Ecology and Environment ›› 2024, Vol. 33 ›› Issue (9): 1353-1361.DOI: 10.16258/j.cnki.1674-5906.2024.09.003
• Papers on Carbon Cycling and Carbon Emission Reduction • Previous Articles Next Articles
TANG Jianting1(), YUAN Jie1,2,*(
), CHEN Zongyan1,2, LI Xiaoyan1, SUN Ziting1
Received:
2024-05-23
Online:
2024-09-18
Published:
2024-10-18
Contact:
YUAN Jie
唐建亭1(), 袁杰1,2,*(
), 陈宗颜1,2, 李晓燕1, 孙子婷1
通讯作者:
袁杰
作者简介:
唐建亭(1999年生),男,硕士研究生,研究方向为地表环境过程。E-mail: 985903468@qq.com
基金资助:
CLC Number:
TANG Jianting, YUAN Jie, CHEN Zongyan, LI Xiaoyan, SUN Ziting. Study on Land Use Change and Carbon Stock on the South Slope of Qilian Mountains[J]. Ecology and Environment, 2024, 33(9): 1353-1361.
唐建亭, 袁杰, 陈宗颜, 李晓燕, 孙子婷. 祁连山南坡土地利用变化及碳储量研究[J]. 生态环境学报, 2024, 33(9): 1353-1361.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.09.003
土地利用类型 及数据来源 | 碳密度/(t∙hm−2) | |||
---|---|---|---|---|
地上部 | 地下部 | 土壤 | 死亡有机物 | |
耕地 (Zhu et al., | 4.56 | 7.45 | 64.39 | 0 |
林地 (宋洁等, Zhao et al., | 40.72 | 23.20 | 408.02 | 6.52 |
草地 (Zhao et al., | 0.86 | 5.38 | 148.95 | 1.29 |
建设用地 | 0 | 0 | 0 | 0 |
湿地 (Zhu et al., | 0 | 0 | 249.71 | 0 |
裸地 (Zhao et al., | 0.63 | 4.95 | 111.10 | 0 |
Table 1 Carbon density of land types on the southern slopes of Qilian Mountains
土地利用类型 及数据来源 | 碳密度/(t∙hm−2) | |||
---|---|---|---|---|
地上部 | 地下部 | 土壤 | 死亡有机物 | |
耕地 (Zhu et al., | 4.56 | 7.45 | 64.39 | 0 |
林地 (宋洁等, Zhao et al., | 40.72 | 23.20 | 408.02 | 6.52 |
草地 (Zhao et al., | 0.86 | 5.38 | 148.95 | 1.29 |
建设用地 | 0 | 0 | 0 | 0 |
湿地 (Zhu et al., | 0 | 0 | 249.71 | 0 |
裸地 (Zhao et al., | 0.63 | 4.95 | 111.10 | 0 |
土地利用 类型 | 影响因子 | |||||||
---|---|---|---|---|---|---|---|---|
高程/m | 影响函数 | 坡度/(°) | 影响函数 | 坡向/(°) | 影响函数 | 适宜开发性 | 道路距离/m | |
耕地 | 2500‒3400 | Signmoidal递减 | 5‒14 | J-shaped递减 | ≤3000 | |||
林地 | 3100‒3800 | Signmoidal递减 | 15‒41 | Signmoidal递减 | 157‒248 | J-shaped递减 | 现有地禁止变动 | |
草地 | 2700‒4700 | Signmoidal递减 | 5‒35 | J-shaped递减 | ||||
建设用地 | 2257‒3800 | Signmoidal递减 | 0‒10 | Signmoidal递减 | 现有地禁止变动 | ≤3000 | ||
湿地 | 禁止转换 | 禁止转换 | 禁止转换 | 禁止转换 | 禁止转换 | |||
裸地 | 2257‒3800 | Signmoidal递减 | 0‒10 | Signmoidal递减 | ||||
冰川和永久积雪 | 禁止转换 | 禁止转换 | 禁止转换 | 禁止转换 | 禁止转换 |
Table 2 Impact factors for different land use types
土地利用 类型 | 影响因子 | |||||||
---|---|---|---|---|---|---|---|---|
高程/m | 影响函数 | 坡度/(°) | 影响函数 | 坡向/(°) | 影响函数 | 适宜开发性 | 道路距离/m | |
耕地 | 2500‒3400 | Signmoidal递减 | 5‒14 | J-shaped递减 | ≤3000 | |||
林地 | 3100‒3800 | Signmoidal递减 | 15‒41 | Signmoidal递减 | 157‒248 | J-shaped递减 | 现有地禁止变动 | |
草地 | 2700‒4700 | Signmoidal递减 | 5‒35 | J-shaped递减 | ||||
建设用地 | 2257‒3800 | Signmoidal递减 | 0‒10 | Signmoidal递减 | 现有地禁止变动 | ≤3000 | ||
湿地 | 禁止转换 | 禁止转换 | 禁止转换 | 禁止转换 | 禁止转换 | |||
裸地 | 2257‒3800 | Signmoidal递减 | 0‒10 | Signmoidal递减 | ||||
冰川和永久积雪 | 禁止转换 | 禁止转换 | 禁止转换 | 禁止转换 | 禁止转换 |
土地利用类型 | 耕地 | 林地 | 草地 | 建设用地 | 湿地 | 裸地 | 冰川和永久积雪 |
---|---|---|---|---|---|---|---|
耕地 | 45204.48 | 128.88 | 1321.2 | 3094.38 | 233.19 | 5.58 | 0 |
林地 | 52.74 | 60232.5 | 15616.08 | 0 | 59.13 | 677.43 | 34.56 |
草地 | 10160.28 | 90917.57 | 1862377.02 | 6957.63 | 19065.96 | 165137.85 | 35155.26 |
建设用地 | 191.88 | 0 | 47.52 | 2118.69 | 8.46 | 0.81 | 0 |
湿地 | 360 | 134.82 | 12169.62 | 119.43 | 15458.22 | 106.74 | 71.01 |
裸地 | 10.35 | 846 | 7607.79 | 3.6 | 9.81 | 11271.96 | 1648.26 |
冰川和永久积雪 | 0 | 553.14 | 3929.58 | 0 | 0 | 3115.8 | 32909.94 |
Table 3 Land use transfer matrix in 2000-2020 hm2
土地利用类型 | 耕地 | 林地 | 草地 | 建设用地 | 湿地 | 裸地 | 冰川和永久积雪 |
---|---|---|---|---|---|---|---|
耕地 | 45204.48 | 128.88 | 1321.2 | 3094.38 | 233.19 | 5.58 | 0 |
林地 | 52.74 | 60232.5 | 15616.08 | 0 | 59.13 | 677.43 | 34.56 |
草地 | 10160.28 | 90917.57 | 1862377.02 | 6957.63 | 19065.96 | 165137.85 | 35155.26 |
建设用地 | 191.88 | 0 | 47.52 | 2118.69 | 8.46 | 0.81 | 0 |
湿地 | 360 | 134.82 | 12169.62 | 119.43 | 15458.22 | 106.74 | 71.01 |
裸地 | 10.35 | 846 | 7607.79 | 3.6 | 9.81 | 11271.96 | 1648.26 |
冰川和永久积雪 | 0 | 553.14 | 3929.58 | 0 | 0 | 3115.8 | 32909.94 |
检测项 | 值域 |
---|---|
Chi square | 360274368 |
df | 49 |
P-Level | 0 |
Cramer’V | 0.6798 |
Overall kappa | 0.8899 |
Table 4 CA-Markov model prediction accuracy
检测项 | 值域 |
---|---|
Chi square | 360274368 |
df | 49 |
P-Level | 0 |
Cramer’V | 0.6798 |
Overall kappa | 0.8899 |
土地利用 类型 | 2020年现状 面积/hm2 | 占比/ % | 2030年预测 面积/hm2 | 占比/ % | 增幅/ % |
---|---|---|---|---|---|
耕地 | 55979.73 | 2.32 | 67777.02 | 2.81 | 21.1 |
林地 | 152612.91 | 6.34 | 253840.86 | 10.5 | 66.3 |
草地 | 1903068.81 | 79.0 | 1631786.22 | 67.7 | −14.3 |
建设用地 | 12293.73 | 0.51 | 33933.42 | 1.41 | 176 |
湿地 | 34834.77 | 1.45 | 46527.66 | 1.93 | 33.6 |
裸地 | 180316.17 | 7.49 | 288778.95 | 12.0 | 60.2 |
冰川和永久积雪 | 69819.03 | 2.90 | 86193 | 3.58 | 23.5 |
Table 5 Comparison of 2030 projection results with 2020 status quo data
土地利用 类型 | 2020年现状 面积/hm2 | 占比/ % | 2030年预测 面积/hm2 | 占比/ % | 增幅/ % |
---|---|---|---|---|---|
耕地 | 55979.73 | 2.32 | 67777.02 | 2.81 | 21.1 |
林地 | 152612.91 | 6.34 | 253840.86 | 10.5 | 66.3 |
草地 | 1903068.81 | 79.0 | 1631786.22 | 67.7 | −14.3 |
建设用地 | 12293.73 | 0.51 | 33933.42 | 1.41 | 176 |
湿地 | 34834.77 | 1.45 | 46527.66 | 1.93 | 33.6 |
裸地 | 180316.17 | 7.49 | 288778.95 | 12.0 | 60.2 |
冰川和永久积雪 | 69819.03 | 2.90 | 86193 | 3.58 | 23.5 |
[1] | GAILLARD M J, MORRISON K, MADELLA M, 2018. Past land use and landcover change: the challenge of quantification at the subcontinental to global scales[J]. Past Land-use Land Cover, 26(1): 3. |
[2] | GEORGIOU K, JACKSON R B, OLGA VINDUKOVA, et al., 2022. Global stocks and capacity of mineral-associated soil organic carbon[J]. Nature Communications, 13(1): 3797. |
[3] | GAO H Y, QIN T L, LUAN Q H, et al., 2024. Characteristics analysis and prediction of land use evolution in the Source Region of the Yangtze River and Yellow River based on improved FLUS model[J]. Land, 13(3): 393. |
[4] | JIAO Y H, WANG Y H, TU C H, et al., 2024. Spatiotemporal evolution and future of carbon storage in resource-based Chinese province: A case study from Shanxi using PLUS-InVEST model prediction[J]. Sustainability, 16(11): 4461. |
[5] | LIU K, ZHANG C Z, ZHANG H, et al., 2023. Spatiotemporal variation and dynamic simulation of ecosystem carbon storage in the Loess Plateau based on PLUS and InVEST models[J]. Land, 12(5): 1065. |
[6] | LONG Y, LIU X, LUO S Q, et al., 2023. Evolution and prediction of urban fringe areas based on Logistic-CA-Markov models: The case of Wuhan city[J]. Land, 12(10): 1874. |
[7] | PAN Y, BIRDSEY A R, FANG J Y, et al., 2011. A large and persistent carbon sink in the world’s forests[J]. Science, 333(6045): 988-993. |
[8] | YANG Y H, SHI Y, SUN W J, et al., 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Science China (Life Sciences), 65(5): 1-35. |
[9] | YUE S J, JI G X, CHEN W Q, et al., 2023. Spatial and temporal variability characteristics of future carbon stocks in Anhui province under different SSP scenarios based on PLUS and InVEST models[J]. Land, 12(9): 1668. |
[10] |
ZHANG M, HUANG X J, CHUAI X W, et al., 2015. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective[J]. Scientific Reports, 5: 10233.
DOI PMID |
[11] | ZHAO M M, HE Z B, DU J, et al., 2019. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models[J]. Ecological Indicators, 98(3): 29-38. |
[12] | ZHU G F, QIU D D, ZHANG Z X, et al., 2021. Land-use changes lead to a decrease in carbon storage in arid region, China[J]. Ecological Indicators, 127(8): 107770. |
[13] | 邓喆, 2022. 基于土地利用变化的祁连山国家公园碳储量时空演变及预测[D]. 兰州: 兰州大学. |
DENG Z, 2022. Spatial-temporal evolution and prediction of carbon storage in Qilian Mountain National Park based on land use changes[D]. Lanzhou: Lanzhou University. | |
[14] |
付建新, 曹广超, 郭文炯, 2020. 1980-2018年祁连山南坡土地利用变化及其驱动力[J]. 应用生态学报, 31(8): 2699-2709.
DOI |
FU J X, CAO G C, GUO W J, 2020. Land use change and its driving force on the southern slope of Qilian Mountains from 1980 to 2018[J]. Chinese Journal of Applied Ecology, 31(8): 2699-2709. | |
[15] |
冯永忠, 尹振良, 王凌阁, 等, 2023. 1980-2020年气候和土地利用变化对甘肃省陆地生态系统碳储量的影响[J]. 中国沙漠, 43(4): 168-179.
DOI |
FENG Y Z, YIN Z L, WANG L G, et al., 2023. The impacts of climate change and land use change on terrestrial ecosystem carbon storage of Gansu province from 1980 to 2020[J]. Journal of Desert Research, 43(4): 168-179.
DOI |
|
[16] |
高扬, 何念鹏, 汪亚峰, 2013. 生态系统固碳特征及其研究进展[J]. 自然资源学报, 28(7): 1264-1274.
DOI |
GAO Y, HE N P, WANG Y F, 2013. Characteristics of carbon sequestration by ecosystem and progress in its research[J]. Journal of Natural Resources, 28(7): 1264-1274.
DOI |
|
[17] |
刘纪远, 宁佳, 匡文慧, 等, 2018. 2010-2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 73(5): 789-802.
DOI |
LIU J Y, NING J, KUANG W H, et al., 2018. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015[J]. Acta Geographica Sinica, 73(5): 789-802.
DOI |
|
[18] | 刘芳, 曹广超, 曹生奎, 等, 2020. 祁连山南坡水体氢氧稳定同位素特征研究[J]. 干旱区研究, 37(5): 1116-1123. |
LIU F, CAO G C, CAO S K, et al., 2020. Hydrogen and oxygen isotope characteristics of water bodies on the southern slope of Qilian Mountains[J]. Arid Zone Research, 37(5): 1116-1123. | |
[19] | 刘洋, 张军, 周冬梅, 等, 2021. 基于InVEST模型的疏勒河流域碳储量时空变化研究[J]. 生态学报, 41(10): 4052-4065. |
LIU Y, ZHANG J, ZHOU D M, et al., 2021. Temporal and spatial variation of carbon storage in the Shule River Basin based on InVEST model[J]. Acta Ecologica Sinica, 41(10): 4052-4065. | |
[20] | 刘梦园, 2023. 基于InVEST模型的河西地区碳储量与生境质量评价[D]. 兰州: 兰州大学. |
LIU M Y, 2023. Assessment of carbon storage and habitat quality in Hexi Region based on InVEST Model[D]. Lanzhou: Lanzhou University. | |
[21] |
雷馨, 海新权, 2023. 祁连山地区土地利用变化对碳储量的影响及经济价值估算[J]. 干旱区研究, 40(11): 1845-1854.
DOI |
LEI X, HAI X Q, 2023. Impacts of land use change on carbon storage and estimation of economic value in Qilian Mountain region[J]. Arid Zone Research, 40(11): 1845-1854.
DOI |
|
[22] | 马勇洁, 仲俊涛, 米文宝, 等, 2023. 基于青海湖流域土地利用多情景模拟预测的碳储量评估及其脆弱性分析[J]. 干旱区资源与环境, 37(10): 46-55. |
MA Y J, ZHONG J T, MI W B, et al., 2023. Assessment and vulnerability analysis on carbon storage based on multi-scenarios simulation and prediction of land use in Qinghai Lake basin[J]. Journal of Arid Land Resources and Environment, 37(10): 46-55. | |
[23] | 钱大文, 曹广民, 杜岩功, 等, 2020. 2000-2015年祁连山南坡生态系统服务价值时空变化[J]. 生态学报, 40(4): 1392-1404. |
QIAN D W, CAO G M, DU Y G, et al., 2020. Spatio-temporal dynamics of ecosystem service value in the southern slope of Qilian Mountain from 2000 to 2015[J]. Acta Ecologica Sinica, 40(4): 1392-1404. | |
[24] | 史利江, 王圣云, 姚晓军, 等, 2012. 1994-2006年上海市土地利用时空变化特征及驱动力分析[J]. 长江流域资源与环境, 21(12): 1468-1479. |
SHI L J, WANG S Y, YAO X J, et al., 2012. Spatial and temporal variation characteristics of land use and its driving force in Shanghai city from 1994 to 2006[J]. Resources and Environment in the Yangtze Basin, 21(12): 1468-1479. | |
[25] |
宋洁, 刘学录, 2021. 祁连山国家公园森林地上碳密度遥感估算[J]. 干旱区地理, 44(4): 1045-1057.
DOI |
SONG J, LIU X L, 2021. Estimation of forest aboveground carbon density in Qilian Mountains National Park based on remote sensing[J]. Arid Land Geography, 44(4): 1045-1057.
DOI |
|
[26] |
于皓, 张柏, 王宗明, 等, 2017. 1990-2015年韩国土地覆被变化及其驱动因素[J]. 地理科学, 37(11): 1755-1763.
DOI |
YU H, ZHANG B, WANG Z M, et al., 2017. Land cover change and its driving forces in the Republic of Korea since the 1990s[J]. Scientia Geographica Sinica, 37(11): 1755-1763.
DOI |
|
[27] | 岳东霞, 杨超, 江宝骅, 等, 2019. 基于CA-Markov模型的石羊河流域生态承载力时空格局预测[J]. 生态学报, 39(6): 1993-2003. |
YUE D X, YANG C, JIANG B H, et al., 2019. Spatio-temporal pattern prediction of the biocapacity in the Shiyang River Basin on the basis of the CA-Markov model[J]. Acta Ecologica Sinica, 39(6): 1993-2003. | |
[28] | 虞敏, 曹广超, 曹生奎, 等, 2019. 近30年祁连山南坡降水量变化特征分析[J]. 水土保持研究, 26(2): 241-248. |
YU M, CAO G C, CAO S K, et al., 2019. Analysis of precipitation variation characteristics in the southern slope of Qilianshan Mountains in recent 30 years[J]. Research of Soil and Water Conservation, 26(2): 241-248. | |
[29] | 袁杰, 2019. 祁连山黑河源区土壤储碳蓄水能力及潜力研究[D]. 西宁: 青海师范大学. |
YUAN J, 2019. Study on the capacity and potential of soil carbon storage and soil water storage in Heihe River source area of Qilian Mountain[D]. Xining: Qinghai Normal University. | |
[30] | 袁杰, 曹广超, 曹生奎, 等, 2024. 祁连山南坡微地形下典型生态系统土壤蓄水能力差异[J]. 水土保持研究, 31(1): 159-167, 177. |
YUAN J, CAO G C, CAO S K, et al., 2024. Differences in soil water storage capacity of typical ecosystems under microtopography in southern slope of Qilian Mountains[J]. Research of Soil and Water Conservation, 31(1): 159-167, 177. | |
[31] |
朱文博, 张静静, 崔耀平, 等, 2019. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报, 74(3): 446-459.
DOI |
ZHU W B, ZHANG J J, CUI Y P, et al., 2019. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin[J] Acta Geographica Sinica, 74(3): 446-459.
DOI |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn