Ecology and Environment ›› 2024, Vol. 33 ›› Issue (4): 499-508.DOI: 10.16258/j.cnki.1674-5906.2024.04.001
• Research Article [Ecology] • Next Articles
HUANG Qian(), ZHU Shiying, LI Tianshun, LI Mingyan, SUO Nancuo, PU Bu*(
)
Received:
2023-05-31
Online:
2024-04-18
Published:
2024-05-31
Contact:
PU Bu
黄倩(), 朱时应, 李天顺, 李明燕, 索南措, 普布*(
)
通讯作者:
普布
作者简介:
黄倩(1996年生),女,硕士研究生,主要从事土壤原生动物生态学方向的研究。E-mail: hq17878192280@163.com
基金资助:
CLC Number:
HUANG Qian, ZHU Shiying, LI Tianshun, LI Mingyan, SUO Nancuo, PU Bu. Distribution Pattern of Soil Protozoa Community along Altitude and Its Correlation with Environmental Factors in Rating National Forest Park in Tibet, China[J]. Ecology and Environment, 2024, 33(4): 499-508.
黄倩, 朱时应, 李天顺, 李明燕, 索南措, 普布. 西藏热振国家森林公园土壤原生动物群落沿海拔分布格局及其与环境因子的关联特征[J]. 生态环境学报, 2024, 33(4): 499-508.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.04.001
样地 | 海拔/m | 东经 | 北纬 | 植被高度/cm | 植被盖度/% | 植被类型 |
---|---|---|---|---|---|---|
A1 | 4116 | 91°31′26.89″ | 30°18′50.49″ | 17.22 | 85 | 草本植物 |
A2 | 4146 | 91°30′33.21″ | 30°18′24.91″ | 9.58 | 60 | 草本植物 |
A3 | 4117 | 91°32′2.63″ | 30°19′19.722″ | 12.34 | 90 | 草本植物 |
B1 | 4371 | 91°31′18.87″ | 30°19′11.31″ | 7.66 | 65 | 针叶灌丛 |
B2 | 4352 | 91°30′34.81″ | 30°18′54.85″ | 3.82 | 70 | 针叶灌丛 |
B3 | 4364 | 91°31′49.72″ | 30°19′32″ | 36.20 | 85 | 针叶灌丛 |
C1 | 4576 | 91°31′8.87″ | 30°19′10.17″ | 3.30 | 90 | 高山草甸 |
C2 | 4573 | 91°30′35″ | 30°19′3.83″ | 5.88 | 65 | 高山草甸 |
C3 | 4567 | 91°31′49.61″ | 30°19′35.88″ | 12.20 | 65 | 高山草甸 |
Table 1 The basic situation of the sample plot in the Rating National Forest Park
样地 | 海拔/m | 东经 | 北纬 | 植被高度/cm | 植被盖度/% | 植被类型 |
---|---|---|---|---|---|---|
A1 | 4116 | 91°31′26.89″ | 30°18′50.49″ | 17.22 | 85 | 草本植物 |
A2 | 4146 | 91°30′33.21″ | 30°18′24.91″ | 9.58 | 60 | 草本植物 |
A3 | 4117 | 91°32′2.63″ | 30°19′19.722″ | 12.34 | 90 | 草本植物 |
B1 | 4371 | 91°31′18.87″ | 30°19′11.31″ | 7.66 | 65 | 针叶灌丛 |
B2 | 4352 | 91°30′34.81″ | 30°18′54.85″ | 3.82 | 70 | 针叶灌丛 |
B3 | 4364 | 91°31′49.72″ | 30°19′32″ | 36.20 | 85 | 针叶灌丛 |
C1 | 4576 | 91°31′8.87″ | 30°19′10.17″ | 3.30 | 90 | 高山草甸 |
C2 | 4573 | 91°30′35″ | 30°19′3.83″ | 5.88 | 65 | 高山草甸 |
C3 | 4567 | 91°31′49.61″ | 30°19′35.88″ | 12.20 | 65 | 高山草甸 |
网络拓扑属性 | 不同海拔高度的网络拓扑参数 | ||
---|---|---|---|
低海拔 (LA) | 中海拔 (MA) | 高海拔 (HA) | |
节点数 | 77 | 39 | 45 |
边数 | 213 | 231 | 303 |
平均加权度 | 7.17 | 7.74 | 13.73 |
平均度 | 5.53 | 11.85 | 13.47 |
模块化系数 | 0.87 | 1.22 | 0.95 |
平均聚类数 | 0.90 | 0.96 | 0.97 |
平均路径长度 | 1.90 | 1 | 1 |
图密度 | 0.07 | 0.31 | 0.31 |
正相关占比/% | 96.24 | 69.70 | 78.22 |
负相关占比/% | 3.76 | 30.30 | 21.78 |
Table 2 Topological properties of soil protozoa co-occurrence networks at different elevations in the Rating National Forest Park
网络拓扑属性 | 不同海拔高度的网络拓扑参数 | ||
---|---|---|---|
低海拔 (LA) | 中海拔 (MA) | 高海拔 (HA) | |
节点数 | 77 | 39 | 45 |
边数 | 213 | 231 | 303 |
平均加权度 | 7.17 | 7.74 | 13.73 |
平均度 | 5.53 | 11.85 | 13.47 |
模块化系数 | 0.87 | 1.22 | 0.95 |
平均聚类数 | 0.90 | 0.96 | 0.97 |
平均路径长度 | 1.90 | 1 | 1 |
图密度 | 0.07 | 0.31 | 0.31 |
正相关占比/% | 96.24 | 69.70 | 78.22 |
负相关占比/% | 3.76 | 30.30 | 21.78 |
[1] | ADL M S, GUPTA V S, 2006. Protists in soil ecology and forest nutrient cycling[J]. Canadian Journal of Forest Research, 36(7): 1805-1817. |
[2] |
CHAFFRON S, REHRAUER H, PERNTHALER J, et al., 2010. A global network of coexisting microbes from environmental and whole-genome sequence data[J]. Genome Research, 20(7): 947-959.
DOI PMID |
[3] | DENG Y, JIANG Y H, YANG Y, et al., 2012. Molecular ecological network analyses[J]. BioMed Central Bioinformatics, 13(1): 1-20. |
[4] |
EKELUND F, RONN R, 1994. Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology[J]. Fems Microbiology Reviews, 15(4): 321-353.
PMID |
[5] |
FIERER N, 2017. Embracing the unknown: disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology, 15(10): 579-590.
DOI PMID |
[6] | FOISSNER W, 1992. Estimating the species richness of soil protozoa using the “non-flooded petri dish method”[M]// Protocols in protozoology. Allen Press Lawrence, KS: B101-102. |
[7] | GAO P, SONG B, XU R, et al., 2021. Structure and variation of root-associated bacterial communities of Cyperus rotundus L. in the contaminated soils around Pb/Zn mine sites[J]. Environmental Science and Pollution Research, 28: 58523-58535. |
[8] | GEISEN S, BANDOW C, ROMBKE J, et al., 2015. Erratum to “Soil water availability strongly alters the community composition of soil protists”[J]. Pedobiologia, 58(1): 55. |
[9] |
GEISEN S, MITCHELL E A, ADL S, et al., 2018. Soil protists: A fertile frontier in soil biology research[J]. Fems Microbiology Reviews, 42(3): 293-323.
DOI PMID |
[10] |
LIU H, NING Y Z, YANG Y Q, et al., 2022. Use of ciliate communities for monitoring ecological restoration of grain for the green in north-western China[J]. Soil Ecology Letters, 4(3): 264-275.
DOI |
[11] | LYNN D H, 2008. The ciliated protozoa: Characterization, classification, and guide to the literature[J]. Transactions of the American Microscopical Society, 98(3): 482-483. |
[12] | MARGALEF R, 1968. Perspectives in ecological theory[J]. Chicago Series in Biology Show All Parts in This Series, 4(7): 220-221. |
[13] | OLIVERIO A M, GEISEN S, DELGADO-BAQUERIZO M, et al., 2020. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances, 6(4): eaax8787. |
[14] | OPPERMAN M H, WOOD M, HARRIS P J, 1989. Changes in microbial populations following the application of cattle slurry to soil at two temperatures[J]. Soil Biology and Biochemistry, 21(2): 263-268. |
[15] | PIELOU E C, 2011. An Introduction to Mathematical Ecology[J]. Bioscience, 24(2): 7-12. |
[16] | SHANNON C E, 1948. A mathematical theory of communication[J]. The Bell System Technical Journal, 27(3): 379-423. |
[17] |
TORSVIK V, OVERAS L, THINGSTAD T F, 2002. Prokaryotic diversity--magnitude, dynamics, and controlling factors[J]. Science, 296(5570): 1064-1066.
PMID |
[18] | VERHOEVEN R, 2001. Response of soil microfauna to organic fertilisation in sandy virgin soils of coastal dunes[J]. Biology and Fertility of Soils, 6(34): 390-396. |
[19] | WILBERT N, 1975. Eine verbesserte technik der protargolimpra gnation fur ciliaten[J]. Mikrokosmos, 64: 171-179. |
[20] | XIAO E Z, NING Z P, XIAO T F, et al., 2021. Soil bacterial community functions and distribution after mining disturbance[J]. Soil Biology and Biochemistry, 157(1): 108-232. |
[21] | XIONG W, JOUSSET A, GUO S, et al., 2018. Soil protist communities form a dynamic hub in the soil microbiome[J]. The International Society for Microbial Ecology Journal, 12(2): 634-638. |
[22] | XUE P P, MINASNY B, MCBRATNEY A B, 2022. Land-use affects soil microbial co-occurrence networks and their putative functions[J]. Applied Soil Ecology, 169(1): 104184. |
[23] | 陈德来, 普布, 巴桑, 等, 2014. 西藏拉鲁湿地夏季土壤线虫群落特征[J]. 动物学杂志, 49(5): 744-753. |
CHEN D L, PU B, BA S, et al., 2014. Characterization of nematode communities in Lhalu Wetlands during the summer[J]. Chinese Journal of Zoology, 49(5): 744-753. | |
[24] | 次仁, 次仁欧珠, 郑毅, 等, 2017. 热振国家森林公园秋季鸟类物种多样性研究[J]. 高原科学研究, 1(1): 17-24. |
CI R, CI R O Z, ZHENG Y, et al., 2017. Preliminary report on species diversity of birds in rating national forest park during the autumn season[J]. Plateau Science Research, 1(1): 17-24. | |
[25] | 旦增央, 杨鄢萍, 张海滨, 等, 2019. 热振国家森林公园木本植物组成结构及区系研究[J]. 南方农业, 13(21): 161-162. |
DAN Z Y, YANG Y P, ZHANG H B, et al., 2019. Study on composition and flora of woody plants in Rating national forest park[J]. South China Agriculture, 13(21): 161-162. | |
[26] | 冯伟松, 范小鹏, 沈韫芬, 等, 2003. 武夷山九曲溪水体营养水平与原生动物群落变化相互关系研究[J]. 水生生物学报, 27(6): 580-583. |
FENG W S, FAN X P, SHEN Y F, et al., 2003. Study on the relationship between the protozoan community structure and the nutrition level of Jiuquxi brook in Wuyi Mountain[J]. Acta Hydrobiologica Sinica, 27(6): 580-583. | |
[27] | 高云超, 朱文珊, 陈文新, 2000. 土壤原生动物群落及其生态功能[J]. 生态学杂志, 19(1): 59-65. |
GAO Y C, ZHU W S, CHEN W X, 2000. Structure of the protozoan community in soil and its ecological functions[J]. Chinese Journal of Ecology, 19(1): 59-65. | |
[28] |
黄伟佳, 刘春, 刘岳, 等, 2023. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 32(1): 80-89.
DOI |
HUANG W J, LIU C, LIU Y, et al., 2023. Soil ecological stoichiometyr and its influencing factors at different elevations in Nanling Mountains[J]. Ecology and Environmental Sciences, 32(1): 80-89. | |
[29] | 刘旻霞, 李全弟, 蒋晓轩, 等, 2019. 兰州市北山不同林地春夏季土壤纤毛虫群落特征[J]. 生态学报, 40(12): 3955-3967. |
LIU M X, LI Q D, JIANG X X, et al., 2020. Characteristics of soil ciliate communities in spring and summer in different woodlands of Beishan, Lanzhou city[J]. Acta Ecologica Sinica, 40(12): 3955-3967. | |
[30] | 莫申国, 张百平, 程维明, 等, 2004. 青藏高原的主要环境效应[J]. 地理科学进展, 23(2): 88-96. |
MO S G, ZHANG B P, CHENG W M, et al., 2004. Major environmental effects of the Tibetan Plateau[J]. Progress in Geography, 23(2): 88-96.
DOI |
|
[31] | 宁应之, 沈韫芬, 1998. 中国典型地带土壤原生动物: II.生态学研究[J]. 动物学报, 44(3): 271-276. |
NING Y Z, SHEN Y F, 1998. Soil protozoa in typical zones of China: Ⅱ Ecological study[J]. Acta Zoologica Sinica, 44(3): 271-276. | |
[32] | 宁应之, 沈韫芬, 1999. 中国典型地带土壤原生动物群落结构及其特征[J]. 西北师范大学学报(自然科学版), 35(2): 50-54. |
NING Y Z, SHEN Y F, 1999. Community structure and characteristics of soil protozoa in typical areas of China[J]. Journal of Northwest Normal University (Natural Science), 35(2): 50-54. | |
[33] |
宁应之, 王婷婷, 武维宁, 等, 2017. 甘南高寒草甸土壤纤毛虫对磷酸氢二铵添加的响应[J]. 应用生态学报, 28(5): 1668-1678.
DOI |
NING Y Z, WANG T T, WU W N, et al., 2017. Response of soil ciliate to diammonium phosphate addition alpine meadow of southern Gansu, Northwest China[J]. Chinese Journal of Applied Ecology, 28(5): 1668-1678. | |
[34] |
宁应之, 徐富荣, 王婷婷, 2020. 庆阳市庆城县退耕还林区土壤纤毛虫群落特征[J]. 生态环境学报, 29(3): 506-515.
DOI |
NING Y Z, XU F R, WANG T T, 2020. Community characteristics of soil ciliates in forestlands converted from cultivated lands in Qingcheng county, Qingyang city[J]. Ecology and Environmental Sciences, 29(3): 506-515. | |
[35] |
任倩茹, 毛晓雅, 齐晓君, 等, 2023. 芦芽山华北落叶松林不同深度土壤原生动物群落分布格局及驱动机制[J]. 应用生态学报, 34(5): 1395-1403.
DOI |
REN Q R, MAO X Y, QI X J, et al., 2023. Distribution patterns and driving mechanism of soil protozoan community at the different depths of Larix principis-chinensis forest in the Luya Mountain, China[J]. Chinese Journal of Applied Ecology, 34(5): 1395-1403. | |
[36] | 宋微波, 徐奎栋, 1994. 纤毛虫原生动物形态学研究的常用方法[J]. 海洋科学, 18(6): 6-9. |
SONG W B, XUE K D, 1994. Common methods for morphological studies of ciliated protozoa[J]. Marine Sciences, 18(6): 6-9. | |
[37] |
孙鸿烈, 郑度, 姚檀栋, 等, 2012. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报, 67(1): 3-12.
DOI |
SUN H L, ZHENG D, YAO C D, et al., 2012. Protection and construction of the national ecological security shelter zone on Tibetan Plateau[J]. Acta Geographica Sinica, 67(1): 3-12.
DOI |
|
[38] | 王超, 徐润林, 2017. 鼎湖山不同森林类型土壤纤毛虫群落比较研究[J]. 土壤, 49(4): 725-732. |
WANG C, XU R L, 2017. Comparative study on soil ciliates community structures under different vegetation types in Dinghu Mountain[J]. Soils, 49(4): 725-732. | |
[39] | 王壮壮, 李天顺, 朱时应, 等, 2022. 热振森林大型土壤动物群落特征及其影响因素[J]. 中国环境科学, 42(7): 3392-3402. |
WANG Z Z, LI T S, ZHU S Y, et al., 2022. Community characteristics of soil macrofauna and its influencing factors at Rating Forest[J]. China Environmental Science, 42(7): 3392-3402. | |
[40] | 吴聪, 刘海平, 谢佳燕, 等, 2022. 雅鲁藏布江流域原生动物群落结构及其与环境因子的关系[J]. 武汉大学学报: 理学版, 68(6): 621-634. |
WU C, LIU H P, XIE J Y, et al., 2022. Community structure of protozoan and its relation to environmental factors in the Yarlung Zangbo river basin[J]. Journal of Wuhan University (Natural Science Edition), 68(6): 621-634. | |
[41] | 杨清, 张鹏, 安瑞志, 等, 2022. 拉萨河中下游纤毛虫群落时空分布模式及其驱动机制[J]. 生物多样性, 30(6): 136-150. |
YANG Q, ZHANG P, AN R Z, et al., 2022. Spatial and temporal distribution patterns and driving mechanisms of ciliate communities in the midstream and downstream reaches of the Lhasa River[J]. Biodiversity Science, 30(6): 136-150. | |
[42] | 杨笑笑, 刘信宝, 陈震, 等, 2022. 土壤盐度影响甜高粱生长发育及脱盐因素分解的研究[J]. 中国草地学报, 44(5): 73-81. |
YANG X X, LIU X B, CHEN Z, et al., 2022. Effects of soil salinity on growth of sweet sorghum and decomposition of desalination factors[J]. Chinese Journal of Grassland, 44(5): 73-81. | |
[43] | 殷秀琴, 宋博, 邱丽丽, 2007. 红松阔叶混交林凋落物-土壤动物-土壤系统中N, P, K的动态特征[J]. 生态学报, 27(1): 128-134. |
YIN X Q, SONG B, QIU L L, 2007. Dynamic characteristics of N, P, K in the iteresoil fauna soil system of mixed Pinus koraiensis and broad-leaved forest[J]. Acta Ecologica Sinica, 27(1): 128-134. | |
[44] | 张剑, 宿力, 王利平, 等, 2019. 植被盖度对土壤碳、氮、磷生态化学计量比的影响——以敦煌阳关湿地为例[J]. 生态学报, 39(2): 580-589. |
ZHANG J, SU L, WANG L P, et al., 2019. The effect of vegetation cover on ecological stoichiometric ratios of soil carbon, nitrogen and phosphorus: A case study of the Dunhuang Yangguan wetland[J]. Acta Ecologica Sinica, 39(2): 580-589. | |
[45] | 张鹏, 刘洋, 安瑞志, 等, 2022. 西藏拉萨河中下游原生动物优势种时空生态位[J]. 林业科学, 58(1): 78-88. |
ZHANG P, LIU Y, AN R Z, et al., 2022. Spatio-Temporal niche of dominant protozoa species in the midstream and downstream of Lhasa River, Tibet, China[J]. Scientia Silvae Sinicae, 58(1): 78-88. | |
[46] | 周凤霞, 陈剑虹, 2011. 淡水微型生物与底栖动物图谱[M]. 北京: 化学工业出版社: 201-326. |
ZHOU F X, CHEN J H, 2011. Atlas of freshwater microbiota and benthos[M]. Beijing: Chemical Industry Press:201-326. | |
[47] | 张雪萍, 李春艳, 殷秀琴, 等, 1999. 不同使用方式林地的土壤动物与土壤营养元素的关系[J]. 应用与环境生物学报, 5(1): 27-32. |
ZHANG X P, LI C Y, YIN X Q, et al., 1999. Relation between soil animals and nutrients in the differently used forest lands[J]. Chinese Journal of Applied and Environmental Biology, 5(1): 27-32. | |
[48] | 中国科学院青藏高原综合科学考察队编写, 1983. 西藏水生无脊椎动物[M]. 北京: 科学出版社:291-344. |
Tibetan Plateau comprehensive research team, Chinese Academy of Sciences, 1983. Aquatic Invertebrates of Tibet[M]. Beijing: Science Press:291-344. | |
[49] | 朱时应, 王壮壮, 黄倩, 等, 2022. 西藏年楚河流域湿地土壤纤毛虫群落特征[J]. 生态学报, 42(22): 9005-9016. |
ZHU S Y, WANG Z Z, HUANG Q, et al., 2022. Characteristics of soil ciliate community in wetland of the Nianchu River Basin, Tibet, China[J]. Acta Ecologica Sinica, 42(22): 9005-9016. |
[1] | ZHAI Yongguang, WANG Xiaoni, HAO Lei, QI Wenchao, WANG Yasong, GENG Jiayu, LAN Qiongqiong, WANG Zhiguo. Multi-time Scale Analysis of Net Ecosystem Productivity Pattern in Inner Mongolia from 2001 to 2020 [J]. Ecology and Environment, 2024, 33(2): 167-179. |
[2] | MA Yuan, TIAN Lulu, LÜ Jie, LIU Pei, ZHANG Xu, LI Eryang, ZHANG Qinghang. Soil Microbial Communities and Influencing Factors of Picea schrenkiana Forest on the Northern Slope of Tianshan Mountains [J]. Ecology and Environment, 2024, 33(1): 1-11. |
[3] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[4] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[5] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[6] | YANG Chunliang, LIU Minxia, WANG Qianyue, MIAO Lele, XIAO Yindi, WANG Min. Spatial Pattern and Correlation of Populations of Anemone rivularis and Kobresia myosuroides under Single-household Management and Multi-household Management Grazing Patterns [J]. Ecology and Environment, 2023, 32(4): 651-659. |
[7] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[8] | YANG Nie, SUN Xiaoxun, KONG Tianle, SUN Weimin, CHEN Quanyuan, GAO Pin. Response of Microbial Communities to Changes in Antimony Pollution Concentrations in Fluvial Sediment [J]. Ecology and Environment, 2023, 32(3): 609-618. |
[9] | ZHOU Jiacheng, SONG Zhibin, MIAO Peng, TAN Lu, TANG Tao. Differences in Benthic Macroinvertebrate Communities and Their Driving Forces between the Edge and Center Positions of the Liujiang River Network [J]. Ecology and Environment, 2023, 32(10): 1794-1801. |
[10] | XIANG Xing, MAN Baiying, ZHANG Junzhong, LUO Yang, MAO Xiaotao, ZHANG Chao, SUN Binghua, WANG Xi. Vertical Distribution of Bacterial Community and Functional Groups Mediating Nitrogen Cycling in Mount Huangshan, Anhui, China [J]. Ecology and Environment, 2023, 32(1): 56-69. |
[11] | LI Ping, BAI Xiaoming, CHEN Xin, LI Juanxia, RAN Fu, CHEN Hui, YANG Xiaoni, KANG Ruiqing. Effects of Trifolium repens Invasion on Soil Properties and Plant Communities of Gramineous Turfgrass [J]. Ecology and Environment, 2023, 32(1): 70-79. |
[12] | JIANG Nihao, ZHANG Shihao, ZHANG Shihan. Interspecific Associations and Environmental Interpretation of the Dominant Species of the Communities Invaded by Ageratina adenophora in Ailao Mountains [J]. Ecology and Environment, 2022, 31(7): 1370-1382. |
[13] | ZHU Li'an, ZHANG Huihua, CHENG Jiong, LI Ting, LIN ZI, LI Junjie. Potential Ecological Risk Pattern Analysis of Heavy Metals in Soil of Forestry Land in The Pearl River Delta [J]. Ecology and Environment, 2022, 31(6): 1253-1262. |
[14] | WEN Zhifeng, WEI Shiguang, LI Lin, YE Wanhui, LIAN Juyu. Spatial Distribution Patterns and Spatial Associations of Evergreen Broad-leaved Forest Plants in Tropical South Asia at Different Taxonomic Levels [J]. Ecology and Environment, 2022, 31(3): 440-450. |
[15] | XIA Kai, DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu. Changes of Soil Bacterial Community Structure and Diversity from Conversion of Masson Pine Secondary Forest to Slash Pine and Chinese Fir Plantations [J]. Ecology and Environment, 2022, 31(3): 460-469. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn