Ecology and Environment ›› 2021, Vol. 30 ›› Issue (6): 1299-1309.DOI: 10.16258/j.cnki.1674-5906.2021.06.022
• Research Articles • Previous Articles Next Articles
CONG Chao(), YANG Ningke, WANG Haijuan, WANG Hongbin*(
)
Received:
2020-12-17
Online:
2021-06-18
Published:
2021-09-10
Contact:
WANG Hongbin
通讯作者:
王宏镔
作者简介:
丛超(1994年生),男,硕士,研究方向为污染土壤的生物修复。E-mail: 1013344180@qq.com
基金资助:
CLC Number:
CONG Chao, YANG Ningke, WANG Haijuan, WANG Hongbin. Enhancing Arsenic and Cadmium Accumulation in Pteris vittata and Solanum nigrum by Combined Application of Indoleacetic Acid and Kinetin: A Field Experiment[J]. Ecology and Environment, 2021, 30(6): 1299-1309.
丛超, 杨宁柯, 王海娟, 王宏镔. 吲哚乙酸和激动素配合施用提高蜈蚣草和龙葵对砷、镉富集的田间试验[J]. 生态环境学报, 2021, 30(6): 1299-1309.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2021.06.022
项目 Items | pH值 pH value | ω(Total N)/ (g∙kg-1) | ω(Total P)/ (g∙kg-1) | ω(Total K)/ (g∙kg-1) | 重金属含量 Heavy metal concentrations/(mg·kg-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
总Cd Total cadmium | 总As Total arsenic | 总Pb Total lead | 有效Cd Bioavailable cadmium | 有效As Bioavailable arsenic | 有效Pb Bioavailable lead | |||||
最小值 Minimum | 5.68 | 0.43 | 0.86 | 14.5 | 2.76 | 79.8 | 298.5 | 0.76 | 2.8 | 153.4 |
最大值 Maximum | 6.21 | 0.51 | 0.89 | 14.9 | 3.59 | 118.9 | 390.7 | 1.31 | 6.1 | 185.6 |
平均值 Average | 5.87 | 0.47 | 0.88 | 14.5 | 3.12 | 98.7 | 342.7 | 1.03 | 4.02 | 167.7 |
标准差 Standard deviation | 0.14 | 0.04 | 0.06 | 0.9 | 0.25 | 5.8 | 18.6 | 0.17 | 0.94 | 13.1 |
《土壤环境质量 农用地土壤污染风险管控标准》 (GB 15618—2018),5.5<pH≤6.5 Soil environmental quality: Risk control standard for soil contamination of agricultural land (GB 15618—2018), 5.5<pH≤6.5 | 筛选值 Screening values | 0.3 | 40 | 90 | ||||||
管制值 Intervention values | 2.0 | 150 | 500 |
Table 1 The basic physico-chemical properties and heavy metal concentrations in the field soil
项目 Items | pH值 pH value | ω(Total N)/ (g∙kg-1) | ω(Total P)/ (g∙kg-1) | ω(Total K)/ (g∙kg-1) | 重金属含量 Heavy metal concentrations/(mg·kg-1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
总Cd Total cadmium | 总As Total arsenic | 总Pb Total lead | 有效Cd Bioavailable cadmium | 有效As Bioavailable arsenic | 有效Pb Bioavailable lead | |||||
最小值 Minimum | 5.68 | 0.43 | 0.86 | 14.5 | 2.76 | 79.8 | 298.5 | 0.76 | 2.8 | 153.4 |
最大值 Maximum | 6.21 | 0.51 | 0.89 | 14.9 | 3.59 | 118.9 | 390.7 | 1.31 | 6.1 | 185.6 |
平均值 Average | 5.87 | 0.47 | 0.88 | 14.5 | 3.12 | 98.7 | 342.7 | 1.03 | 4.02 | 167.7 |
标准差 Standard deviation | 0.14 | 0.04 | 0.06 | 0.9 | 0.25 | 5.8 | 18.6 | 0.17 | 0.94 | 13.1 |
《土壤环境质量 农用地土壤污染风险管控标准》 (GB 15618—2018),5.5<pH≤6.5 Soil environmental quality: Risk control standard for soil contamination of agricultural land (GB 15618—2018), 5.5<pH≤6.5 | 筛选值 Screening values | 0.3 | 40 | 90 | ||||||
管制值 Intervention values | 2.0 | 150 | 500 |
Fig. 2 Effects of IAA and KT with combined application on plant height and fresh matter of Solanum nigrum and Pteris vittata No.1: the control without plant growth regulators (PGRs); No.2: Monoculture with indole acetic acid (IAA) alone; No. 3: Monoculture with kinetin (KT) alone; No. 4: Monoculture with combined PGRs; No.5: Intercropping with IAA alone; No.6: Intercropping with KT alone; No. 7: Intercropping with combined PGRs. Lowercase letters indicate the difference among 7 treatments for the same PGRs spraying. Different letters indicate a significant difference (P<0.05), while the same letters indicate no significant difference (P>0.05), n=3. The same below
处理 Treatments | 第1次喷施激素 The first PGRs spraying | 第2次喷施激素 The second PGRs spraying | |||
---|---|---|---|---|---|
富集系数 Bioconcentration factor | 转运系数 Translocation factor | 富集系数 Bioconcentration factor | 转运系数 Translocation factor | ||
对照组 Control | 2.22±0.29c | 0.69±0.08c | 2.73±0.06c | 0.93±0.09abc | |
+IAA单作 Monoculture with IAA alone | 2.82±0.22bc | 1.2±0.15ab | 4.58±0.15bc | 1.42±0.12a | |
+KT单作 Monoculture with KT alone | 3.06±0.35b | 1.41±0.14a | 4.84±0.28bc | 1.02±0.26b | |
激素配合施用单作 Monoculture with combined PGRs | 2.98±0.27bc | 1.06±0.25b | 5.4±0.34bc | 1.01±0.08abc | |
+IAA间作 Intercropping with IAA alone | 4.15±0.27ab | 1.58±0.16a | 6.46±0.18b | 1.3±0.14ab | |
+KT间作 Intercropping with KT alone | 3.64±0.34b | 1.45±005a | 6.34±0.44b | 1.07±0.16b | |
激素配合施用间作 Intercropping with combined PGRs | 4.51±0.13a | 1.3±0.14ab | 10.72±0.32a | 1.03±0.11b |
Table 2 The bioconcentration factor and translocation factor of Cd by S. nigrum
处理 Treatments | 第1次喷施激素 The first PGRs spraying | 第2次喷施激素 The second PGRs spraying | |||
---|---|---|---|---|---|
富集系数 Bioconcentration factor | 转运系数 Translocation factor | 富集系数 Bioconcentration factor | 转运系数 Translocation factor | ||
对照组 Control | 2.22±0.29c | 0.69±0.08c | 2.73±0.06c | 0.93±0.09abc | |
+IAA单作 Monoculture with IAA alone | 2.82±0.22bc | 1.2±0.15ab | 4.58±0.15bc | 1.42±0.12a | |
+KT单作 Monoculture with KT alone | 3.06±0.35b | 1.41±0.14a | 4.84±0.28bc | 1.02±0.26b | |
激素配合施用单作 Monoculture with combined PGRs | 2.98±0.27bc | 1.06±0.25b | 5.4±0.34bc | 1.01±0.08abc | |
+IAA间作 Intercropping with IAA alone | 4.15±0.27ab | 1.58±0.16a | 6.46±0.18b | 1.3±0.14ab | |
+KT间作 Intercropping with KT alone | 3.64±0.34b | 1.45±005a | 6.34±0.44b | 1.07±0.16b | |
激素配合施用间作 Intercropping with combined PGRs | 4.51±0.13a | 1.3±0.14ab | 10.72±0.32a | 1.03±0.11b |
处理 Treatments | 第1次喷施激素 The first PGRs spraying | 第2次喷施激素 The second PGRs spraying | |||
---|---|---|---|---|---|
富集系数 Bioconcentration factor | 转运系数 Translocation factor | 富集系数 Bioconcentration factor | 转运系数 Translocation factor | ||
对照组 Control | 4.19±0.24c | 1.25±0.21b | 8.32±0.16c | 1.27±0.07bc | |
+IAA单作 Monoculture with IAA alone | 4.93±0.19abc | 1.22±0.13b | 10.82±0.11bc | 1.34±0.15b | |
+KT单作 Monoculture with KT alone | 5.37±0.15b | 1.25±0.15b | 11.47±0.34bc | 1.37±0.22b | |
激素配合施用单作 Monoculture with combined PGRs | 6.94±0.17ab | 1.28±0.16b | 13.33±0.29b | 1.45±0.17b | |
+IAA间作 Intercropping with IAA alone | 5.52±0.29b | 1.33±0.08ab | 10.74±0.31bc | 1.49±0.09ab | |
+KT间作 Intercropping with KT alone | 6.28±0.24ab | 1.38±0.11a | 12.8±0.24b | 1.52±0.23ab | |
激素配合施用间作 Intercropping with combined PGRs | 7.50±0.17a | 1.45±0.18a | 20.53±0.22a | 1.75±0.19a |
Table 3 The bioconcentration factor and translocation factor of As by P. vittata
处理 Treatments | 第1次喷施激素 The first PGRs spraying | 第2次喷施激素 The second PGRs spraying | |||
---|---|---|---|---|---|
富集系数 Bioconcentration factor | 转运系数 Translocation factor | 富集系数 Bioconcentration factor | 转运系数 Translocation factor | ||
对照组 Control | 4.19±0.24c | 1.25±0.21b | 8.32±0.16c | 1.27±0.07bc | |
+IAA单作 Monoculture with IAA alone | 4.93±0.19abc | 1.22±0.13b | 10.82±0.11bc | 1.34±0.15b | |
+KT单作 Monoculture with KT alone | 5.37±0.15b | 1.25±0.15b | 11.47±0.34bc | 1.37±0.22b | |
激素配合施用单作 Monoculture with combined PGRs | 6.94±0.17ab | 1.28±0.16b | 13.33±0.29b | 1.45±0.17b | |
+IAA间作 Intercropping with IAA alone | 5.52±0.29b | 1.33±0.08ab | 10.74±0.31bc | 1.49±0.09ab | |
+KT间作 Intercropping with KT alone | 6.28±0.24ab | 1.38±0.11a | 12.8±0.24b | 1.52±0.23ab | |
激素配合施用间作 Intercropping with combined PGRs | 7.50±0.17a | 1.45±0.18a | 20.53±0.22a | 1.75±0.19a |
试验处理 Treatments | 种植方式 Planting pattern | 砷 Arsenic | 铅 Lead | 镉 Cadmium |
---|---|---|---|---|
对照 Control | 龙葵 S. nigrum | 0.08±0.03b | 0.09±0.02b | 5.1±0.25c |
+IAA | 龙葵单作 Monoculture of S. nigrum | 0.11±0.02ab | 0.12±0.01ab | 5.92±0.31abc |
龙葵与蜈蚣草间作 Intercropping of S. nigrum and P. vittata | 0.12±0.01ab | 0.11±0.02ab | 5.86±0.28b | |
+KT | 龙葵单作 Monoculture of S. nigrum | 0.12±0.01ab | 0.12±0.03ab | 6.14±0.35b |
龙葵与蜈蚣草间作 Intercropping of S. nigrum and P. vittata | 0.13±0.02ab | 0.13±0.05ab | 6.32±0.41b | |
+IAA/KT | 龙葵单作 Monoculture of S. nigrum | 0.16±0.03a | 0.14±0.02a | 7.14±0.26ab |
龙葵与蜈蚣草间作 S. nigrum Intercropping of S. nigrum and P. vittata | 0.17±0.03a | 0.16±0.02a | 7.52±0.42a | |
对照 Control | 蜈蚣草 P. vittata | 3.47±0.25c | 0.14±0.02b | 0.17±0.02b |
+IAA | 蜈蚣草单作 Monoculture of P. vittata | 3.86±0.17c | 0.18±0.06b | 0.23±0.08b |
蜈蚣草与龙葵间作P. vittata Intercropping of P. vittata and S. nigrum | 4.02±0.25abc | 0.19±0.03ab | 0.24±0.06b | |
+KT | 蜈蚣草单作 Monoculture of P. vittata | 4.05±0.22abc | 0.17±0.04b | 0.24±0.05b |
蜈蚣草与龙葵间作 Intercropping of P. vittata and S. nigrum | 4.13±0.18abc | 0.21±0.02ab | 0.26±0.04ab | |
+IAA/KT | 蜈蚣草单作 Monoculture of P. vittata | 5.61±0.16b | 0.22±0.03a | 0.27±0.10ab |
蜈蚣草与龙葵间作 Intercropping of P. vittata and S. nigrum | 6.06±0.19a | 0.25±0.05a | 0.29±0.09a |
Table 4 Heavy metal extraction rate of two plants %
试验处理 Treatments | 种植方式 Planting pattern | 砷 Arsenic | 铅 Lead | 镉 Cadmium |
---|---|---|---|---|
对照 Control | 龙葵 S. nigrum | 0.08±0.03b | 0.09±0.02b | 5.1±0.25c |
+IAA | 龙葵单作 Monoculture of S. nigrum | 0.11±0.02ab | 0.12±0.01ab | 5.92±0.31abc |
龙葵与蜈蚣草间作 Intercropping of S. nigrum and P. vittata | 0.12±0.01ab | 0.11±0.02ab | 5.86±0.28b | |
+KT | 龙葵单作 Monoculture of S. nigrum | 0.12±0.01ab | 0.12±0.03ab | 6.14±0.35b |
龙葵与蜈蚣草间作 Intercropping of S. nigrum and P. vittata | 0.13±0.02ab | 0.13±0.05ab | 6.32±0.41b | |
+IAA/KT | 龙葵单作 Monoculture of S. nigrum | 0.16±0.03a | 0.14±0.02a | 7.14±0.26ab |
龙葵与蜈蚣草间作 S. nigrum Intercropping of S. nigrum and P. vittata | 0.17±0.03a | 0.16±0.02a | 7.52±0.42a | |
对照 Control | 蜈蚣草 P. vittata | 3.47±0.25c | 0.14±0.02b | 0.17±0.02b |
+IAA | 蜈蚣草单作 Monoculture of P. vittata | 3.86±0.17c | 0.18±0.06b | 0.23±0.08b |
蜈蚣草与龙葵间作P. vittata Intercropping of P. vittata and S. nigrum | 4.02±0.25abc | 0.19±0.03ab | 0.24±0.06b | |
+KT | 蜈蚣草单作 Monoculture of P. vittata | 4.05±0.22abc | 0.17±0.04b | 0.24±0.05b |
蜈蚣草与龙葵间作 Intercropping of P. vittata and S. nigrum | 4.13±0.18abc | 0.21±0.02ab | 0.26±0.04ab | |
+IAA/KT | 蜈蚣草单作 Monoculture of P. vittata | 5.61±0.16b | 0.22±0.03a | 0.27±0.10ab |
蜈蚣草与龙葵间作 Intercropping of P. vittata and S. nigrum | 6.06±0.19a | 0.25±0.05a | 0.29±0.09a |
[1] | ADRIANO D C, WENZEL W W, BLUM W E H, 1997. Role of phytoremediation in the establishment of a global soil remediation network[C]. In: Proceedings of International Seminar on Use Plants for Environmental Remediation, Kosaikaikan, Tokyo, Japan, 3-25. |
[2] |
AGAMI R A, MOHAMED G F, 2013. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings[J]. Ecotoxicology and Environmental Safety, 94: 164-171.
DOI URL |
[3] | CABELLO-CONEJO M I, PRIETO-FERNÁNDEZ Á, KIDD P S, 2014. Exogenous treatments with phytohormones can improve growth and nickel yield of hyperaccumulating plants[J]. Science of the Total Environment, 494-495: 1-8. |
[4] |
CHEN T B, WEI C Y, HUANG Z C, et al., 2002. Pteris vittata L.: An arsenic hyperaccumulator and its character in accumulating arsenic[J]. Chinese Science Bulletin, 47(3): 207-210.
DOI URL |
[5] |
HA S, VANKOVA R, YAMAGUCHI-SHINOZAKI K, et al., 2012. Cytokinins: Metabolism and function in plant adaptation to environmental stresses[J]. Trends in Plant Science, 17(3): 172-179.
DOI URL |
[6] |
HARE P D, CRESS W A, STADEN J V, 1997. The involvement of cytokinins in plant responses to environmental stress[J]. Plant Growth Regulation, 23(1-2): 79-103.
DOI URL |
[7] |
ISRAR M, SAHI S V, 2008. Promising role of plant hormones in translocation of lead in Sesbania drummondii shoots[J]. Environmental Pollution, 153(1): 29-36.
DOI URL |
[8] |
LI Q C, WANG H B, WANG H J, et al., 2018a. Effects of kinetin on plant growth and chloroplast ultrastructure of two Pteris species under arsenate stress[J]. Ecotoxicology and Environmental Safety, 158: 37-43.
DOI URL |
[9] |
LI S W, ZENG X Y, LENG YAN, et al., 2018b. Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses[J]. Ecotoxicology and Environmental Safety, 161: 332-341.
DOI URL |
[10] |
LIU D, LI T, YANG X, et al., 2007. Enhancement of lead by hyperaccumulator plant species Sedum alfredii Hance using EDTA and IAA[J]. Bulletin of Environmental Contamination and Toxicology, 78: 280-283.
DOI URL |
[11] |
MA L Q, KOMAR K M, TU C, et al., 2001. A fern that hyperaccumulates arsenic[J]. Nature, 409(6820): 579.
DOI URL |
[12] |
PARK J E, PARK J Y, KIM Y S, et al., 2007. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis [J]. Journal of Biological Chemistry, 282(13): 10036-10046.
DOI URL |
[13] |
REEVES R D, BAKER A J M, JAFFRÉ T, et al., 2017. A global database for plants that hyperaccumulate metal and metalloid trace elements[J]. New Phytologist, 218(2): 407-411.
DOI URL |
[14] |
SUN S, ZHOU X F, CUI X Y, et al., 2020. Exogenous plant growth regulators improved phytoextraction efficiency by Amaranths hypochondriacus L. in cadmium contaminated soil[J]. Plant Growth Regulation, 90: 29-40.
DOI URL |
[15] |
WANG H H, SHAN X Q, WEN B, et al., 2007. Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response[J]. Environmental and Experimental Botany, 61(3): 246-253.
DOI URL |
[16] |
ZENG P, GUO Z H, XIAO X Y, et al., 2019. Dynamic response of enzymatic activity and microbial community structure in metal (loid)-contaminated soil with tree-herb intercropping[J]. Geoderma, 345: 5-16.
DOI URL |
[17] |
ZHANG C Y, HE QUN, WANG H M, et al., 2020. Exogenous indole acetic acid alleviates Cd toxicity in tea (Camellia sinensis)[J]. Ecotoxicology and Environmental Safety, 190: 110090.
DOI URL |
[18] | 安玲瑶, 2012. 作物间作对重金属吸收的影响及其机制的研究[D]. 杭州: 浙江大学. |
AN L Y, 2012. The effect and mechanism of crop intercropping on heavy metal absorption[J]. Hangzhou: Zhejiang University. | |
[19] | 鲍士旦, 2000. 土壤农化分析[M]. 3版. 北京: 中国农业出版社. |
BAO S D, 2000. Analysis of Soil and Agrochemicals[M]. 3rd edition. Beijing: China Agriculture Press. | |
[20] | 和淑娟, 王宏镔, 王海娟, 等, 2016. 砷胁迫下3-吲哚乙酸对不同砷富集能力植物根系形态和生理的影响[J]. 农业环境科学学报, 35(5): 878-885. |
HE S J, WANG H B, WANG H J, et al., 2016. Effects of indole-3-acetic acid on morphologic and physiological characteristics of root systems of plants with different arsenic-accumulating abilities under As stress[J]. Journal of Agro-Environment Science, 35(5): 878-885. | |
[21] | 李小方, 张志良, 2016. 植物生理学实验指导[M]. 第5版. 北京: 高等教育出版社: 30. |
LI X F, ZHANG Z L, 2016. Experimental Guidance of Plant Physiology[M]. 5th edition. Beijing: Higher Education Press: 30. | |
[22] | 刘祖祺, 张石城, 1994. 植物抗性生理学[M]. 北京: 中国农业出版社: 371-372. |
LIU Z Q, ZHANG S C, 1994. Plant Tolerance Physiology[M]. Beijing: China Agricultural Press: 371-372. | |
[23] | 秦欢, 何忠俊, 熊俊芬, 等, 2012. 间作对不同品种玉米和大叶井口边草吸收积累重金属的影响[J]. 农业环境科学学报, 31(7): 1281-1288. |
QIN H, HE Z J, XIONG J F, et al., 2012. Effects of intercropping on the contents and accumulation of heavy metals in maize varieties and Pteris cretica L.[J]. Journal of Agro-Environment Science, 31(7): 1281-1288. | |
[24] | 生态环境部,国家市场监督管理总局, 2018. 土壤环境质量农用地土壤污染风险管控标准(GB 15618—2018). |
Ministry of Ecology and Environment of the People's Republic of China, State Administration for Market Regulation, 2018. Soil environmental quality: Risk control standard for soil contamination of agricultural land in China (GB15618—2018). | |
[25] | 孙约兵, 周启星, 郭观林, 2007. 植物修复重金属污染土壤的强化措施[J]. 环境工程学报, 1(3): 103-110. |
SUN Y B, ZHOU Q X, GUO G L, 2007. Phytoremediation and strenthening measures for soil contaminated by heavy metals[J]. Chinese Journal of Environmental Engineering, 1(3): 103-110. | |
[26] | 王学奎, 2006. 植物生理生化实验原理和技术[M]. 第2版. 北京: 高等教育出版社: 170-171. |
WANG X K, 2006. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. 2nd edition. Beijing: Higher Education Press: 170-171. | |
[27] | 魏树和, 周启星, 王新, 等, 2004. 一种新发现的镉超积累植物龙葵(Solanum nigrum L.)[J]. 科学通报, 49(24): 2568-2573. |
WEI S H, ZHOU Q X, WANG X, et al., 2004. A newly-discovered Cd-hyperaccumulator Solanum nigrum L.[J]. Chinese Science Bulletin, 49(24): 2568-2573. | |
[28] | 吴东墨, 王宏镔, 王海娟, 等, 2018. 吲哚乙酸和激动素配合施用对蜈蚣草土壤砷提取效率的影响[J]. 农业环境科学学报, 37(8): 1705-1715. |
WU D M, WANG H B, WANG H J, et al., 2018. Effects of the combined application of indole acetic acid and kinetin on the arsenic extraction efficiency of soil after planting Pteris vittata[J]. Journal of Agro-Environment Science, 37(8): 1705-1715. | |
[29] | 赵书晗, 王海娟, 王宏镔, 2017. 砷胁迫下吲哚乙酸对不同砷富集能力植物光合作用的影响[J]. 农业环境科学学报, 36(6): 1093-1101. |
ZHAO S H, WANG H J, WANG H B, 2017. Effects of indoleacetic acid on photosynthesis of arsenic-stressed plants with different arsenic-accumulating ability[J]. Journal of Agro-Environment Science, 36(6): 1093-1101. |
[1] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[2] | YANG Yu, DENG Renjian, LONG Pei, HUANG Zhongjie, Ren Bozhi, WANG Zhenghua. Isolation and Identification of Arsenic-oxidizing Bacterium Pseudomonas sp. AO-1 and Its Oxidation Properties for As(Ⅲ) [J]. Ecology and Environment, 2023, 32(3): 619-626. |
[3] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[4] | LIU Kanghan, ZHENG Liugen, ZHANG Liqun, DING Dan, SHAN Shifeng. Effect of Complex Plant Derived Activator on the Remediation of As Contaminated Soil by Pteris vittata [J]. Ecology and Environment, 2023, 32(3): 635-642. |
[5] | YIN Haojun, LONG Mingliang, LIU Wei, NI Chunlin, LI Fangbai, WU Yundang. Dissolved Oxygen Concentration Regulates Arsenic Reduction in Aeromonas hydrophila: Effects and Mechanisms [J]. Ecology and Environment, 2023, 32(2): 381-387. |
[6] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[7] | CUI Yuanyuan, ZHANG Zhengyun, LIU Peng, ZHANG Yunchun, ZHANG Qiaoying. Morphological Characteristics and Fractal Dimension of Brassia chinensis Root System under Cadmium and Polyethylene Microplastic Stress [J]. Ecology and Environment, 2023, 32(1): 158-165. |
[8] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[9] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[10] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[11] | GAO Peng, GAO Pin, SUN Weimin, KONG Tianle, HUANG Duanyi, LIU Huaqing, SUN Xiaoxun. Response of the Endosphere and Rhizosphere Microbial Community in Petris vittata L. to Arsenic Stress [J]. Ecology and Environment, 2022, 31(6): 1225-1234. |
[12] | XU Meihua, GU Minghua, WANG Chengzhen, LEI Jing, WEI Yanyan, SHEN Fangke. Effect of Manganese on Arsenic Speciation in Soil and Arsenic Migration to Rice [J]. Ecology and Environment, 2022, 31(4): 802-813. |
[13] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[14] | WEN Dian, ZHAO Peihua, CHEN Chuguo, LI Furong, DU Ruiying, HUANG Yongdong, LI Lei, WANG Fuhua. Study on Safety Threshold of Soil Cadmium in the Vegetable Producing Areas of the Pearl River Delta [J]. Ecology and Environment, 2022, 31(3): 603-609. |
[15] | SHI Hanzhi, JIANG Qi, LIU Fan, WEN Dian, HUANG Yongdong, DENG Tenghaobo, WANG Xu, XU Aiping, LI Furong, WU Zhichao, LI Meixia, PENG Jinfen, DU Ruiying. Effects of Returning Rice Stubble to Field on Cadmium Accumulation in Soil and Rice [J]. Ecology and Environment, 2022, 31(2): 363-369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn