Ecology and Environmental Sciences ›› 2025, Vol. 34 ›› Issue (5): 710-719.DOI: 10.16258/j.cnki.1674-5906.2025.05.005
• Research Article【Ecology】 • Previous Articles Next Articles
LIN Yongyi1,2(), ZHOU Yanfei1,2, DENG Jinhuan1,2, TIAN Jihui1,2, CAI Kunzheng1,2,*(
)
Received:
2024-09-29
Online:
2025-05-18
Published:
2025-05-16
林泳怡1,2(), 周燕飞1,2, 邓金环1,2, 田纪辉1,2, 蔡昆争1,2,*(
)
通讯作者:
*蔡昆争。E-mail: 作者简介:
林泳怡(2000年生),女,硕士研究生,主要研究方向为农业生态与作物逆境研究。E-mail: 2499723637@qq.com
基金资助:
CLC Number:
LIN Yongyi, ZHOU Yanfei, DENG Jinhuan, TIAN Jihui, CAI Kunzheng. Biochar Combined with Phosphorus Promote Silicon Fraction Transformation and Si Absorption of Soybean Plant in Latosolic Red Soil[J]. Ecology and Environmental Sciences, 2025, 34(5): 710-719.
林泳怡, 周燕飞, 邓金环, 田纪辉, 蔡昆争. 生物炭与磷添加促进赤红壤的硅形态转化和大豆植株硅吸收转运[J]. 生态环境学报, 2025, 34(5): 710-719.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2025.05.005
施肥 | CK | P | B | BP |
---|---|---|---|---|
生物炭 | 0 | 0 | 100 | 100 |
KH2PO4 | 0 | 0.144 | 0 | 0.144 |
K2SO4 | 0.323 | 0.231 | 0.323 | 0.231 |
尿素 | 0.272 | 0.272 | 0.272 | 0.272 |
Table 1 Application rate of biochar and fertilizer g·pot?1
施肥 | CK | P | B | BP |
---|---|---|---|---|
生物炭 | 0 | 0 | 100 | 100 |
KH2PO4 | 0 | 0.144 | 0 | 0.144 |
K2SO4 | 0.323 | 0.231 | 0.323 | 0.231 |
尿素 | 0.272 | 0.272 | 0.272 | 0.272 |
生育期 | 处理 | w(有效磷)/(mg·kg−1) | w(总碳)/(g·kg−1) | w(总氮)/(g·kg−1) |
---|---|---|---|---|
花期 | CK | 5.7±0.6b | 9.7±0.2b | 1.2±0.0b |
P | 10.1±0.9b | 10.0±0.2b | 1.2±0.0b | |
B | 99.4±25.2a | 66.9±2.1a | 2.7±0.1a | |
BP | 113.6±6.0a | 65.3±1.7a | 2.7±0.1a | |
成熟期 | CK | 5.9±0.7b | 9.8±0.2b | 1.1±0.0b |
P | 7.9±1.2b | 10.1±0.1b | 1.2±0.0b | |
B | 92.9±3.8a | 62.0±0.7a | 2.4±0.1a | |
BP | 74.2±25.1a | 60.5±1.6a | 2.6±0.1a |
Table 2 Impacts of biochar and phosphorus on soil total carbon and total nitrogen
生育期 | 处理 | w(有效磷)/(mg·kg−1) | w(总碳)/(g·kg−1) | w(总氮)/(g·kg−1) |
---|---|---|---|---|
花期 | CK | 5.7±0.6b | 9.7±0.2b | 1.2±0.0b |
P | 10.1±0.9b | 10.0±0.2b | 1.2±0.0b | |
B | 99.4±25.2a | 66.9±2.1a | 2.7±0.1a | |
BP | 113.6±6.0a | 65.3±1.7a | 2.7±0.1a | |
成熟期 | CK | 5.9±0.7b | 9.8±0.2b | 1.1±0.0b |
P | 7.9±1.2b | 10.1±0.1b | 1.2±0.0b | |
B | 92.9±3.8a | 62.0±0.7a | 2.4±0.1a | |
BP | 74.2±25.1a | 60.5±1.6a | 2.6±0.1a |
[1] | ARIF M, ILYAS M, RIAZ M, et al., 2017. Biochar improves phosphorus use efficiency of organic-inorganic fertilizers, maizewheat productivity and soil quality in a low fertility alkaline soil[J]. Field Crops Research, 214: 25-37. |
[2] | BHAT J A, SHIVARAJ S, SINGH P, et al., 2019. Role of silicon in mitigation of heavy metal stresses in crop plants[J]. Plants, 8(3): 71. |
[3] | CHEN D, WANG X B, WANG X L, et al., 2020. The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil[J]. Science of the Total Environment, 714: 136550. |
[4] | CHEW J K, JOSEPH S, CHEN G H, et al., 2022. Biochar-based fertiliser enhances nutrient uptake and transport in rice seedlings[J]. Science of the Total Environment, 862: 154174. |
[5] | CUI S H, PENG Y T, YANG X, et al., 2022. Comprehensive understanding of guest compound intercalated layered double hydroxides: Design and applications in removal of potentially toxic elements[J]. Critical Reviews in Environmental Science and Technology, 53(4): 457-482. |
[6] | DAI Z M, ZHANG X J, TANG C, et al., 2017. Potential role of biochars in decreasing soil acidification-A critical review[J]. Science of the Total Environment, 581-582: 601-611. |
[7] |
DESHMUKH R K, VIVANCOS J, VALÉRIE GUÉRIN, et al., 2013. Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice[J]. Plant Molecular Biology, 83(4-5): 303-315.
DOI PMID |
[8] |
DHIMAN P, RAJORA N, BHARDWAJ S, et al., 2021. Fascinating role of silicon to combat salinity stress in plants: An updated overview[J]. Plant Physiology and Biochemistry, 162: 110-123.
DOI PMID |
[9] | EGAMBERDIEVA D, MA H, ALAYLAR B, et al., 2021. Biochar amendments improve licorice (Glycyrrhiza uralensis Fisch.) growth and nutrient uptake under salt stress[J]. Plants, 10(10): 2135. |
[10] | FAN B B, DING S, PENG Y T, et al., 2022. Supplying amendments alleviates aluminum toxicity and regulates cadmium accumulation by spinach in strongly acidic soils[J]. Journal of Environmental Management, 324: 116340. |
[11] | GUO C X, PAN Z Y, PENG S, 2016. Effect of biochar on the growth of Poncirus trifoliata (L.) Raf. seedlings in Gannan acidic red soil[J]. Soil Science and Plant Nutrition, 62(2): 194-200. |
[12] | HU A Y, XU S N, QIN D N, et al., 2021. Role of silicon in mediating phosphorus imbalance in plants[J]. Plants, 10(1): 51. |
[13] | HU Z W, WU D J, WU J F, et al., 2022. Silicon-rich biochar effectively increases the availability of soil silicon and rice yield in reddish paddy soil[J]. Journal of Plant Nutrition, 28(8): 1421-1429. |
[14] | HUA Y M, HEAL K V, FRIESL-HANL W, 2017. The use of red mud as an immobiliser for metal/metalloid contaminated soil: A review[J]. Journal of Hazardous Materials, 325: 17-30. |
[15] | IGALAVITHANA A D, OK Y S, NIAZI NK, et al., 2017. Effect of corn residue biochar on the hydraulic properties of sandy loam soil[J]. Sustainability, 9(2): 266. |
[16] | LI X W, XU S T, NEUPANE A, et al., 2021. Coapplication of biochar and nitrogen fertilizer reduced nitrogen losses from soil[J]. PLoS One, 16(3): e0248100. |
[17] | LI Z M, GUO F Z, CORNELIS J T, et al., 2020. Combined silicon- phosphorus fertilization affects the biomass and phytolith stock of rice plants[J]. Frontiers in Plant Science, 11: 67. |
[18] | LIU X Y, LI L Q, BIAN R J, et al., 2014. Effect of biochar amendment on soil-silicon availability and rice uptake[J]. Journal of Plant Nutrition and Soil Science, 177(1): 91-96. |
[19] | LUO Y, DUNGAIT J A J, ZHAO X R, et al., 2018. Pyrolysis temperature during biochar production alters its subsequent utilization by microorganisms in an acid arable soil[J]. Land Degradation & Development, 29(7): 2183-2188. |
[20] | NGUI M E, LIN Y H, WEI I L, et al., 2024. Effects of the combination of biochar and organic fertilizer on soil properties and agronomic attributes of soybean (Glycine max L.)[J]. PLoS One, 19(9): e0310221. |
[21] | PRENDERGAST-MILLER M T, DUVALL M, SOHI S P, 2014. Biochar root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability[J]. European Journal of Soil Science, 65(1): 173-185. |
[22] | SARMA B, BORKOTOKI B, NARZARI R, et al., 2017. Organic amendments: Effect on carbon mineralization and crop productivity in acidic soil[J]. Journal of Cleaner Production, 152: 157-166. |
[23] | SATTAR M, RAZA A, ALI S, et al., 2023. Integrating byproducts from bioenergy technology to improve the morphophysiological growth and yield of soybean under acidic soil[J]. Chemosphere, 327: 138424. |
[24] |
SHEPHERD J G, JOSEPH S, SOHI S P, et al., 2017. Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties[J]. Chemosphere, 179: 57-74.
DOI PMID |
[25] |
SIGUA G C, NOVAK J M, WATTS D W, et al., 2016. Efficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layer[J]. Chemosphere, 142: 176-183.
DOI PMID |
[26] | SONG Z L, WANG H L, STRONG P J, et al., 2014. Increase of available soil silicon by Si-rich manure for sustainable rice production[J]. Agronomy for Sustainable Development, 34(4): 813-819. |
[27] | STEINER C, TEIXEIRA W G, LEHMANN J, et al., 2007. Long term effects of manure, charcoal, and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil[J]. Plant and Soil, 291(1-2): 275-290. |
[28] | TAN Q L, GUI H P, CHENG X, et al., 2015. Differences in responses of soil microbial properties and trifoliate orange seedling to biochar derived from three feedstocks[J]. Journal of Soils and Sediments, 15(3): 541-551. |
[29] | TAN X F, ZHU S S, WANG R P, et al., 2021. Role of biochar surface characteristics in the adsorption of aromatic compounds: Pore structure and functional groups[J]. Chinese Chemical Letters, 32(10): 2939-2946. |
[30] | TAN Y, ZHOU X, PENG Y T, et al., 2022. Effects of phosphorus-containing material application on soil cadmium bioavailability: A meta-analysis[J]. Environmental Science and Pollution Research, 29(28): 42372-42383. |
[31] | TRIPATHI P, NA C I, KIM Y, 2021. Effect of silicon fertilizer treatment on nodule formation and yield in soybean (Glycine max L.)[J]. European Journal of Agronomy, 122: 126172. |
[32] | TIAN J H, KUANG X Z, TANG M T, et al., 2021. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition[J]. Science of the Total Environment, 779: 146556. |
[33] | THAKRAL V, RATURI G, SUDHAKARAN S, et al., 2024. Silicon, a quasi-essential element: Availability in soil, fertilizer regime, optimum dosage, and uptake in plants[J]. Plant Physiology and Biochemistry, 208: 108459. |
[34] | WANG Y F, XIAO X, XU Y L, et al., 2019. Environmental effects of silicon within biochar (sichar) and carbon-silicon coupling mechanisms: A critical review[J]. Environmental Science & Technology, 53(23): 13570-13582. |
[35] | WROBEL-TOBISZEWSKA A, BOERSMA M, SARGISON J, et al., 2018. Nutrient changes in potting mix and Eucalyptus nitens leaf tissue under macadamia biochar amendments[J]. Journal of Forestry Research, 29(2): 383-393. |
[36] | WU D, ZHANG W M, XIU L Q, et al., 2022. Soybean yield response of biochar-regulated soil properties and root growth strategy[J]. Agronomy, 12(6): 1412. |
[37] | XIU L Q, ZHANG W M, SUN Y Y, et al., 2019. Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years[J]. Catena, 173: 481-493. |
[38] | YUAN J H, XU R K, QIAN W, et al., 2011. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars[J]. Journal of Soils and Sediments, 11(5): 741-750. |
[39] | 鲍士旦, 2005. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2005. Soil agrochemical analysis[M]. The 3rd edition. Beijing: China Agricultural Press. | |
[40] | 陈心想, 何绪生, 耿增超, 等, 2013. 生物炭对不同土壤化学性质、小麦和糜子产量的影响[J]. 生态学报, 33(20): 6534-6542. |
CHEN X X, HE X X, GENG Z C, et al., 2013. The effect of biochar on different soil chemical properties, wheat and millet yields[J]. Acta Ecologica Sinica, 33(20): 6534-6542. | |
[41] | 葛博浩, 耿新, 刘艳晶, 等, 2024. 植物硅转运蛋白研究进展[J]. 热带亚热带植物学报, 32(4): 562-570. |
GE B H, GEN X, LIU Y J, et al., 2024. Research progress on plant silicon transporters[J]. Journal of Tropical and Subtropical Botany, 32(4): 562-570. | |
[42] |
侯伟男, 刘靖愉, 邢一唱, 等, 2021. 生物炭施入量对大豆生长发育及产量的影响[J]. 中国农学通报, 37(15): 14-19.
DOI |
HOU W N, LIU J Y, XING Y C, et al., 2021. Effects of biochar application amount on growth and yield of soybean[J]. Chinese Agricultural Science Bulletin, 37(15): 14-19. | |
[43] |
吕波, 王宇函, 夏浩, 等, 2018. 不同改良剂对黄棕壤和红壤上白菜生长及土壤肥力影响的差异[J]. 中国农业科学, 51(22): 4306-4315.
DOI |
LÜ B, WANG Y H, XIA H, et al., 2018. Differences in the effects of different amendments on the growth of Chinese cabbage and soil fertility on yellow brown soil and red soil[J]. Journal of Integrative Agriculture, 51(22): 4306-4315. | |
[44] | 魏永霞, 石国新, 冯超, 等, 2020. 黑土区施加生物炭对土壤综合肥力与大豆生长的影响[J]. 农业机械学报, 51(5): 285-294. |
WEI Y X, SHI G X, FENG C, et al., 2020. The effect of applying biochar on soil comprehensive fertility and soybean growth in black soil areas[J]. Transactions of the Chinese Society of Agricultural Machinery, 51(5): 285-294. | |
[45] | 吴昱, 赵雨森, 刘慧, 2019. 不同的生物炭施用量和施用年限对土壤结构性指标的影响[J]. 水利科学与寒区工程, 2(3): 5-11. |
WU Y, ZHAO Y S, LIU H, 2019. The impact of different amounts and years of biochar application on soil structural indicators[J]. Hydro Science and Cold Zone Engineering, 2(3): 5-11. | |
[46] | 吴愉萍, 王明湖, 席杰君, 等, 2019. 不同农业废弃物生物炭及施用量对土壤pH值和保水保氮能力的影响[J]. 中国土壤与肥料 (1): 87-92. |
WU Y P, WANG M H, XI J J, et al., 2019. The effects of different agricultural waste biochar and application rates on soil pH value and water and nitrogen retention capacity[J]. Soils and Fertilizers Sciences in China (1): 87-92. | |
[47] | 徐刚, 张友, 武玉, 等, 2016. 生物炭对土壤中氮磷有效性影响的研究进展[J]. 中国科学: 生命科学, 46(9): 1085-1090. |
XU G, ZHANG Y, WU Y, et al., 2016. Research progress on the effects of biochar on the availability of nitrogen and phosphorus in soil[J]. Scientia Sinica (Vitae), 46(9): 1085-1090. | |
[48] | 徐仁扣, 李九玉, 周世伟, 等, 2018. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 33(2): 160-167. |
XU R K, LI J Y, ZHOU S W, et al., 2018. Scientific problems and technical measures of soil acidification control in farmland in China[J]. Bulletin of Chinese Academy of Sciences, 33(2): 160-167. | |
[49] | 宋文涛, 宁川川, 黄美琳, 等, 2023. 秸秆生物炭对两种典型土壤的养分特性及硅的化学形态的影响[J]. 生态科学, 42(5): 123-132. |
SONG W T, NING C C, HUANG M L, et al., 2023. The effect of straw biochar on nutrient characteristics and chemical forms of silicon in two typical soils[J]. Ecological Science, 42(5): 123-132. | |
[50] | 张庚金, 贾露露, 索猛利, 等, 2024. 酸化与富磷影响农田土壤硅的移动性[J]. 中国土壤与肥料, (1): 51-59. |
ZHANG G J, JIA L L, SUO M L, et al., 2024. Acidification and phosphorus enrichment affect the mobility of silicon in farmland soil[J]. Soil and Fertilizer Sciences, (1): 51-59. | |
[51] | 张玲玉, 赵学强, 沈仁芳, 2019. 土壤酸化及其生态效应[J]. 生态学杂志, 38(6): 1900-1908. |
ZHANG L Y, ZHAO X Q, SHEN R F, 2019. Soil acidification and its ecological effects[J]. Journal of Ecology, 38(6): 1900-1908. | |
[52] | 张冉, 高宝林, 郭丽莉, 等, 2021. 贝壳类废弃物用于钝化土壤重金属的研究进展[J]. 农业资源与环境学报, 38(5): 787-796. |
ZHANG R, GAO B L, GUO L L, et al., 2021. Research progress of shell waste for passivation of heavy metals in soil[J]. Journal of Agricultural Resources and Environment, 38(5): 787-796. | |
[53] | 张伟明, 管学超, 黄玉威, 等, 2015. 玉米芯生物炭对大豆的生物学效应[J]. 农业环境科学学报, 34(2): 391-400. |
ZHANG W M, GUAN X C, HUANG Y W, et al., 2015. Biological effects of corncob biochar on soybean[J]. Journal of Agro- Environment Science, 34(2): 391-400. | |
[54] |
周鑫, 冯改利, 李治红, 等, 2020. 环境条件对黄瓜硅吸收分配和果面蜡粉形成的影响[J]. 应用生态学报, 31(2): 501-507.
DOI |
ZHOU X, FENG G L, LI Z H, et al., 2020. The influence of environmental conditions on the absorption and distribution of silicon in cucumber and the formation of wax powder on fruit surface[J]. Chinese Journal of Applied Ecology, 31(2): 501-507. |
[1] | CHEN Wenzhe, HUANG Qiuxiang, MENG Fande, GAO Jinyan, LI Min, ZHANG Enjun, YUAN Guodong. Impacts of Oxalic and Tartaric Acids on Arsenic Desorption from a Paddy Soil [J]. Ecology and Environmental Sciences, 2024, 33(8): 1298-1305. |
[2] | LU Cong. Removal Effect and Mechanism of DBDPE in Sediments by Biochar-loaded Nano-zero-valent Iron [J]. Ecology and Environmental Sciences, 2024, 33(8): 1279-1288. |
[3] | WANG Shiping, LI Mei, AN Ya, QIN Haoli. The Effect of Magnesium Modification on Enhancing Cadmium Adsorption Capacity of Wheat Straw Biochar: A Surface Complexation Modeling Approach [J]. Ecology and Environmental Sciences, 2024, 33(4): 617-625. |
[4] | XIAO Jiang, LI Xiaogang, ZHAO Bo, CHEN Yan, CHEN Guangcai. Effect of Micro/nano Scale Phosphorus-enriched Biochar on Cu and Pb Stabilization in Soil-Salix jiangsuensis ‘172’ System [J]. Ecology and Environmental Sciences, 2024, 33(3): 439-449. |
[5] | LI Gaofan, XU Wenzhuo, WEI Haoming, YAN Zaisheng, YOU Jia, JIANG Helong, HUANG Juan. Preparation of 3D Porous Biochar Adsorbent and Its Adsorption Behavior for Phenanthrene [J]. Ecology and Environmental Sciences, 2024, 33(2): 261-271. |
[6] | CONG Xin, CAO Ping, WANG Xiaobo. Degradation of Pentachlorobiphenyl in Soil Using Persulfate Activated by Biochar-supported Nano Zero-valent Iron [J]. Ecology and Environmental Sciences, 2024, 33(2): 282-290. |
[7] | LI Pujun, TANG Li, ZHAO Bo, DI Dongliu, CHEN Yan, XIAO Jiang, CHEN Guangcai. The Amelioration of Biochar Soil Amendment on Antimony Mining Soil and Growth of Betula luminifera [J]. Ecology and Environmental Sciences, 2024, 33(12): 1953-1963. |
[8] | LI Wenzhang, HU Yaru, LI Fayun, WANG Wei, ZHANG Jining, GUO Qin. Preparation of Iron Modified Biochar-attapulgite Carrier Immobilized Bacterial Agent and Its Remediation for Soil Contaminated by Chlorobenzene [J]. Ecology and Environmental Sciences, 2024, 33(11): 1782-1791. |
[9] | ZHAO Weibin, TANG Li, WANG Song, LIU Lingling, WANG Shufeng, XIAO Jiang, CHEN Guangcai. Improvement Effect of Two Biochars on Coastal Saline-Alkaline Soil [J]. Ecology and Environmental Sciences, 2023, 32(4): 678-686. |
[10] | LI Zhuoxuan, PENG Ziran, HE Wenhui, WEI Ruilu, GAO Linxi. Response Surface Optimization and Adsorption Mechanism of Sheep Manure Charcoal on Nitrogen and Phosphorus Adsorption Conditions [J]. Ecology and Environmental Sciences, 2023, 32(12): 2216-2227. |
[11] | XU Lanqing, CHENG Bingxu, WANG Chuanxi. Study of the Effect of Biomass Carbon Dots on Corn Photosynthesis and Yield by Foliar Application [J]. Ecology and Environmental Sciences, 2023, 32(12): 2166-2173. |
[12] | ZHAO Dandan, LI Wenjian, JIANG Lixia, SHAN Rui, CHEN Dezhen, YUAN Haoran, CHEN Yong. Progress in the Preparation and Performance of Biochar-based Photocatalysts [J]. Ecology and Environmental Sciences, 2023, 32(11): 2019-2029. |
[13] | SU Dan, LUO Qiaobing, DONG Yushan, YANG Caixia, WANG Xin. Strengthening Effect of Mixed Biochar on Microbial Remediation of PAHs Contaminated Soil in Cold Areas [J]. Ecology and Environmental Sciences, 2023, 32(11): 1942-1951. |
[14] | CHEN Guihong. Remediation of Cadmium Contaminated Soil by Sulfur/Silicon Doped Biochar [J]. Ecology and Environmental Sciences, 2023, 32(10): 1854-1860. |
[15] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environmental Sciences, 2023, 32(1): 90-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn