110 | 12 | 0.045 | 13 | ||
畜牧密度 (14) | 0.157 | 13 | 0.196 | 6 | 0.155 | 10 |
Table 6 The q value of ecological vulnerability factor detection in Sanjiangyuan region
驱动因子 | 2000年 | 2010年 | 2020年 | |||||
---|---|---|---|---|---|---|---|---|
q值 | q值排序 | q值 | q值排序 | q值 | q值排序 | |||
海拔 (1) | 0.152 | 9 | 0.180 | 8 | 0.160 | 9 | ||
坡度 (2) | 0.320 | 8 | 0.180 | 9 | 0.360 | 8 | ||
地形起伏度 (3) | 0.387 | 6 | 0.414 | 6 | 0.434 | 6 | ||
土壤侵蚀强度 (4) | 0.354 | 7 | 0.114 | 10 | 0.460 | 5 | ||
年降水量 (5) | 0.806 | 1 | 0.840 | 1 | 0.788 | 1 | ||
气温 (6) | 0.122 | 11 | 0.110 | 11 | 0.128 | 11 | ||
干燥度 (7) | 0.768 | 2 | 0.602 | 3 | 0.746 | 2 | ||
相对湿度 (8) | 0.746 | 3 | 0.496 | 4 | 0.600 | 3 | ||
蒸散量 (9) | 0.110 | 12 | 0.099 | 13 | 0.087 | 12 | ||
NDVI (10) | 0.590 | 4 | 0.647 | 2 | 0.485 | 4 | ||
产草量 (11) | 0.448 | 5 | 0.481 | 5 | 0.411 | 7 | ||
人口密度 (12) | 0.138 | 10 | 0.090 | 14 | 0.030 | 14 | ||
GDP密度 (13) | 0.044 | 14 | 0.110 | 12 | 0.045 | 13 | ||
畜牧密度 (14) | 0.157 | 13 | 0.196 | 6 | 0.155 | 10 |
[1] | BEROYA E, MARY A, 2016. Ecological vulnerability indicators[J]. Ecological Indicators, 60: 329-334. |
[2] | CHEN X W, LI X W, ELADAWY A, et al., 2021. A multi-dimensional vulnerability assessment of Pingtan Island (China) and Nile Delta (Egypt) using ecological Sensitivity-Resilience-Pressure (SRP) model[J]. Human and Ecological Risk Assessment, 27(7): 1860-1882. |
[3] | DE LANGE H J, SALA S, VIGHI M, 2010. Ecological vulnerability in risk assessment: A review and perspectives[J]. Science of the Total Environment, 408(18): 3871-3879. |
[4] | HOU K, TAO W D, WANG L M, et al., 2020. Study on hierarchical transformation mechanisms of regional ecological vulnerability and its applicability[J]. Ecological Indicator, 114: 106343. |
[5] | JIANG X L, GUO X H, WU Y, et al., 2023. Ecological vulnerability assessment based on remote sensing ecological index (RSEI): A case of Zhongxian County, Chongqing[J]. Frontiers In Environmental Science, 10: 1074376. |
[6] | LI A N, WANG A S, LIANG S L, et al., 2006. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS: A case study in the upper reaches of Minjiang River, China[J]. Ecological Modelling, 192(1): 175-187. |
[7] | LI X X, YAN J P, ZHANG Y F, et al., 2021. Landscape ecological risk assessment under multiple indicators[J]. Land, 10(7): 739. |
[8] | LUO M Y, JIA X, ZHAO Y H, et al., 2024. Ecological vulnerability assessment and its driving force based on ecological zoning in the Loess Plateau, China[J]. Ecological Indicators, 159: 111658. |
[9] | QIAO Q, GAO J X, WANG W, et al., 2008. Method and application of ecological frangibility assessment[J]. Research of Environmental Sciences, 130(5): 117-123. |
[10] | REN D F, CAO A H, 2022. Analysis of the heterogeneity of landscape risk evolution and driving factors based on a combined GeoDa and Geodetector mode[J]. Ecological Indicators, 144(10): 109568. |
[11] | VAN N M, 1994. Biodiversity of ecotoxicological responses in animals[J]. Netherlands Journal of Zoology, 44(1): 112-129. |
[12] | WANG Z Y, XIONG H X, ZHANG F W, et al., 2024. Sustainable development assessment of ecological vulnerability in arid areas under the influence of multiple indicators[J]. Journal Of Cleaner Production, 436: 140629. |
[13] | 陈思杨, 刘瑞娟, 张晓辉, 等, 2024. 基于VSD模型的乐清湾生态系统脆弱性评价[J]. 应用海洋学学报, 43(3): 1-13. |
CHEN S Y, LIU R J, ZHANG X H, et al., 2024. Vulnerability assessment of Yueqing Bay ecosystem based on VSD modeling[J]. Journal of Applied Oceanography, 43(3): 1-13. | |
[14] | 崔晓萌, 2023. 基于生态脆弱性评价的生态修复关键区域识别与修复研究[D]. 徐州: 中国矿业大学: 10-11. |
CUI X M, 2023. Identification and restoration of key ecological restoration areas based on ecological vulnerability assessment[D]. Xuzhou: China University of Mining and Technology: 10-11. | |
[15] | 高向龙, 冯起, 李宗省, 等, 2024. 三江源水源涵养价值时空格局及关键影响因素研究[J]. 生态学报, 44(16): 1-13. |
GAO X L, FENG Q, LI Z S, et al., 2024. 20204. Spatio-temporal patten and key influencing factors of water conservation value in the Three-River Source region[J]. Acta Eeologica Sinica, 44(16): 1-13. | |
[16] | 郭贝贝, 崔莹雪, 2024. 基于RSEVI和地理探测器的安徽省5A级景区生态脆弱性评价[J]. 生态学杂志, 43(2): 550-563. |
GUO B B, CUI Y X, 2024. Ecological vulnerability assessment of scenic spots based on RSEVI and geographic detector[J]. Chinese Journal of Ecology, 43(2): 550-563.
DOI |
|
[17] | 国家发展改革委, 2014. 青海三江源生态保护和建设二期工程规划[EB/OL]. [2014-1-8]. https://www.ndrc.gov.cn/fzggw/jgsj/njs/ sjdt/201404/W020191101564621097541.pdf. |
The State Council of the People’s Republic of China, 2014. Qinghai Sanjiangyuan ecological protection and construction phase II project planning[EB/OL]. [2014-1-8]. https://www.ndrc.gov.cn/fzggw/jgsj/njs/ sjdt/201404/W020191101564621097541.pdf. | |
[18] | 刘若琦, 黄志强, 2024. 基于AHP-GIS的宜春市生态敏感性评价[J]. 地理空间信息, 22(4): 54-59. |
HUANG R Q, HUANG Z Q, 2024. Ecological Sensitivity Evaluation of Yichun City Based on AHP-GIS[J]. Geospatial Information, 22(4): 54-59. | |
[19] |
贾雪梅, 高烨, 周涛, 等, 2021. 祁连山国家公园生态脆弱性评价——以张掖段为例[J]. 资源环境与工程, 35(3): 355-358.
DOI |
JIA X M, GAO Y, ZHOU T, et al., 2021. Ecological vulnerability evaluation of Qilian Mountain National Park in Zhangye City[J]. Resources Environment & Engineering, 35(3): 355-358. | |
[20] | 李怡, 赵小敏, 郭熙, 等, 2020. 江西省南昌市生态敏感性空间分异研究[J]. 中国农业大学学报, 25(10): 65-76. |
LI Y, ZHAO X M, GUO X, et al., 2020. Study on spatial differentiation of ecological sensitivity in Nanchang City, Jiangxi Province[J]. Journal of China Agricultural University, 25(10): 65-76. | |
[21] | 刘惠敏, 郑中团, 李文雯, 2022. 基于GIS的长三角城市群生态环境脆弱性综合评价[J]. 上海工程技术大学学报, 36(2): 224-230. |
LIU H M, ZHENG Z T, LI W W, 2022. Comprehensive evaluation of ecological environment vulnerability of Yangtze River Delta urban agglomeration based on GIS[J]. Journal of Shanghai University of Engineering Science, 36(2): 224-230. | |
[22] | 刘佳茹, 赵军, 沈思民, 等, 2020. 基于SRP概念模型的祁连山地区生态脆弱性评价[J]. 干旱区地理, 43(6): 1573-1582. |
LIU J R, ZHAO J, SHEN S M, et al., 2020. Ecological vulnerability assessment of Qilian Mountains region based on SRP conceptual model[J]. Arid Land Geography, 43(6): 1573-1582.
DOI |
|
[23] | 玛沁县人民政府, 2007. 玛沁县三江源自然保护区生态保护和建设总体规划[EB/OL]. [2007-8-15] http://www.maqin.gov.cn/html/161/5861.html. |
People's Government of Maqin County, 2007. Master Plan for Ecological Protection and Construction of Sanjiangyuan Nature Reserve in Maqin County[EB/OL]. [2007-8-15] http://www.maqin.gov.cn/html/161/5861.html. | |
[24] | 苗旭, 李九一, 柳玉梅, 等, 2023. 鄂尔多斯市生态脆弱性评价及归因分析[J]. 西北林学院学报, 38(1): 168-173. |
MIAO X, LI J Y, LIU Y M, et al., 2023. Evaluation and attribution analysis of ecological vulnerability in Ordos City[J]. Journal of Northwest Forestry University, 38(1): 168-173. | |
[25] | 青海省生态环境厅, 2019. 青海三江源生态保护和建设二期工程阶段性生态成效综合评估[EB/OL]. [2019-12-6]. https://sthjt.qinghai.gov.cn/hjgl/sthjjc/sthjjcgl/201912/t20191206_104790.html. |
Department of Ecology and Environment of Qinghai Province. Comprehensive assessment of the ecological effectiveness of the phase II project for the protection and construction of the Sanjiangyuan ecosystem in Qinghai[EB/OL]. [2019-12-6]. https://sthjt.qinghai.gov.cn/hjgl/sthjjc/sthjjcgl/201912/t20191206_104790.html. | |
[26] | 石凡涛, 马仁萍, 2013. 三江源自然保护区生态保护与建设工程总体规划“黑土滩” 治理工程实施情况调查[J]. 黑龙江畜牧兽医, 3(5): 78-80. |
SHI F T, MA R P, 2013. Survey on the implementation of the “black soil beach” treatment project under the master plan for the ecological protection and construction project of Sanjiangyuan Nature Reserve[J]. Heilongjiang Animal Science and Veterinary Medicine, 3(5): 78-80. | |
[27] | 生态环境部, 2008. 全国生态脆弱区保护规划纲要[EB/OL]. [2008-9-7]. https://www.mee.gov.cn/gkml/hbb/bwj/200910/W020230202541194228270.pdf. |
Ministry of Ecology and Environment of the People's Republic of China, 2008. Outline of the National Plan for the Protection of Ecologically Vulnerable Areas[EB/OL]. [2017-10-7]. https://www.mee.gov.cn/gkml/hbb/bwj/200910/W020230202541194228270.pdf. | |
[28] |
孙桂丽, 陆海燕, 郑佳翔, 等, 2022. 新疆生态脆弱性时空演变及驱动力分析[J]. 干旱区研究, 39(1): 258-269.
DOI |
SUN G L, LU H Y, ZHENG J X, et al., 2022. Spatio-temporal variation of ecological vulnerability in Xinjiang and driving force analysis[J]. Arid Zone Research, 39(1): 258-269.
DOI |
|
[29] |
孙智杰, 曾嘉, 王辛, 等, 2023. 基于GIS的通城县生态环境地质脆弱性评价[J]. 资源环境与工程, 37(5): 560-566.
DOI |
SUN Z J, ZENG J, WANG X, 2023. Evaluation of eco-environmental geological vulnerability in Tongcheng county based on GIS[J]. Resources Environment & Engineering, 37(5): 560-566. | |
[30] |
邵全琴, 樊江文, 刘纪远, 等, 2016. 三江源生态保护和建设一期工程生态成效评估[J]. 地理学报, 71(1): 3-20.
DOI |
SHAO Q Q, FAN J W, LIU J Y, et al., 2016. Assessment on the effects of the first-stage ecological conservationand restoration project in Sanjiangyuan region[J]. Acta Geographica Sinica, 71(1): 3-20. | |
[31] | 万鹏, 谭锶源, 2022. 乐山市2020年生态环境脆弱性评价[J]. 科技创新与应用, 12(21): 66-70. |
WAN P, TAN S Y, 2022. Ecological Vulnerability Assessment of Leshan City in 2020[J]. Technology novation and Application, 12(21): 66-70. | |
[32] | 王成军, 罗昕玥, 2023. 基于SRP模型榆林市生态脆弱性评价及时空演变研究[J]. 生产力研究, 10(10): 56-61. |
WANG C J, LUO X Y, 2023. Study on ecological vulnerability evaluation and temporal and spatial evolution of Yulin City based on SRP modeling[J]. Productivity Studies, Productivity Studies, 10(10): 56-61. | |
[33] | 王鹏, 赵微, 柯新利, 2021. 基于SRP模型的潜江市生态脆弱性评价及时空演变[J]. 水土保持研究, 28(5): 347-354. |
WANG P, ZHAO W, KE X L, 2021. Evaluation and spatiotemporal evolution of ecological vulnerability of Qianjiang based on SRP model[J]. Research of Soil and Water Conservation, 28(5): 347-354. | |
[34] | 王晓峰, 郑媛元, 孙泽冲, 等, 2024, 青藏高原自然保护区生态脆弱性演化与模拟[J/OL]. 环境科学, 1-15 [2024-07-14]. https://doi.org/10.13227/j.hjkx.202403096. |
WANG X F, ZHENG Y Y, SUN Z C, et al., 2024. Evolution and Simulation of Ecological Vulnerability in Qinghai-Xizang Plateau Nature Reserve[J/OL]. Environmental Science, 1-15 [2024-07-14]. https://doi.org/10.13227/j.hjkx.202403096. | |
[35] | 王钰帆, 白强, 孙虎, 2023. 2000-2020年汾河流域生态脆弱性时空演变与驱动因素[J]. 浙江大学学报(理学版), 50(5): 607-618. |
WANG Y F, BAI Q, SUN H, 2023. Spatial-temporal evolution and driving factors of ecological vulnerability in Fenhe River Basin from 2000 to 2020[J]. Journal of Zhejiang University (Science Edition), 50(5): 607-618. | |
[36] | 韦晶, 郭亚敏, 孙林, 等, 2015. 三江源地区生态环境脆弱性评价[J]. 生态学杂志, 34(7): 1968-1975. |
WEI J, GUO Y M, SUN L, et al., Evaluation of ecological environment vulnerability for Sanjiangyuan area[J]. Chinese Journal of Ecology, 34(7): 1968-1975. | |
[37] | 吴春生, 黄翀, 刘高焕, 等, 2018. 基于模糊层次分析法的黄河三角洲生态脆弱性评价[J]. 生态学报, 38(13): 4584-4595. |
WU C S, HUANG C, LIU G H, et al., 2018. Assessment of ecological vulnerability in the Yellow River Delta using the Fuzzy Analytic Hierarchy Process[J]. Acta Ecologica Sinica, 38(13): 4584-4595. | |
[38] | 徐君, 李贵芳, 王育红, 2015. 国内外资源型城市脆弱性研究综述与展望[J]. 资源科学, 37(6): 1266-1278. |
XU J, LI G F, WANG Y H, 2015. Review and prospect of resource-based city vulnerability in China and Abroad[J]. Resources Science, 37(6): 1266-1278. | |
[39] | 徐小玲, 2007. 三江源地区生态脆弱变化及经济与生态互动发展模式研究[D]. 西安: 陕西师范大学: 1-211. |
XU X L, 2007. Research on ecological vulnerability change and interaction development modelof economy and ecology in Saniiangyuan Region[D]. Xian: Shanxi Normal University: 1-211. | |
[40] | 徐至真, 2023. 基于SRP模型的柴达木盆地生态脆弱性时空分异及模拟预测研究[D]. 西宁: 中国科学院大学(中国科学院青海盐湖研究所): 1-2. |
XU Z Z, 2023. Spatial and temporal differentiation and simulation prediction of ecological vulnerability in the Qaidam Basin based on SRP model[D]. Xining: University of Chinese Academy of Sciences (Qinghai Institute of Salt Lakes): 1-2 | |
[41] | 杨祎, 王根绪, 李阳, 等, 2024. 三江源区草地水土保持与防风固沙功能临界植被覆盖度时空变化分析[J]. 山地学报, 42(2): 143-153. |
YANG W, WANG G X, LI Y, et al., 2024. Spatial-temporal changes in the critical vegetation coverage of grasslands with function of soil-water conservation, wind-breaking and sand-fixing in Three-Rivers Headwater Region, China[J]. Mountain Research, 42(2): 143-153. | |
[42] | 叶泉, 2022. 青藏高原东部边缘区自然环境灾害与生态脆弱性评估[D]. 上海: 华东师范大学: 1-73. |
YE Q, 2022. Natural disasters and ecological vulnerability assessment in the eastern edge of the Qinghai-Tibet Plateau[D]. Shanghai: East China Normal University: 1-73. | |
[43] | 喻春哲, 于欢, 项清, 等, 2023. 四川省生态脆弱性时空分异及其驱动机制[J/OL]. 环境科学, 1-17 [2024-09-05]. https://doi.org/10.13227/j.hjkx.202312110. |
YU C Z, YU H, XIANG Q, et al., 2023. Spatio-temporal Differentiation and Its Driving Mechanism of Ecological Vulnerability in Sichuan Province[J/OL]. Environmental Science, 1-17 [2024-09-05]. https://doi.org/10.13227/j.hjkx.202312110. | |
[44] | 岳笑, 张良侠, 周德成, 等, 2023. 干旱-半干旱典型生态脆弱区生态脆弱性时空演变及驱动因子分析[J]. 环境生态学, 5(6): 1-9. |
YUE X, ZHANG L X, ZHOU D C, et al., 2023. Spatial-temporal variations and driving forces of the ecological vulnerability in the typical arid/ semi-arid ecological vulnerable areas[J]. Environmental Ecology, 5(6): 1-9. | |
[45] | 张爱儒, 高新才, 2015. 青海藏区重要生态功能区生态脆弱度评价研究——以三江源生态功能区为例[J]. 西藏大学学报(社会科学版), 30(1): 1-8. |
ZHANG A R, GAO X C, 2015. Ecological fragility assessment of the IEFA in Qinghai Tibetan area: A case study of the ecological function area in Sanjiangyuan[J]. Journal of Tibet University, 30(1): 1-8. | |
[46] | 张学玲, 余文波, 蔡海生, 等, 2018. 区域生态环境脆弱性评价方法研究综述[J]. 生态学报, 38(16): 5970-5981. |
ZHANG X L, YU W B, CAI H S, et al., 2018. Review of the evaluation methods of regional eco-environmental vulnerability[J]. Acta Ecologica Sinica, 38(16): 5970-5981. | |
[47] | 张颖, 2022. 闽三角城市群土地利用变化及生态脆弱性研究[D]. 南昌: 东华理工大学: 1-59. |
ZHANG Y, 2022. Study on land use change and ecological vulnerability of urban agglomeration in Fujian Delta[D]. Nanchang: East China Institute of Technology: 1-59. | |
[48] | 赵怀涛, 常浩, 王鹏, 2023. 基于主成分分析法的矿区生态环境脆弱性评估方法[J]. 煤化工, 51(5): 125-128. |
ZHAO H T, CHANG H, WANG P, 2023. Assessment method of ecological environment vulnerability in mining area based on principal component analysis[J]. Coal Chemical Industry, 51(5): 125-128. | |
[49] | 支泽民, 刘峰贵, 陈琼, 等, 2022. 青海省生态脆弱度分级1 km栅格数据集(2015)的研发与内容[J]. 全球变化数据学报, 6(3): 409-415. |
ZHI Z M, LIU F G, CHEN Q, et al., 2022. Development of ecological vulnerability classification 1km raster dataset in Qinghai Province of China (2015)[J]. Journal of Global Change Data & Discovery, 6(3): 409-415. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn