Ecology and Environment ›› 2023, Vol. 32 ›› Issue (12): 2115-2127.DOI: 10.16258/j.cnki.1674-5906.2023.12.004
• Papers on “New Pollutants” • Previous Articles Next Articles
HAO Liyu1(), HE Miaomiao2, TANG Jiaxi1,3,*(
)
Received:
2023-08-16
Online:
2023-12-18
Published:
2024-02-05
Contact:
TANG Jiaxi
通讯作者:
汤家喜
作者简介:
郝丽宇(1997年生),女,硕士研究生,研究方向为环境污染与生态修复。E-mail: hly12345ssdlh@163.com
基金资助:
CLC Number:
HAO Liyu, HE Miaomiao, TANG Jiaxi. Research Progress on Pollution Situation and Remediation Technology of Perfluoroalkyl Substances in River Water[J]. Ecology and Environment, 2023, 32(12): 2115-2127.
郝丽宇, 何苗苗, 汤家喜. 河流水体全氟化合物的污染现状及修复技术研究进展[J]. 生态环境学报, 2023, 32(12): 2115-2127.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.12.004
名称 | 基本结构 |
---|---|
PFOA 全氟辛酸 | |
PFOS 全氟辛烷磺酸 | |
PFNA 全氟壬二酸 | |
PFDA 全氟癸酸 | |
PFUnDA 全氟十一酸 | |
PFDoDA 全氟十二烷酸 | |
PFTrDA 全氟十三酸 | |
PFTDA 全氟十四酸 | |
Table 1 Common PFASs
名称 | 基本结构 |
---|---|
PFOA 全氟辛酸 | |
PFOS 全氟辛烷磺酸 | |
PFNA 全氟壬二酸 | |
PFDA 全氟癸酸 | |
PFUnDA 全氟十一酸 | |
PFDoDA 全氟十二烷酸 | |
PFTrDA 全氟十三酸 | |
PFTDA 全氟十四酸 | |
流域 | PFASs数量 | 质量浓度/(ng∙L−1) | 参考文献 | ||
---|---|---|---|---|---|
∑PFASs | PFOS | PFOA | |||
印度南部流域 | 13 | 0.39‒3.32 | 0.19‒0.65 | 0.23‒1.06 | Selvaraj et al., |
洛东江 (韩国) | 12 | 0.22‒73.90 | 0.12‒33.20 | 0.12‒42.20 | Lam et al., |
易北河 (德国) | 17 | 7.10‒27.60 | 0.50‒2.90 | 2.80‒9.60 | Ahrens et al., |
布里斯班河 (澳大利亚) | 7 | 0.83‒40.00 | 0.18‒15.00 | 0.13‒1.60 | Gallen et al., |
红河 (越南) | 10 | 4.00‒17.00 | 0.18‒5.30 | 0.09‒18.00 | Duong et al., |
长江 (中国) | 18 | 2.20‒174.56 | 0.23‒12.22 | 6.81‒15.61 | Pan et al., |
黄河 (中国) | 17 | 7.75‒121.63 | 0.95‒15.37 | 0.96‒14.15 | Wang et al., |
珠江 (中国) | 13 | 3.00‒52.00 | 0.71‒8.70 | 0.56‒11.00 | Zhang et al., |
松花江 (中国) | 15 | 6.40‒32.00 | ND | ND‒1.70 | Zhang et al., |
海河 (中国) | 9 | 12.00‒174.00 | 2.02‒17.62 | 14.40‒42.10 | Li et al., |
大凌河 (中国) | 11 | 1.77‒9540.00 | 0.16‒483.00 | ND‒2280.00 | Zhu et al., |
辽河 (中国) | 11 | 44.40‒781.00 | 0.09‒9.50 | 0.67‒61.60 | Chen et al., |
Table 2 Concentration levels of dissolved PFASs in waters of domestic and international watersheds
流域 | PFASs数量 | 质量浓度/(ng∙L−1) | 参考文献 | ||
---|---|---|---|---|---|
∑PFASs | PFOS | PFOA | |||
印度南部流域 | 13 | 0.39‒3.32 | 0.19‒0.65 | 0.23‒1.06 | Selvaraj et al., |
洛东江 (韩国) | 12 | 0.22‒73.90 | 0.12‒33.20 | 0.12‒42.20 | Lam et al., |
易北河 (德国) | 17 | 7.10‒27.60 | 0.50‒2.90 | 2.80‒9.60 | Ahrens et al., |
布里斯班河 (澳大利亚) | 7 | 0.83‒40.00 | 0.18‒15.00 | 0.13‒1.60 | Gallen et al., |
红河 (越南) | 10 | 4.00‒17.00 | 0.18‒5.30 | 0.09‒18.00 | Duong et al., |
长江 (中国) | 18 | 2.20‒174.56 | 0.23‒12.22 | 6.81‒15.61 | Pan et al., |
黄河 (中国) | 17 | 7.75‒121.63 | 0.95‒15.37 | 0.96‒14.15 | Wang et al., |
珠江 (中国) | 13 | 3.00‒52.00 | 0.71‒8.70 | 0.56‒11.00 | Zhang et al., |
松花江 (中国) | 15 | 6.40‒32.00 | ND | ND‒1.70 | Zhang et al., |
海河 (中国) | 9 | 12.00‒174.00 | 2.02‒17.62 | 14.40‒42.10 | Li et al., |
大凌河 (中国) | 11 | 1.77‒9540.00 | 0.16‒483.00 | ND‒2280.00 | Zhu et al., |
辽河 (中国) | 11 | 44.40‒781.00 | 0.09‒9.50 | 0.67‒61.60 | Chen et al., |
修复技术 | 材料 | 过程 | 优缺点 | 参考文献 |
---|---|---|---|---|
吸附 | 吸附材料 (活性炭、改性生物质、树脂等) | 选用不同种类的吸附剂来吸附PFASs, 以达到去除的效果 | 去除效果好, 但操作维护成本高 | Nzerib et al., |
过滤 | 过滤材料 (纳滤膜和反渗透膜等) | 常用反渗透膜和纳滤膜分离PFASs | 去除效果好, 操作简单, 但膜的替换与高质量浓度滞留液的处理会使成本增高 | Rahman et al., |
高级氧化技术AOPs | 氧化剂(过氧化氢、过硫酸钠、高锰酸钾、高锰酸钠、臭氧等) | 使溶液中产生强氧化性的羟基-OH, 与溶液中的PFASs反应, 转化成为无毒可降解的副产物 | 反应速度慢, 成本高, 氧化过程中产生的短链PFASs可能造成二次污染, 可与其他方法结合使用 | Park et al., |
光化学氧化技术 | 紫外线,可见光等 | 利用紫外线或可见光产生水合电子来去除PFASs | 绿色环保, 可减少二次污染, 但效率低, 成本高, 无法大规模使用 | Chen et al., |
电化学氧化技术 | 电极 (石墨烯, 二氧化铅、氧化钛、二氧化锡等) | 通过直接或间接阳极氧化, 将PFASs吸附在电极上, 被电极直接降解, 或与其他液体反应进行降解 | 去除效率高, 反应时间短, 但反应过程中会产生短链PFASs和有毒副产物, 成本高 | Wang et al., |
声化学技术 | 超声辐射 | 高级氧化处理的一种, 利用超声波辐照形成高温气泡与氧化性强的物质来降解PFASs | 无法大规模使用, 成本高,受外界影响因素多 (如溶液pH、黏滞系数、表面张力系数、溶液温度等) | Dorrance et al., |
Table 3 Physicochemical remediation of PFASs in the aquatic environment
修复技术 | 材料 | 过程 | 优缺点 | 参考文献 |
---|---|---|---|---|
吸附 | 吸附材料 (活性炭、改性生物质、树脂等) | 选用不同种类的吸附剂来吸附PFASs, 以达到去除的效果 | 去除效果好, 但操作维护成本高 | Nzerib et al., |
过滤 | 过滤材料 (纳滤膜和反渗透膜等) | 常用反渗透膜和纳滤膜分离PFASs | 去除效果好, 操作简单, 但膜的替换与高质量浓度滞留液的处理会使成本增高 | Rahman et al., |
高级氧化技术AOPs | 氧化剂(过氧化氢、过硫酸钠、高锰酸钾、高锰酸钠、臭氧等) | 使溶液中产生强氧化性的羟基-OH, 与溶液中的PFASs反应, 转化成为无毒可降解的副产物 | 反应速度慢, 成本高, 氧化过程中产生的短链PFASs可能造成二次污染, 可与其他方法结合使用 | Park et al., |
光化学氧化技术 | 紫外线,可见光等 | 利用紫外线或可见光产生水合电子来去除PFASs | 绿色环保, 可减少二次污染, 但效率低, 成本高, 无法大规模使用 | Chen et al., |
电化学氧化技术 | 电极 (石墨烯, 二氧化铅、氧化钛、二氧化锡等) | 通过直接或间接阳极氧化, 将PFASs吸附在电极上, 被电极直接降解, 或与其他液体反应进行降解 | 去除效率高, 反应时间短, 但反应过程中会产生短链PFASs和有毒副产物, 成本高 | Wang et al., |
声化学技术 | 超声辐射 | 高级氧化处理的一种, 利用超声波辐照形成高温气泡与氧化性强的物质来降解PFASs | 无法大规模使用, 成本高,受外界影响因素多 (如溶液pH、黏滞系数、表面张力系数、溶液温度等) | Dorrance et al., |
[1] |
ABDALLAH M A E, WEMKEN N, DRAGE D S, et al., 2020. Concentrations of perfluoroalkyl substances in human milk from Ireland: implications for adult and nursing infant exposure[J]. Chemosphere, 246: 125724.
DOI URL |
[2] |
ABEL S, PETERS A, TRINKS S, et al., 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil[J]. Geoderma, 202-203: 183-191.
DOI URL |
[3] |
AHRENS L, FELIZETER S, STURM R, et al., 2009. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany[J]. Marine Pollution Bulletin, 58(9): 1326-1333.
DOI PMID |
[4] |
AHRENS L, SHOEIB M, VENTO D S, et al., 2011. Polyfluoroalkyl compounds in the Canadian Arctic atmosphere[J]. Environmental Chemistry, 8(4): 399-406.
DOI URL |
[5] |
APPLEMAN T D, HIGGINS C P, QUIÑONES O, et al., 2014. Treatment of poly-and perfluoroalkyl substances in US full-scale water treatment systems[J]. Water Research, 51: 246-255.
DOI URL |
[6] |
ARMITAGE J, COUSINS I T, BUCK R C, et al., 2006. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources[J]. Environmental Science & Technology, 40(22): 6969-6975.
DOI URL |
[7] | AWA S H, HADIBARATA T, 2020. Removal of heavy metals in contaminated soil by phytoremediation mechanism: A review[J]. Water, Air, & Soil Pollution: An International Journal of Environmental Pollution, 231(2): 2638-2647. |
[8] |
BAO J, LI C L, LIU Y, et al., 2020. Bioaccumulation of perfluoroalkyl substances in greenhouse vegetables with long-term groundwater irrigation near fluorochemical plants in Fuxin, China[J]. Environmental Research, 188: 109751.
DOI URL |
[9] |
BARGHI M, JIN X Z, LEE S, et al., 2018. Accumulation and exposure assessment of persistent chlorinated and fluorinated contaminants in Korean birds[J]. Science of The Total Environment, 645: 220-228.
DOI URL |
[10] |
BERTELKAMP C, VERLIEFDE A R D, SCHOUTTETEN K, et al., 2016. The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: A laboratory-scale column study[J]. Science of The Total Environment, 544: 309-318.
DOI URL |
[11] |
BJÖRNSDOTTER M K, YEUNG L W Y, KARRMAN A, et al., 2021. Mass balance of perfluoroalkyl acids, including trifluoroacetic acid, in a freshwater lake[J]. Environmental Science & Technology, 56(1): 251-259.
DOI URL |
[12] |
BLAINE A C, RICH C D, SEDLACKO E M, et al., 2014. Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils[J]. Environmental Science & Technology, 48(14): 7858-7865.
DOI URL |
[13] |
BOLAN N, SARKAR B, YAN Y, et al., 2021. Remediation of poly-and perfluoroalkyl substances (PFAS) contaminated soils-to mobilize or to immobilize or to degrade[J]. Journal of Hazardous Materials, 401: 123892.
DOI URL |
[14] |
BROWN J B, CONDER J M, ARBLASTER J A, et al., 2020. Assessing human health risks from per- and polyfluoroalkyl substance (PFAS)-impacted vegetable consumption: A Tiered Modeling Approach[J]. Environmental Science & Technology, 54(23): 15202-15214.
DOI URL |
[15] |
CAI Y Z, WANG X H, WU Y L, et al., 2018. Temporal trends and transport of perfluoroalkyl substances (PFASs) in a subtropical estuary: Jiulong River Estuary, Fujian, China[J]. Science of The Total Environment, 639: 263-270.
DOI URL |
[16] | CASAS G, MARTINEZ-VARELA A, VILA-COSTA M, et al., 2021. Rain amplification of persistent organic pollutants[J]. Environmental Science & Technology, 55(19): 12961-12972. |
[17] |
CHEN M J, LO S L, LEE Y C, et al., 2016. Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide[J]. Journal of Hazardous Materials, 303: 111-118.
DOI URL |
[18] |
CHEN S, JIAO X C, GAI N, et al., 2016. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China[J]. Environmental Pollution, 211: 124-131.
DOI PMID |
[19] |
CHEN X W, ZHU L Y, PAN X Y, et al., 2015. Isomeric specific partitioning behaviors of perfluoroalkyl substances in water dissolved phase, suspended particulate matters and sediments in Liao River Basin and Taihu Lake, China[J]. Water Research, 80: 235-244.
DOI PMID |
[20] |
CHEN Y C, LO S L, LEE Y C, 2012. Distribution and fate of perfluorinated compounds (PFCs) in a pilot constructed wetland[J]. Desalination and Water Treatment, 37(1-3): 178-184.
DOI URL |
[21] |
CHENG J, VECITIS C D, PARK H, et al., 2008. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects[J]. Environmental Science & Technology, 42(21): 8057-8063.
DOI URL |
[22] |
CUI Q Q, PAN Y T, ZHANG H X, et al., 2018. Elevated concentrations of perfluorohexanesulfonate and other per- and polyfluoroalkyl substances in Baiyangdian Lake (China): Source characterization and exposure assessment[J]. Environmental Pollution, 241: 684-691.
DOI PMID |
[23] |
DANLIAN H, RUIHAO X, LI D, et al., 2021. Phytoremediation of poly- and perfluoroalkyl substances: A review on aquatic plants, influencing factors, and phytotoxicity[J]. Journal of Hazardous Materials, 418: 126314-126314.
DOI URL |
[24] |
DAUCHY X, BOITEUX V, COLIN A, et al., 2019. Poly- and perfluoroalkyl substances in runoff water and wastewater sampled at a firefighter training area[J]. Archives of Environmental Contamination and Toxicology, 76: 206-215.
DOI PMID |
[25] |
DI D, LU Y L, ZHOU Y Q, et al., 2022. Perfluoroalkyl acids (PFAAs) in water along the entire coastal line of China: Spatial distribution, mass loadings, and worldwide comparisons[J]. Environment International, 169(9): 107506.
DOI URL |
[26] |
DING G H, XUE H H, ZHANG J, et al., 2018. Occurrence and distribution of perfluoroalkyl substances (PFASs) in sediments of the Dalian Bay, China[J]. Marine Pollution Bulletin, 127: 285-288.
DOI PMID |
[27] |
DLAMINI J C, CARDENAS L M, TESFAMARIAM E H, et al., 2022. Riparian buffer strips influence nitrogen losses as nitrous oxide and leached N from upslope permanent pasture[J]. Agriculture, Ecosystems & Environment, 336: 108031.
DOI URL |
[28] |
DORRANCE L R, KELLOGG S, LOVE A H, 2017. What you should know about per-and polyfluoroalkyl substances (PFAS) for Environmental Claims[J]. Environmental Claims Journal, 29(4): 290-304.
DOI URL |
[29] |
DU Z W, DENG S B, BEI Y, et al., 2014. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents: A review[J]. Journal of Hazardous Materials, 274: 443-454.
DOI URL |
[30] |
DUONG H T, KADOKAMI K, SHIRASAKA H, et al., 2015. Occurrence of perfluoroalkyl acids in environmental waters in Vietnam[J]. Chemosphere, 122: 115-124.
DOI PMID |
[31] |
ESCHAUZIER C, HAFTKA J, STUYFZAND P J, et al., 2010. Perfluorinated compounds in infiltrated river rhine water and infiltrated rainwater in coastal dunes[J]. Environmental Science & Technology, 44(19): 7450-7455.
DOI URL |
[32] |
FEDERICA C, MARA G, FEDRA C, et al., 2023. Perfluorinated compounds (PFCS) in river waters of central Italy: Monthly variation and ecological risk assessment (ERA)[J]. Archives of Environmental Contamination and Toxicology, 84(3): 332-346.
DOI PMID |
[33] |
FELICIA F, ULRIKA E, ANNA K, et al., 2022. Per- and polyfluoroalkyl substances (PFAS) in sludge from wastewater treatment plants in Sweden — First findings of novel fluorinated copolymers in Europe including temporal analysis[J]. Science of The Total Environment, 846: 157406.
DOI URL |
[34] |
FURL C V, MEREDITH C A, STRYNAR M J, et al., 2011. Relative importance of wastewater treatment plants and non-point sources of perfluorinated compounds to Washington State rivers[J]. Science of The Total Environment, 409(15): 2902-2907.
DOI URL |
[35] |
GALLEN C, BADUEL C, LAI F Y, et al., 2014. Spatio-temporal assessment of perfluorinated compounds in the Brisbane River system, Australia: Impact of a major flood event[J]. Marine Pollution Bulletin, 85(2): 597-605.
DOI PMID |
[36] |
GAN C D, GAN Z W, CUI S F, et al., 2021. Agricultural activities impact on soil and sediment fluorine and perfluorinated compounds in an endemic fluorosis area[J]. Science of The Total Environment, 771: 144809.
DOI URL |
[37] |
GAO Y, FU J, ZENG L, et al., 2014. Occurrence and fate of perfluoroalkyl substances in marine sediments from the Chinese Bohai Sea, Yellow Sea, and East China Sea[J]. Environmental Pollution, 194(1): 60-68.
DOI URL |
[38] |
HANSEN K J, JOHNSON H O, ELDRIDGE J S, et al., 2002. Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River[J]. Environmental Science & Technology, 36(8): 1681-1685.
DOI URL |
[39] |
HANSEN M C, BØRRESEN M H, SCHLABACH M, et al., 2010. Sorption of perfluorinated compounds from contaminated water to activated carbon[J]. Journal of Soils and Sediments, 10(2): 179-185.
DOI URL |
[40] |
HANSEN M C, BØRRESEN M H, SCHLABACH M, et al., 2010. Sorption of perfluorinated compounds from contaminated water to activated carbon[J]. Journal of Soils and Sediments, 10(2): 179-185.
DOI URL |
[41] | HERATH I, VITHANAGE M, 2015. Phytoremediation in constructed wetlands[J]. Phytoremediation: Management of Environmental Contaminants, 2: 243-263. |
[42] |
JI B, KANG P Y, WEI T, et al., 2020. Challenges of aqueous per-and polyfluoroalkyl substances (PFASs) and their foreseeable removal strategies[J]. Chemosphere, 250: 126316.
DOI URL |
[43] |
JI Z H, TANG W Z, PEI Y S, 2022. Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal[J]. Chemosphere, 286(Part 1): 131564.
DOI URL |
[44] |
JIAN J M, GUO Y, ZENG L, et al., 2017. Global distribution of perfluorochemicals (PFCs) in potential human exposure source: A review[J]. Environment International, 108: 51-62.
DOI URL |
[45] |
JIAO X, SHI Q, GAN J, 2021. Uptake, accumulation and metabolism of PFASs in plants and health perspectives: A critical review[J]. Critical Reviews in Environmental Science and Technology, 51(23): 2745-2776.
DOI URL |
[46] |
JONES G D, BENCHETLER P V, TATE K W, et al., 2014. Trenbolone acetate metabolite transport in rangelands and irrigated pasture: Observations and conceptual approaches for agro-ecosystems[J]. Environmental Science & Technology, 48(21): 12569-12576.
DOI URL |
[47] |
KALMYKOVA Y, BJÖRKLUND K, STRÖMVALL A M, et al., 2013. Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater[J]. Water Research, 47(3): 1317-1328.
DOI PMID |
[48] |
KAMMANN C I, LINSEL S, GÖSSLING J W, et al., 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations[J]. Plant and Soil, 345(1): 195-210.
DOI URL |
[49] |
KOVAČEVIĆ S, RADIŠIĆ M, LAUŠEVIĆ M, et al., 2017. Occurrence and behavior of selected pharmaceuticals during riverbank filtration in The Republic of Serbia[J]. Environmental Science and Pollution Research, 24(2): 2075-2088.
DOI URL |
[50] |
KUMAR K S, MAYILSAMY M, PATIL N N, et al., 2021. Investigation of distribution, sources and flux of perfluorinated compounds in major southern Indian rivers and their risk assessment[J]. Chemosphere, 277: 130228.
DOI URL |
[51] | KUMWIMBA M N, LI X, DE SILVA L, et al., 2021. Large-scale hybrid accidental urban wetland for polluted river purification in northern China: Evidence and implications for urban river management[J]. Environmental Technology & Innovation, 22: 101542. |
[52] |
KURWADKAR S, DANE J, KANEL S R, et al., 2021. Per-and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution[J]. Science of The Total Environment, 809: 151003.
DOI URL |
[53] |
KUTLUCINAR K G, HANDL S, ALLABASHI R, et al., 2022. Non-targeted analysis with high-resolution mass spectrometry for investigation of riverbank filtration processes[J]. Environmental Science and Pollution Research, 29(43): 64568-64581.
DOI |
[54] |
LAM N H, CHO C R, KANNAN K, et al., 2016a. A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: Distributions and bioconcentration profiles[J]. Journal of Hazardous Materials, 323(Part A): 116-127.
DOI URL |
[55] |
LAM N H, MIN B K, CHO C R, et al., 2016b. Distribution of perfluoroalkyl substances in water from industrialized bays, rivers and agricultural areas in Korea[J]. Toxicology and Environmental Health Sciences, 8: 43-55.
DOI URL |
[56] |
LEE T, SPETH T F, NADAGOUDA M N, 2022. High-pressure membrane filtration processes for separation of Per-and polyfluoroalkyl substances (PFAS)[J]. Chemical Engineering Journal, 431(Part 2): 134023.
DOI URL |
[57] |
LEE Y C, LO S L, CHIUEH P T, et al., 2010. Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation[J]. Water Research, 44(3): 886-892.
DOI URL |
[58] |
LEFEVRE E, BOSSA N, GARDNER C M, et al., 2018. Biochar and activated carbon act as promising amendments for promoting the microbial debromination of tetrabromobisphenol A[J]. Water Research, 128(1): 102-110.
DOI URL |
[59] |
LENKA S P, KAH M, PADHYE L P, 2021. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants[J]. Water Research, 199: 117187.
DOI URL |
[60] |
LI F S, SUN H W, HAO Z N, et al., 2011. Perfluorinated compounds in Haihe River and Dagu drainage canal in Tianjin, China[J]. Chemosphere, 84(2): 265-271.
DOI PMID |
[61] |
LI X Q, HUA Z L, WU J Y, et al., 2021. Removal of perfluoroalkyl acids (PFAAs) in constructed wetlands: Considerable contributions of submerged macrophytes and the microbial community[J]. Water Research, 197: 117080.
DOI URL |
[62] |
LIANG J, GUO L L, XIANG B, et al., 2023. Research updates on the mechanism and influencing factors of the photocatalytic degradation of perfluorooctanoic acid (PFOA) in water environments[J]. Molecules, 28(11): 4489.
DOI URL |
[63] |
LIN J C, HU C Y, LO S L, 2016. Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment[J]. Ultrasonics Sonochemistry, 28: 130-135.
DOI URL |
[64] |
LIN J C, LO S L, HU C Y, et al., 2015. Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions[J]. Ultrasonics Sonochemistry, 22: 542-547.
DOI URL |
[65] |
LIU B L, ZHANG H, YU Y, et al., 2020. Perfluorinated compounds (PFCs) in soil of the Pearl River Delta, China: Spatial distribution, sources, and ecological risk assessment[J]. Archives of Environmental Contamination and Toxicology, 78(2): 182-189.
DOI PMID |
[66] |
LIU C S, HIGGINS C P, WANG F, et al., 2012. Effect of temperature on oxidative transformation of perfluorooctanoic acid (PFOA) by persulfate activation in water[J]. Separation and Purification Technology, 91: 46-51.
DOI URL |
[67] |
LIU H W, WANG H, GAO W F, et al., 2019. Phytoremediation of three herbaceous plants to remove metals from urban runoff[J]. Bulletin of Environmental Contamination and Toxicology, 103(7): 336-341.
DOI |
[68] |
LIU N, WU C, LYU G F, et al., 2021. Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA)[J]. Science of The Total Environment, 798(12): 149191.
DOI URL |
[69] |
LIU T, XU S R, LU S Y, et al., 2019. A review on removal of organophosphorus pesticides in constructed wetland: Performance, mechanism and influencing factors[J]. Science of The Total Environment, 651(Part 2): 2247-2268.
DOI URL |
[70] |
Liu Y, Li T Y, Bao J, et al., 2022. A review of treatment techniques for short-chain perfluoroalkyl substances[J]. Applied Sciences, 12(4): 1941-1941.
DOI URL |
[71] |
MAHINROOSTA R, SENEVIRATHNA L, 2020. A review of the emerging treatment technologies for PFAS contaminated soils[J]. Journal of Environmental Management, 255: 109896.
DOI URL |
[72] | MAYAKADUWAGE S, EKANAYAKE A, KURWADKAR S, et al., 2022. Phytoremediation prospects of per-and polyfluoroalkyl substances: A review[J]. Environmental Research, 212(Part B): 113311. |
[73] |
MCMURDO C J, ELLIS D A, WEBSTER E, et al., 2008. Aerosol enrichment of the surfactant PFO and mediation of the water-air transport of gaseous PFOA[J]. Environmental Science & Technology, 42(11): 3969-3974.
DOI URL |
[74] |
NSENGA M K, MENG F, ISEYEMI O, et al., 2018. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions[J]. Science of The Total Environment, 639: 742-759.
DOI URL |
[75] |
NZERIBE B N, CRIMI M, MEDEDOVIC THAGARD S, et al., 2019. Physico-chemical processes for the treatment of per-and polyfluoroalkyl substances (PFAS): A review[J]. Critical Reviews in Environmental Science and Technology, 49(10): 866-915.
DOI URL |
[76] |
PAN C G, YING G G, ZHAO J L, et al., 2014. Spatiotemporal distribution and mass loadings of perfluoroalkyl substances in the Yangtze River of China[J]. Science of The Total Environment, 493: 580-587.
DOI URL |
[77] |
PAN C G, YING G G, ZHAO J L, et al., 2015. Spatial distribution of perfluoroalkyl substances in surface sediments of five major rivers in China[J]. Archives of Environmental Contamination and Toxicology, 68(3): 566-576.
DOI URL |
[78] |
PARK S, LEE L S, MEDINA V F, et al., 2016. Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation[J]. Chemosphere, 145: 376-383.
DOI PMID |
[79] |
PAUL A G, JONES K C, SWEETMAN A J, 2009. A first global production, emission, and environmental inventory for perfluorooctane sulfonate[J]. Environmental Science & Technology, 43(2): 386-392.
DOI URL |
[80] |
PI N, NG J Z, KELLY B C, 2017. Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: Results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes[J]. Water Research, 117: 167-174.
DOI PMID |
[81] |
Pramanik K B, Roychand R, Monira S, et al., 2020. Fate of road-dust associated microplastics and per- and polyfluorinated substances in stormwater[J]. Process Safety and Environmental Protection, 144: 236-241.
DOI URL |
[82] |
PREVEDOUROS K, COUSINS I T, BUCK R C, et al., 2006. Sources, fate and transport of perfluorocarboxylates[J]. Environmental Science & Technology, 40(1): 32-44.
DOI URL |
[83] |
QIN Z, ZHAO Z, ADAM A, et al., 2019. The dissipation and risk alleviation mechanism of PAHs and nitrogen in constructed wetlands: the role of submerged macrophytes and their biofilms-leaves[J]. Environment International, 131: 104940.
DOI URL |
[84] |
RAHMAN M F, PELDSZUS S, ANDERSON W B, 2014. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review[J]. Water Research, 50: 318-340.
DOI PMID |
[85] |
RAHMAN M F, PELDSZUS S, ANDERSON W B, 2014. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review[J]. Water Research, 50: 318-340.
DOI PMID |
[86] |
RALPH S, YULING S, JANINE F, et al., 2021. Ice nucleation activity of perfluorinated organic acids[J]. The Journal of Physical Chemistry Letters, 12(13): 3431-3435.
DOI URL |
[87] |
RATTANAOUDOM R, VISVANATHAN C, 2012. Removal of PFOA by hybrid membrane filtration using PAC and hydrotalcite[J]. Desalination and Water Treatment, 32(1-3):1-270.
DOI URL |
[88] | REMUCAL C K, 2019. Spatial and temporal variability of perfluoroalkyl substances in the Laurentian Great Lakes[J]. Environmental Science: Processes & Impacts, 21(12): 18816-1834. |
[89] |
ROSS I, MCDONOUGH J, MILES J, et al., 2018. A review of emerging technologies for remediation of PFASs[J]. Remediation Journal, 28(2): 101-126.
DOI URL |
[90] |
SARWAR N, IMRAN M, SHAHEEN M R, et al., 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives[J]. Chemosphere, 171: 710-721.
DOI PMID |
[91] |
SCHRÖDER H F, JOSÉ H J, GEBHARDT W, et al., 2010. Biological wastewater treatment followed by physicochemical treatment for the removal of fluorinated surfactants[J]. Water Science and Technology, 61(12): 3208-3215.
DOI PMID |
[92] |
SELVARAJ K K, MURUGASAMY M, NIKHIL N P, et al., 2021. Investigation of distribution, sources and flux of perfluorinated compounds in major southern Indian rivers and their risk assessment[J]. Chemosphere, 277: 130228.
DOI URL |
[93] |
SENEVIRATHNA S, TANAKA S, FUJII S, et al., 2010. A comparative study of adsorption of perfluorooctane sulfonate (PFOS) onto granular activated carbon, ion-exchange polymers and non-ion-exchange polymers[J]. Chemosphere, 80(6): 647-651.
DOI PMID |
[94] | SHAN G, CHEN X, ZHU L, 2015. Occurrence, fluxes and sources of perfluoroalkyl substances with isomer analysis in the snow of northern China[J]. Journal of Hazardous Materials, 299639-646. |
[95] |
SHAO M H, DING G H, ZHANG J, et al., 2016. Occurrence and distribution of perfluoroalkyl substances (PFASs) in surface water and bottom water of the Shuangtaizi Estuary, China[J]. Environmental Pollution, 216(11): 675-681.
DOI URL |
[96] | SHIMIZU MEGUMI S, RACHAEL M, ARIEL P, et al., 2021. Atmospheric deposition and annual flux of legacy perfluoroalkyl substances and replacement perfluoroalkyl ether carboxylic acids in Wilmington, NC, USA[J]. Environmental Science & Technology Letters, 8(5): 366-372. |
[97] |
SILVANI L, CORNELISSEN G, SMEBYE A B, et al., 2019. Can biochar and designer biochar be used to remediate per- and polyfluorinated alkyl substances (PFAS) and lead and antimony contaminated soils[J]. Science of The Total Environment, 694: 133693.
DOI URL |
[98] |
SIM W J, PARK H J, YOON J K, et al., 2021. Characteristic distribution patterns of perfluoroalkyl substances in soils according to land-use types[J]. Chemosphere, 276: 130167.
DOI URL |
[99] |
SINCLAIR E, KANNAN K, 2006. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants[J]. Environmental Science & Technology, 40(5): 1408-1414.
DOI URL |
[100] |
SITU N, RETI H, XIAOHUI W, et al., 2020. Concentrations and seasonal variations of perfluorinated compounds in sludge from three wastewater treatment plants in China[J]. Analytical Letters, 53(15): 2400-2412.
DOI URL |
[101] |
STUMM W, 1997. Chemical interaction in particle separation[J]. Environmental Science & Technology, 11(2): 1066-1070.
DOI URL |
[102] |
STUTTER M, COSTA F B, 2021. The interactions of site-specific factors on riparian buffer effectiveness across multiple pollutants: A review[J]. Science of The Total Environment, 798: 149238.
DOI URL |
[103] |
SUN Z Y, ZHANG C J, YAN H, et al., 2017. Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River, Shanghai, China[J]. Chemosphere, 174(5): 127-135.
DOI URL |
[104] |
TANG C Y, FU Q S, CRIDDLE C S, et al., 2007. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater[J]. Environmental Science & Technology, 41(6): 2008-2014.
DOI URL |
[105] |
VAN DER HOEK J P, BERTELKAMP C, VERLIEFDE A R D, et al., 2014. Drinking water treatment technologies in Europe: state of the art-challenges-research needs[J]. Journal of Water Supply: Research and Technology-AQUA, 63(2): 124-130.
DOI URL |
[106] |
VÁSQUEZ L A H, GARCÍA F P, MÉNDEZ J P, et al., 2022. Artificial wetlands and floating islands: Use of macrophytes[J]. South Florida Journal of Development, 3(1): 476-498.
DOI URL |
[107] | VU C T, WU T, 2020. Adsorption of short-chain perfluoroalkyl acids (PFAAs) from water/wastewater[J]. Environmental Science: Water Research & Technology, 6(11): 2958-2972. |
[108] |
VYMAZAL J, BŘEZINOVÁ T D, 2018. Removal of nutrients, organics and suspended solids in vegetated agricultural drainage ditch[J]. Ecological Engineering, 118: 97-103.
DOI URL |
[109] |
WANG H Y, ZHANG H L, CAI G Q, 2011. An application of phytoremediation to river pollution remediation[J]. Procedia Environmental Sciences, 10(Part C): 1904-1907.
DOI URL |
[110] |
WANG P, LU Y L, WANG T Y, et al., 2014. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities[J]. Environmental Pollution, 190: 115-122.
DOI PMID |
[111] |
WANG S Q, MA L Y, CHEN C, 2020a. Occurrence and partitioning behavior of per- and polyfluoroalkyl substances (PFASs) in water and sediment from the Jiulong Estuary-Xiamen Bay, China[J]. Chemosphere, 238: 124578.
DOI URL |
[112] |
WANG T T, YING G G, HE L Y, et al., 2020c. Uptake mechanism, subcellular distribution, and uptake process of perfluorooctanoic acid and perfluorooctane sulfonic acid by wetland plant Alisma orientale[J]. Science of The Total Environment, 733: 139383.
DOI URL |
[113] |
WANG T T, YING G G, SHI W J, et al., 2020b. Uptake and translocation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by wetland plants: Tissue-and cell-level distribution visualization with desorption electrospray ionization mass spectrometry (DESI-MS) and transmission electron microscopy equipped with energy-dispersive spectroscopy (TEM-EDS)[J]. Environmental Science & Technology, 54(10): 6009-6020.
DOI URL |
[114] |
WANG W L, GAO J Q, GUO X, et al., 2012. Long-term effects and performance of two-stage baffled surface flow constructed wetland treating polluted river[J]. Ecological Engineering, 49: 93-103.
DOI URL |
[115] |
WANG Y, GUO J Q, SUMITA, et al., 2022. A review of recent advances in detection and treatment technology for perfluorinated compounds[J]. Water, 14(23): 3919.
DOI URL |
[116] |
WANG Z Y, COUSINS I T, SCHERINGER M, et al., 2013. Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their potential precursors[J]. Environment International, 60(10): 242-248.
DOI URL |
[117] |
WANNINAYAKE D M, 2021. Comparison of currently available PFAS remediation technologies in water: A review[J]. Journal of Environmental Management, 283: 111977.
DOI URL |
[118] |
WEI Z H, VAN LE Q, PENG W X, et al., 2021. A review on phytoremediation of contaminants in air, water and soil[J]. Journal of Hazardous Materials, 403: 123658.
DOI URL |
[119] | WICKRAMASINGHE S, JAYAWARDANA C K, 2018. Potential of aquatic macrophytes Eichhornia crassipes, Pistia stratiotes and Salvinia molesta in phytoremediation of textile wastewater[J]. Journal of Water Security, 4: 1-8. |
[120] |
WU D, LI X K, ZHANG J X, et al., 2018. Efficient PFOA degradation by persulfate-assisted photocatalytic ozonation[J]. Separation and Purification Technology, 207: 255-261.
DOI URL |
[121] |
WU S T, BASHIR M A, RAZA Q U A, et al., 2023. Application of riparian buffer zone in agricultural non-point source pollution control: A review[J]. Frontiers in Sustainable Food Systems, 7: 985870.
DOI URL |
[122] |
XIAO X, ULRICH B A, CHEN B, et al., 2017. Sorption of poly- and perfluoroalkyl substances (PFASs) relevant to aqueous film-forming foam (AFFF)-impacted groundwater by biochars and activated carbon[J]. Environmental Science & Technology, 51(11): 6342-6351.
DOI URL |
[123] |
XIE L N, WANG X C, DONG X J, et al., 2021. Concentration, spatial distribution, and health risk assessment of PFASs in serum of teenagers, tap water and soil near a Chinese fluorochemical industrial plant[J]. Environment International, 146: 106166.
DOI URL |
[124] |
YAN C X, SHENG Y R, JU M, et al., 2020. Relationship between the characterization of natural colloids and metal elements in surface waters[J]. Environmental Science and Pollution Research, 27(25): 31872-31883.
DOI |
[125] |
YAN C X, YANG Y, ZHOU J L, et al., 2015. Selected emerging organic contaminants in the Yangtze Estuary, China: A comprehensive treatment of their association with aquatic colloids[J]. Journal of Hazardous Materials, 283: 14-23.
DOI PMID |
[126] |
YAO Y, VOLCHEK K, BROWN C E, et al., 2014. Comparative study on adsorption of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) by different adsorbents in water[J]. Water Science and Technology, 70(12): 1983-1991.
DOI PMID |
[127] |
YI X S, LIN D X, LI J H, et al., 2020. Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China[J]. Environmental Science and Pollution Research, 28(30): 40075-40087.
DOI |
[128] |
YIN T R, CHEN H T, REINHARD M, et al., 2017. Perfluoroalkyl and polyfluoroalkyl substances removal in a full-scale tropical constructed wetland system treating landfill leachate[J]. Water Research, 125: 418-426.
DOI PMID |
[129] |
YU C R, GAO B, MUNOZ-CARPENA R, 2012. Effect of dense vegetation on colloid transport and removal in surface runoff[J]. Journal of Hydrology, 434-435: 1-6.
DOI URL |
[130] |
YU C R, MUNOZ-CARPENA R, GAO B, et al., 2013. Effects of ionic strength, particle size, flow rate, and vegetation type on colloid transport through a dense vegetation saturated soil system: Experiments and modeling[J]. Journal of Hydrology, 499: 316-323.
DOI URL |
[131] |
ZAK D, BRONVANG B, CARSTENSEN M V, et al., 2018. Nitrogen and phosphorus removal from agricultural runoff in integrated buffer zones[J]. Environmental Science & Technology, 52(11): 6508-6517.
DOI URL |
[132] |
ZHANG C H, JIANG S, TANG J W, et al., 2018a. Adsorptive performance of coal based magnetic activated carbon for perfluorinated compounds from treated landfill leachate effluents[J]. Process Safety and Environmental Protection, 117: 383-389.
DOI URL |
[133] |
ZHANG X, HU T T, YANG L, et al., 2018b. The investigation of perfluoroalkyl substances in seasonal freeze-thaw rivers during spring flood period: A case study in Songhua River and Yalu River, China[J]. Bulletin of Environmental Contamination and Toxicology, 101: 166-172.
DOI |
[134] |
ZHANG Y Y, LAI S C, ZHAO Z, et al., 2013. Spatial distribution of perfluoroalkyl acids in the Pearl River of Southern China[J]. Chemosphere, 93(8): 1519-1525.
DOI PMID |
[135] | ZHAO L J, ZHOU M, ZHANG T, et al., 2013. Polyfluorinated and perfluorinated chemicals in precipitation and runoff from cities across eastern and central China[J]. Archives of Environmental Contamination & Toxicology, 64(2): 198-207. |
[136] | ZHU Z Y, WANG T Y, MENG J, et al., 2015. Perfluoroalkyl substances in the Daling River with concentrated fluorine industries in China: Seasonal variation, mass flow, and risk assessment[J]. Environmental Science & Pollution Research, 22(13): 10009-10018. |
[137] | ZUSHI Y, MASUNAGA S, 2009. Identifying the nonpoint source of perfluorinated compounds using a geographic information system based approach[J]. Environmental Toxicology and Chemistry: An International Journal, 28(4): 691-700. |
[138] |
ZUSHI Y, TAKEDA T, MASUNAGA S, 2008. Existence of nonpoint source of perfluorinated compounds and their loads in the Tsurumi River basin, Japan[J]. Chemosphere, 71(8): 1566-1573.
DOI PMID |
[139] |
ZUSHI Y, YE F, MOTEGI M, et al., 2011. Spatially detailed survey on pollution by multiple perfluorinated compounds in the Tokyo Bay basin of Japan[J]. Environmental Science & Technology, 45(7): 2887-2893.
DOI URL |
[140] | 仇付国, 刘玉君, 刘子奇, 等, 2020. 水中全/多氟化合物污染现状及控制技术研究进展[J]. 环境科学与技术, 43(10): 229-236. |
QIU F G, LIU Y J, LIU Z Q, et al., 2020. Research progress on the pollution status and control technologies of perfluoroalkyl and polyfluoroalkyl substances in water environment[J]. Environmental Science & Technology, 43(10): 229-236. | |
[141] | 宋杰玉, 徐婵, 李进, 等, 2022. 长江流域全氟化合物污染现状及环境基准探讨[J]. 环境科学与技术, 45(9): 219-229. |
SONG J Y, XU C, LI J, et al., 2022. Preliminary discussion on the pollution status and environmental standards of perfluorinated compounds in the Yangtze river basin[J]. Environmental Science & Technology, 45(9): 219-229. | |
[142] |
汤家喜, 朱永乐, 李玉, 等, 2021. 辽河流域及周边水体中全氟化合物的污染状况及生态风险评价[J]. 生态环境学报, 30(7): 1447-1454.
DOI |
TANG J X, ZHU Y L, LI Y, et al., 2021. Pollution status and ecological risk assessment of perfluorinated compounds in the Liao River Basin and surrounding[J]. Ecology and Environmental Sciences, 30(7): 1447-1454. | |
[143] | 徐颖, 谭婷, 任劲松, 等, 2022. 不同条件下生态缓冲带对氟化物面源污染的阻控效果[J]. 水土保持学报, 36(2): 361-367. |
XU Y, TAN T, REN J S, et al., 2022. Interception and control effects of ecological buffer zone on fluoride non-point source pollution under different conditions[J]. Journal of Soil and Water Conservation, 36(2): 361-367. | |
[144] | 晏彩霞, 2015. 长江口滨岸水中胶体对新型有机污染物环境行为的影响研究[D]. 上海: 华东师范大学. |
YAN C X, 2015. Effect of aquatic colloids on the behavior of selected emerging organic contaminants in the Yangtze Estuary[D]. Shanghai: East China Normal University. | |
[145] | 朱永乐, 汤家喜, 李梦雪, 等, 2021. 全氟化合物污染现状及与有机污染物联合毒性研究进展[J]. 生态毒理学报, 16(2): 86-99. |
ZHU Y L, TANG J X, LI M X, et al., 2021. Contamination status of perfluorinated compounds and its combined effects with organic pollutants[J]. Asian Journal of Ecotoxicology, 16(2): 86-99. | |
[146] |
朱永乐, 汤家喜, 谭婷, 等, 2023. 氟化工园区周边玉米中全氟/多氟化合物的污染特征[J]. 生态环境学报, 32(5): 1001-1006.
DOI |
ZHU Y L, TANG J X, TAN T, et al., 2023. Contaminant characteristic of Per- and poly-fluorinated substances in maize in the surrounding of fluorine chemical park[J]. Ecology and Environmental Sciences, 32(5): 1001-1006. |
[1] | LI Zhenguo, HAO Xingyu, HE Tianlian, JING Rui, RONG Cheng, GU Chengzhen, ZHENG Xinyu. Study on the Alleviating Effect of Bamboo Vinegar on Cadmium Toxicity of Perilla frutescens (L.) Britt. [J]. Ecology and Environment, 2023, 32(7): 1313-1324. |
[2] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[3] | QIAN Haiming, ZHANG Yunlin, LI Na, WANG Weijia, SUN Xiao, ZHANG Yibo, SHI Kun, FENG Sheng, GAO Yanghui. High Frequency Monitoring of Water Quality Dynamics for River Drinking Water Source during the Typical Rainfall Process [J]. Ecology and Environment, 2023, 32(3): 579-589. |
[4] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[5] | LIU Kanghan, ZHENG Liugen, ZHANG Liqun, DING Dan, SHAN Shifeng. Effect of Complex Plant Derived Activator on the Remediation of As Contaminated Soil by Pteris vittata [J]. Ecology and Environment, 2023, 32(3): 635-642. |
[6] | HUANG Guofeng, HE Bin, XIE Zhiyi, LIU Jun, WANG Anhou, LIAO Tong, WANG Bojin, HAO Beibei. Impact of Agricultural Pollution on Water Environment and Its Spatial Differentiation pattern in Guangdong Province [J]. Ecology and Environment, 2023, 32(12): 2207-2215. |
[7] | WU Haoping, QIN Hongjie, HE Bin, YOU Yi, CHEN Jinfeng, ZOU Chunping, YANG Siyu, HAO Beibei. A Brief Discussion on the Development Trend of the Agricultural Non-point Source Pollution Control Model Based on Carbon Neutrality [J]. Ecology and Environment, 2022, 31(9): 1919-1926. |
[8] | WU De, PENG Ou, LIU Yuling, ZHANG Puxin, YIN Xuefei, HUANG Xinming, TIE Boqing. Effects of Chelating Agents and Thier Combinations on Remediation of Two Cadmium Contaminated Soils by Sedum plumbizincicola [J]. Ecology and Environment, 2022, 31(12): 2414-2421. |
[9] | YU Longsheng, LI Wei, XU Mingyu, LIN Zefan. Effect of Gibberellin Soaking on Seed Germination and Seedling Growth of Two Pioneer Plants for Ecological Restoration in Mining Areas [J]. Ecology and Environment, 2022, 31(11): 2225-2233. |
[10] | CONG Chao, YANG Ningke, WANG Haijuan, WANG Hongbin. Enhancing Arsenic and Cadmium Accumulation in Pteris vittata and Solanum nigrum by Combined Application of Indoleacetic Acid and Kinetin: A Field Experiment [J]. Ecology and Environment, 2021, 30(6): 1299-1309. |
[11] | LI Furong, WANG Linqing, LI Wenying, WU Zhichao, WANG Xu. Research and Application Progress on Heavy Metal Absorption and Accumulation of Oenanthe javanica [J]. Ecology and Environment, 2021, 30(12): 2423-2430. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn