Ecology and Environment ›› 2024, Vol. 33 ›› Issue (9): 1482-1494.DOI: 10.16258/j.cnki.1674-5906.2024.09.015
• Research Article [Environmental Science] • Previous Articles
ZHANG Wen1,2(), ZHENG Tian1, LIU Yongchao1, ZHONG Jie1, SU Jie3, LI Jialin1,2,*(
)
Received:
2024-04-18
Online:
2024-09-18
Published:
2024-10-18
Contact:
LI Jialin
张雯1,2(), 郑天1, 刘永超1, 钟捷1, 苏杰3, 李加林1,2,*(
)
通讯作者:
李加林
作者简介:
张雯(1989年生),女,工程师,硕士研究生,主要从事自然地理研究。E-mail: 2311110033@nbu.edu.cn
基金资助:
CLC Number:
ZHANG Wen, ZHENG Tian, LIU Yongchao, ZHONG Jie, SU Jie, LI Jialin. Identification of Key Areas for Ecological Protection and Restoration in Zhejiang Province Based on Circuit Theory[J]. Ecology and Environment, 2024, 33(9): 1482-1494.
张雯, 郑天, 刘永超, 钟捷, 苏杰, 李加林. 基于电路理论的浙江省生态保护修复关键区域识别[J]. 生态环境学报, 2024, 33(9): 1482-1494.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.09.015
评价因子 | 敏感性等级 | 权重 | ||||
---|---|---|---|---|---|---|
低 | 较低 | 一般 | 较高 | 高 | ||
高程/m | <138 | 138−348 | 348−592 | 592−902 | >902 | 0.111 |
坡度/(°) | <7 | 7−16 | 16−25 | 25−34 | >34 | 0.222 |
土地利用类型 | 建设用地 | 未利用地 | 耕地、草地 | 水域 | 林地 | 0.167 |
植被覆盖度 | <0.280 | 0.280−0.530 | 0.530−0.710 | 0.710−0.850 | >0.850 | 0.167 |
土壤侵蚀强度 | 微侵蚀 | 轻度侵蚀 | 中度侵蚀 | 强烈侵蚀 | 极强烈侵蚀 | 0.333 |
Table 1 Ecological sensitivity evaluation factors
评价因子 | 敏感性等级 | 权重 | ||||
---|---|---|---|---|---|---|
低 | 较低 | 一般 | 较高 | 高 | ||
高程/m | <138 | 138−348 | 348−592 | 592−902 | >902 | 0.111 |
坡度/(°) | <7 | 7−16 | 16−25 | 25−34 | >34 | 0.222 |
土地利用类型 | 建设用地 | 未利用地 | 耕地、草地 | 水域 | 林地 | 0.167 |
植被覆盖度 | <0.280 | 0.280−0.530 | 0.530−0.710 | 0.710−0.850 | >0.850 | 0.167 |
土壤侵蚀强度 | 微侵蚀 | 轻度侵蚀 | 中度侵蚀 | 强烈侵蚀 | 极强烈侵蚀 | 0.333 |
阻力因子 | 相对阻力值 | 权重 | ||||
---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | ||
土地利用修正阻力值 | 由公式 (5) 计算并按自然断点法分类得出 | 0.445 | ||||
高程/m | <138 | 138−348 | 348−592 | 592−902 | >902 | 0.052 |
坡度/(°) | <7 | 7−16 | 16−25 | 25−34 | >34 | 0.105 |
植被覆盖度 | >0.850 | 0.710−0.850 | 0.530−0.710 | 0.280−0.530 | <0.280 | 0.148 |
距铁路、高速距离/km | >10 | 5−10 | 2−5 | 1−2 | <1 | 0.125 |
距国道、省道距离/km | >5 | 2−5 | 1−2 | 0.5−1 | <0.5 | 0.125 |
Table 2 Ecological resistance factors
阻力因子 | 相对阻力值 | 权重 | ||||
---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | ||
土地利用修正阻力值 | 由公式 (5) 计算并按自然断点法分类得出 | 0.445 | ||||
高程/m | <138 | 138−348 | 348−592 | 592−902 | >902 | 0.052 |
坡度/(°) | <7 | 7−16 | 16−25 | 25−34 | >34 | 0.105 |
植被覆盖度 | >0.850 | 0.710−0.850 | 0.530−0.710 | 0.280−0.530 | <0.280 | 0.148 |
距铁路、高速距离/km | >10 | 5−10 | 2−5 | 1−2 | <1 | 0.125 |
距国道、省道距离/km | >5 | 2−5 | 1−2 | 0.5−1 | <0.5 | 0.125 |
重要性等级 | 杭州 | 宁波 | 温州 | 嘉兴 | 湖州 | 绍兴 | 金华 | 衢州 | 舟山 | 台州 | 丽水 |
---|---|---|---|---|---|---|---|---|---|---|---|
低 | 1.70×103 | 1.77×103 | 1.01×103 | 1.49×103 | 832 | 1.08×103 | 1.10×103 | 479 | 235 | 874 | 552 |
中 | 3.88×103 | 3.45×103 | 3.13×103 | 2.56×103 | 2.73×103 | 3.20×103 | 3.74×103 | 2.31×103 | 278 | 3.23×103 | 1.89×103 |
较高 | 3.58×103 | 3.11×103 | 3.47×103 | 14.7 | 1.24×103 | 2.76×103 | 2.74×103 | 1.55×103 | 504 | 3.32×103 | 3.52×103 |
高 | 7.87×103 | 600 | 3.92×103 | 0.570 | 1.09×103 | 1.28×103 | 3.54×103 | 4.61×103 | 96.3 | 2.08×103 | 1.16×104 |
Table 3 Ecological system importance level area statistics of Zhejiang Province km2
重要性等级 | 杭州 | 宁波 | 温州 | 嘉兴 | 湖州 | 绍兴 | 金华 | 衢州 | 舟山 | 台州 | 丽水 |
---|---|---|---|---|---|---|---|---|---|---|---|
低 | 1.70×103 | 1.77×103 | 1.01×103 | 1.49×103 | 832 | 1.08×103 | 1.10×103 | 479 | 235 | 874 | 552 |
中 | 3.88×103 | 3.45×103 | 3.13×103 | 2.56×103 | 2.73×103 | 3.20×103 | 3.74×103 | 2.31×103 | 278 | 3.23×103 | 1.89×103 |
较高 | 3.58×103 | 3.11×103 | 3.47×103 | 14.7 | 1.24×103 | 2.76×103 | 2.74×103 | 1.55×103 | 504 | 3.32×103 | 3.52×103 |
高 | 7.87×103 | 600 | 3.92×103 | 0.570 | 1.09×103 | 1.28×103 | 3.54×103 | 4.61×103 | 96.3 | 2.08×103 | 1.16×104 |
敏感性等级 | 杭州 | 宁波 | 温州 | 嘉兴 | 湖州 | 绍兴 | 金华 | 衢州 | 舟山 | 台州 | 丽水 |
---|---|---|---|---|---|---|---|---|---|---|---|
低 | 4.13×103 | 4.02×103 | 2.10×103 | 4.01×103 | 3.03×103 | 2.78×103 | 3.16 ×103 | 1.60 ×103 | 400 | 2.59×103 | 661 |
中 | 3.05×103 | 2.03×103 | 2.44×103 | 53.2 | 1.36×103 | 2.34×103 | 2.49 ×103 | 2.12 ×103 | 496 | 2.21×103 | 2.28 ×103 |
较高 | 5.39×103 | 1.86×103 | 3.47 ×103 | 6.45 | 970 | 2.09×103 | 2.93×103 | 2.61×103 | 198 | 2.45×103 | 5.10×103 |
高 | 4.49×103 | 1.04×103 | 3.52×103 | 0.070 | 539 | 1.12×103 | 2.57×103 | 2.62×103 | 23.9 | 2.26×103 | 9.49×103 |
Table 4 Ecological sensitivity level area statistics of Zhejiang Province km2
敏感性等级 | 杭州 | 宁波 | 温州 | 嘉兴 | 湖州 | 绍兴 | 金华 | 衢州 | 舟山 | 台州 | 丽水 |
---|---|---|---|---|---|---|---|---|---|---|---|
低 | 4.13×103 | 4.02×103 | 2.10×103 | 4.01×103 | 3.03×103 | 2.78×103 | 3.16 ×103 | 1.60 ×103 | 400 | 2.59×103 | 661 |
中 | 3.05×103 | 2.03×103 | 2.44×103 | 53.2 | 1.36×103 | 2.34×103 | 2.49 ×103 | 2.12 ×103 | 496 | 2.21×103 | 2.28 ×103 |
较高 | 5.39×103 | 1.86×103 | 3.47 ×103 | 6.45 | 970 | 2.09×103 | 2.93×103 | 2.61×103 | 198 | 2.45×103 | 5.10×103 |
高 | 4.49×103 | 1.04×103 | 3.52×103 | 0.070 | 539 | 1.12×103 | 2.57×103 | 2.62×103 | 23.9 | 2.26×103 | 9.49×103 |
生态保护修复区域 | 杭州 | 宁波 | 温州 | 嘉兴 | 湖州 | 绍兴 | 金华 | 衢州 | 舟山 | 台州 | 丽水 |
---|---|---|---|---|---|---|---|---|---|---|---|
生态源地 | 7.15×103 | 517 | 3.67×103 | 0.00 | 775 | 1.08×103 | 3.38×103 | 4.23×103 | 0.00 | 2.03×103 | 1.20×104 |
低阻廊道 | 17.0 | 29.9 | 9.00 | 0.00 | 44.4 | 51.0 | 17.2 | 0.18 | 0.00 | 12.3 | 2.88 |
中阻廊道 | 83.5 | 26.5 | 21.8 | 0.00 | 19.3 | 80.1 | 89.0 | 15.6 | 0.00 | 52.5 | 4.59 |
高阻廊道 | 20.2 | 0.00 | 1.35 | 0.00 | 1.53 | 0.00 | 29.7 | 15.3 | 0.00 | 11.8 | 0.00 |
生态夹点 | 64.3 | 3.06 | 26.5 | 0.00 | 9.72 | 47.1 | 47.3 | 27.1 | 0.00 | 20.4 | 0.630 |
生态障碍点 | 59.6 | 7.47 | 11.4 | 0.00 | 30.8 | 44.8 | 34.8 | 9.99 | 0.00 | 7.56 | 0.00 |
Table 5 Statistics of ecological protection and restoration area in Zhejiang Province km2
生态保护修复区域 | 杭州 | 宁波 | 温州 | 嘉兴 | 湖州 | 绍兴 | 金华 | 衢州 | 舟山 | 台州 | 丽水 |
---|---|---|---|---|---|---|---|---|---|---|---|
生态源地 | 7.15×103 | 517 | 3.67×103 | 0.00 | 775 | 1.08×103 | 3.38×103 | 4.23×103 | 0.00 | 2.03×103 | 1.20×104 |
低阻廊道 | 17.0 | 29.9 | 9.00 | 0.00 | 44.4 | 51.0 | 17.2 | 0.18 | 0.00 | 12.3 | 2.88 |
中阻廊道 | 83.5 | 26.5 | 21.8 | 0.00 | 19.3 | 80.1 | 89.0 | 15.6 | 0.00 | 52.5 | 4.59 |
高阻廊道 | 20.2 | 0.00 | 1.35 | 0.00 | 1.53 | 0.00 | 29.7 | 15.3 | 0.00 | 11.8 | 0.00 |
生态夹点 | 64.3 | 3.06 | 26.5 | 0.00 | 9.72 | 47.1 | 47.3 | 27.1 | 0.00 | 20.4 | 0.630 |
生态障碍点 | 59.6 | 7.47 | 11.4 | 0.00 | 30.8 | 44.8 | 34.8 | 9.99 | 0.00 | 7.56 | 0.00 |
[1] | DICKSON B G, ALBANO C M, ANANTHARAMAN R, et al., 2019. Circuit‐theory applications to connectivity science and conservation[J]. Conservation Biology, 33(2): 239-249. |
[2] |
FOLEY J A, DEFRIES R, ASNER G P, et al., 2005. Global consequences of land use[J]. Science, 309(5734): 570-574.
DOI PMID |
[3] | GOLDSTEIN J H, CALDARONE G, DUARTE T K, et al., 2012. Integrating ecosystem-service tradeoffs into land-use decisions[J]. Proceedings of the National Academy of Sciences, 109(19): 7565-7570. |
[4] | LI C, WU Y M, GAO B P, et al., 2023. Construction of ecological security pattern of national ecological barriers for ecosystem health maintenance[J]. Ecological Indicators, 146: 109801. |
[5] | LIANG G F, NIU H B, LI Y, 2023. A multi-species approach for protected areas ecological network construction based on landscape connectivity[J]. Global Ecology and Conservation, 46: e02569. |
[6] | LIANG X, GUAN Q F, CLARKE K C, et al., 2020. Understanding the drivers of sustainable land expansion using a patch- generating land use simulation (PLUS) model: A case study in Wuhan, China[J]. Computers, Environment and Urban Systems, 85: 101569. |
[7] | MCRAE B H, BEIER P, 2007. Circuit theory predicts gene flow in plant and animal populations[J]. Proceedings of the National Academy of Sciences, 104(50): 19885-19890. |
[8] | MCRAE B H, DICKSON B G, KEITT T H, et al., 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation[J]. Ecology, 10(89): 2712-2724. |
[9] | MCRAE B H, 2006. Isolation by resistance[J]. Evolution, 8(60): 1551-1561. |
[10] | NELSON E, MENDOZA G, REGETZ J, et al., 2009. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales[J]. Frontiers in Ecology and the Environment, 7(1): 4-11. |
[11] | PENG J, PAN Y J, LIU Y X, et al., 2018. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape[J]. Habitat International, 71: 110-124. |
[12] | STEFFEN W, RICHARDSON K, ROCKSTRÖM J, et al., 2015. Planetary boundaries: Guiding human development on a changing planet[J]. Science, 347(6223): 1259855. |
[13] | ZHANG L Q, PENG J, LIU Y X, et al., 2017. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing-Tianjin-Hebei region, China[J]. Urban Ecosystems, 20(3): 701-714. |
[14] | 曹宇, 王嘉怡, 李国煜, 2019. 国土空间生态修复:概念思辨与理论认知[J]. 中国土地科学, 33(7): 1-10. |
CAO Y, WANG J Y, LI G Y, 2019. Ecological restoration of territorial space: conceptual speculation and theoretical cognition[J]. Chinese Land Science, 33(7): 1-10. | |
[15] | 陈思旭, 杨小唤, 肖林林, 等, 2014. 基于RUSLE模型的南方丘陵山区土壤侵蚀研究[J]. 资源科学, 36(6): 1288-1297. |
CHEN S X, YANG X H, XIAO L L, et al., 2014. Study of soil erosion in the southern hillside area of China based on RUSLE model[J]. Resources Science, 36(6): 1288-1297. | |
[16] |
陈昕, 彭建, 刘焱序, 等, 2017. 基于 “重要性-敏感性-连通性” 框架的云浮市生态安全格局构建[J]. 地理研究, 36(3): 471-484.
DOI |
CHEN X, PENG J, LIU Y X, et al., 2017. Constructing ecological security patterns in Yunfu City based on the framework of importance-sensitivity-connectivity[J]. Geographical Research, 36(3): 471-484. | |
[17] | 陈星, 周成虎, 2005. 生态安全:国内外研究综述[J]. 地理科学进展, 24(6): 8-20. |
CHEN X, ZHOU C H, 2005. Ecological security: A review of domestic and foreign research[J]. Grogress in Geography, 24(6): 8-20. | |
[18] | 丁岳, 王柳柱, 桂峰, 等, 2023. 基于InVEST模型和PLUS模型的环杭州湾生态系统碳储量[J]. 环境科学, 44(6): 3343-3352. |
DING Y, WANG L Z, GUI F, et al., 2023. Ecosystem carbon storage in Hangzhou Bay Area based on InVEST and PLUS models[J]. Environmental Science, 44(6): 3343-3352. | |
[19] | 杜雨阳, 王征强, 于庆和, 等, 2022. 基于生境质量模型和电路理论的区域生态安全格局构建——以秦岭(陕西段)为例[J]. 农业资源与环境学报, 39(05): 1069-1078. |
DU Y Y, WANG Z Q, YU Q H, et al., 2022. Construction of regional ecological security pattern based on habitat quality model and circuit theory: A case study of Qinling Mountains (Shaanxi Section)[J]. Journal of Agricultural Resources and Environment, 39(5): 1069-1078. | |
[20] |
黄苍平, 尹小玲, 黄光庆, 等, 2018. 厦门市同安区生态安全格局构建[J]. 热带地理, 38(6): 874-883.
DOI |
HUANG C P, YIN X L, HUANG G Q, et al., 2018. Construction of ecological security pattern of Tong'an District, Xiamen City[J]. Tropical Geography, 38(6): 874-883. | |
[21] |
黄木易, 岳文泽, 冯少茹, 等, 2019. 基于MCR模型的大别山核心区生态安全格局异质性及优化[J]. 自然资源学报, 34(4): 771-784.
DOI |
HUANG M Y, YUE W Z, FENG S R, et al., 2019. Heterogeneity and optimization of ecological security pattern in the core area of Dabie Mountain based on MCR model[J]. Journal of Natural Resources, 34(4): 771-784. | |
[22] | 贾良清, 欧阳志云, 赵同谦, 等, 2005. 安徽省生态功能区划研究[J]. 生态学报, 25(2): 254-260. |
JIA L Q, OUYANG Z Y, ZHAO T Q, et al., 2005. The ecological function regionalization of Anhui Province[J]. Acta Ecologica Sinica, 25(2): 254-260. | |
[23] |
李涛, 巩雅博, 戈健宅, 等, 2021. 基于电路理论的城市景观生态安全格局构建——以湖南省衡阳市为例[J]. 应用生态学报, 32(7): 2555-2564.
DOI |
LI T, GONG Y B, GE J Z, et al., 2021. Construction of urban landscape ecological security pattern based on circuit theory: A case study of Hengyang City, Hunan Province, China[J]. Chinese Journal of Applied Ecology, 32(7): 2555-2564.
DOI |
|
[24] |
李振亚, 魏伟, 周亮, 等, 2022. 中国陆地生态敏感性时空演变特征[J]. 地理学报, 77(1): 150-163.
DOI |
LI Z Y, WEI W, ZHOU L, et al., 2022. Spatio-temporal evolution characteristics of terrestrial ecological sensitivity in China[J]. Acta Geographica Sinica, 77(1): 150-163.
DOI |
|
[25] | 刘伊萌, 杨赛霓, 倪维, 等, 2020. 生态斑块重要性综合评价方法研究——以四川省为例[J]. 生态学报, 40(11): 3602-3611. |
LIU Y M, YANG S N, NI W, et al., 2020. Comprehensive assessment method on ecological patch importance: a case study in Sichuan Province, China[J]. Acta Ecologica Sinica, 40(11): 3602-3611. | |
[26] | 罗雯, 陈佳, 卢瑛莹, 2023. 2000-2020年浙江省陆域生态系统碳库碳储量演变及提升路径[J]. 环境污染与防治, 45(3): 413-418, 426. |
LUO W, CHEN J, LU Y Y, 2023. Evolution characteristics and improvement path of terrestrial ecosystem carbon storage in Zhejiang Province from 2000 to 2020[J]. Environmental Pollution and Control, 45(3): 413-418, 426. | |
[27] | 蒙吉军, 王雅, 王晓东, 等, 2016. 基于最小累积阻力模型的贵阳市景观生态安全格局构建[J]. 长江流域资源与环境, 25(7): 1052-1061. |
MENG J J, WANG Y, WANG X D, et al., 2016. Construction of landscape ecological security pattern in Guiyang based on MCR model[J]. Resources and Environment in the Yangtze Basin, 25(7): 1052-1061. | |
[28] | 欧阳志云, 崔书红, 郑华, 2015. 我国生态安全面临的挑战与对策[J]. 科学与社会, 5(1): 20-30. |
OUYANG Z Y, CUI S H, ZHENG H, 2015. The challenges and coping strategies for ensuring ecological security in China[J]. Science and Society, 5(1): 20-30. | |
[29] | 潘竟虎, 王云, 2021. 基于CVOR和电路理论的讨赖河流域生态安全评价及生态格局优化[J]. 生态学报, 41(7): 2582-2595. |
PAN J H, WANG Y, 2021. Ecological security evaluation and ecological pattern optimization in Taolai River Basin based on CVOR and circuit theory[J]. Acta Ecologica Sinica, 41(7): 2582-2595. | |
[30] |
彭建, 李慧蕾, 刘焱序, 等, 2018. 雄安新区生态安全格局识别与优化策略[J]. 地理学报, 73(4): 701-710.
DOI |
PENG J, LI H L, LIU Y X, et al., 2018. Identification and optimization of ecological security pattern in Xiong'an New Area[J]. Acta Geographica Sinica, 73(4): 701-710.
DOI |
|
[31] |
彭建, 赵会娟, 刘焱序, 等, 2017. 区域生态安全格局构建研究进展与展望[J]. 地理研究, 36(3): 407-419.
DOI |
PENG J, ZHAO H J, LIU Y X, et al., 2017. Research progress and prospect on regional ecological security pattern construction[J]. Geographical Research, 36(3): 407-419. | |
[32] |
申梦姝, 刘悦忆, 郑航, 等, 2024. 长江流域水源涵养服务价值及其空间转移评估[J]. 长江科学院院报, 41(4): 14-22, 36.
DOI |
SHEN M S, LIU Y Y, ZHENG H, et al., 2024. Evaluation of water source conservation service value and its spatial transfer in Yangtze River Basin[J]. Journal of Yangtze River Scientific Research Institute, 41(4): 14-22, 36. | |
[33] | 宋婷, 李岱青, 张林波, 等, 2020. 秦巴山脉区域生态系统服务重要性评价及生态安全格局构建[J]. 中国工程科学, 22(1): 64-72. |
SONG T, LI D Q, ZHANG L B, et al., 2020. Importance evaluation of ecosystem services and construction of ecological security pattern in Qinba Mountain area[J]. Strategic Study of CAE, 22(1): 64-72. | |
[34] | 王浩, 马星, 杜勇, 2021. 基于生态系统服务重要性和生态敏感性的广东省生态安全格局构建[J]. 生态学报, 41(5): 1705-1715. |
WANG H, MA X, DU Y, 2021. Constructing ecological security patterns based on ecological service importance and ecological sensitivity in Guangdong Province[J]. Acta Ecologica Sinica, 41(5): 1705-1715. | |
[35] | 乌玲瑛, 严力蛟, 2014. 基于GIS和RUSLE模型道路对土壤侵蚀格局的影响研究——以浙江省杭金衢高速诸暨段为例[J]. 生态学报, 34(19): 5659-5669. |
WU L Y, YAN L J, 2014. Study on the influence of road on soil erosion pattern based on GIS and RUSLE model: A case study of Zhuji Section of Hangjinqu Expressway in Zhejiang Province[J]. Acta Ecologica Sinica, 34(19): 5659-5669. | |
[36] | 许峰, 尹海伟, 孔繁花, 等, 2015. 基于MSPA与最小路径方法的巴中西部新城生态网络构建[J]. 生态学报, 35(19): 6425-6434. |
XU F, YIN H W, KONG F H, et al., 2015. Construction of ecological network of new city in western Bazhong City based on MSPA and minimum path method[J]. Acta Ecologica Sinica, 35(19): 6425-6434. | |
[37] | 岳文泽, 夏皓轩, 吴桐, 等, 2022. 浙江省生境质量时空演变与生态红线评估[J]. 生态学报, 42(15): 6406-6417. |
YUE W Z, XIA H X, WU T, et al., 2022. Spatio-temporal evolution of habitat quality and ecological red line assessment in Zhejiang Province[J]. Acta Ecologica Sinica, 42(15): 6406-6417. | |
[38] | 张昌顺, 谢高地, 刘春兰, 等, 2022. 基于水源涵养参照系的中国生态系统水源涵养功能优劣评估[J]. 生态学报, 42(22): 9250-9260. |
ZHANG C S, XIE G D, LIU C L, et al., 2022. Evaluation of water conservation of China's ecosystems based on benchmark[J]. Acta Ecologica Sinica, 42(22): 9250-9260. | |
[39] | 张涛, 金德钢, 佟光臣, 等, 2016. 基于RULSE的线状开发建设项目区土壤侵蚀动态监测——以浙江省宁波市北环快速路工程为例[J]. 水土保持通报, 36(5): 131-135. |
ZHANG T, JIN D G, TONG G C, et al., 2016. Dynamic monitoring of soil erosion in linear development project area based on RULSE: A case study of Beihuan Expressway project in Ningbo City, Zhejiang Province[J]. Bulletin of Soil and Water Conservation, 36(5): 131-135. | |
[40] | 章文波, 付金生, 2003. 不同类型雨量资料估算降雨侵蚀力[J]. 资源科学, 25(1): 35-41. |
ZHANG W B, FU J S, 2003. Rainfall erosivity estimation under different types of rainfall data[J]. Resources Science, 25(1): 35-41. | |
[41] | 朱强, 俞孔坚, 李迪华, 2005. 景观规划中的生态廊道宽度[J]. 生态学报, 25(9): 2406-2412. |
ZHU Q, YU K J, LI H D, 2005. The width of ecological corridor in landscape planning[J]. Acta Ecologica Sinica, 25(9): 2406-2412. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn