Ecology and Environment ›› 2023, Vol. 32 ›› Issue (1): 166-174.DOI: 10.16258/j.cnki.1674-5906.2023.01.018
• Research Articles • Previous Articles Next Articles
YANG Rui1,2(), SUN Weimin2,*(
), LI Yongbin2, GUO Lifang2, JIAO Nianyuan1,*(
)
Received:
2022-10-24
Online:
2023-01-18
Published:
2023-04-06
Contact:
SUN Weimin,JIAO Nianyuan
杨瑞1,2(), 孙蔚旻2,*(
), 李永斌2, 郭丽芳2, 焦念元1,*(
)
通讯作者:
孙蔚旻,焦念元
作者简介:
杨瑞(1996年生),男,研究方向为生态修复研究。E-mail: 764005863@qq.com
基金资助:
CLC Number:
YANG Rui, SUN Weimin, LI Yongbin, GUO Lifang, JIAO Nianyuan. Isolation, Identification and Plant Growth Promotion of Rhizosphere Phosphorus-dissolving Bacteria from Tailings Pioneer Plants[J]. Ecology and Environment, 2023, 32(1): 166-174.
杨瑞, 孙蔚旻, 李永斌, 郭丽芳, 焦念元. 尾矿先锋植物根际溶磷菌的分离鉴定与其促生研究[J]. 生态环境学报, 2023, 32(1): 166-174.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.01.018
菌名 | 形态 | 颜色 | 表面形态 |
---|---|---|---|
G2 | 圆形 | 淡黄色 | 湿润 |
G16 | 圆形 | 淡黄色 | 干燥 |
Y1 | 圆形 | 白色 | 湿润 |
Y22 | 圆形 | 淡黄色 | 湿润 |
Y38 | 圆形 | 白色 | 湿润 |
Table 1 Colony characteristics of phosphate solubilizing bacteria in LB solid medium
菌名 | 形态 | 颜色 | 表面形态 |
---|---|---|---|
G2 | 圆形 | 淡黄色 | 湿润 |
G16 | 圆形 | 淡黄色 | 干燥 |
Y1 | 圆形 | 白色 | 湿润 |
Y22 | 圆形 | 淡黄色 | 湿润 |
Y38 | 圆形 | 白色 | 湿润 |
菌名 | 固氮酶活性/ (μmol·h-1·mL-1) | 产吲哚乙酸能力 | 产铁载体 | 溶磷圈/ cm |
---|---|---|---|---|
G2 | 584.81 | + | + | 5.01 |
G16 | 6808.34 | + | - | 4.03 |
Y1 | + | - | 4.57 | |
Y22 | 4600.68 | + | + | 4.89 |
Y38 | + | + | 3.14 |
Table 2 Physiological and biochemical characteristics of the selected phospholysis bacteria
菌名 | 固氮酶活性/ (μmol·h-1·mL-1) | 产吲哚乙酸能力 | 产铁载体 | 溶磷圈/ cm |
---|---|---|---|---|
G2 | 584.81 | + | + | 5.01 |
G16 | 6808.34 | + | - | 4.03 |
Y1 | + | - | 4.57 | |
Y22 | 4600.68 | + | + | 4.89 |
Y38 | + | + | 3.14 |
菌名 | As3+的浓度/( mmol·L-1) | |||||
---|---|---|---|---|---|---|
0 (CK) | 20 | 30 | 40 | 50 | 60 | |
G2 | ++ | ++ | ++ | ++ | + | - |
G16 | ++ | ++ | ++ | + | - | - |
Y1 | ++ | ++ | ++ | ++ | + | - |
Y22 | ++ | ++ | ++ | ++ | + | - |
Y38 | ++ | ++ | ++ | + | - | - |
Table 3 Effect of heavy metal As3+ on the growth of strain
菌名 | As3+的浓度/( mmol·L-1) | |||||
---|---|---|---|---|---|---|
0 (CK) | 20 | 30 | 40 | 50 | 60 | |
G2 | ++ | ++ | ++ | ++ | + | - |
G16 | ++ | ++ | ++ | + | - | - |
Y1 | ++ | ++ | ++ | ++ | + | - |
Y22 | ++ | ++ | ++ | ++ | + | - |
Y38 | ++ | ++ | ++ | + | - | - |
菌名 | 类型 | 特性/% | 登录号 |
---|---|---|---|
G2 | Gordonia amicalis (T3) | 99.86 | EU427321.1 |
G16 | Intrasporangium calvum (DSM 43043) | 98.73 | NR_042185.1 |
Y1 | Pseudomonas putida (F1-1-2) | 100.00 | KX349990.1 |
Y22 | Pseudomonas monteilii (B45) | 99.65 | KT380512.1 |
Y38 | Bacillus huizhouensis (JZY2-12) | 99.79 | MT071364.1 |
Table 4 Identification of phospholysis bacteria based on 16S rRNA gene sequences
菌名 | 类型 | 特性/% | 登录号 |
---|---|---|---|
G2 | Gordonia amicalis (T3) | 99.86 | EU427321.1 |
G16 | Intrasporangium calvum (DSM 43043) | 98.73 | NR_042185.1 |
Y1 | Pseudomonas putida (F1-1-2) | 100.00 | KX349990.1 |
Y22 | Pseudomonas monteilii (B45) | 99.65 | KT380512.1 |
Y38 | Bacillus huizhouensis (JZY2-12) | 99.79 | MT071364.1 |
[1] |
ADIANSYAH J S, ROSANO M, VINK S, et al., 2015. A framework for a sustainable approach to mine tailings management: Disposal strategies[J]. Journal of Cleaner Production, 108: 1050-1062.
DOI URL |
[2] | AHEMAD M, 2015. Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: A review[J]. Biotech, 5(2): 111-121. |
[3] |
ALORI E T, GLICK B R, BABALOLA O O, 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture[J]. Frontiers in microbiology, 8: 00971.
DOI URL |
[4] |
BHANSE P, KUMAR M, SINGH L, et al., 2022. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects[J]. Chemosphere, 303(Part 1): 134954.
DOI URL |
[5] |
BASHAN Y, KAMNEY A A, DE-BASHAN L E, 2013. A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth[J]. Biology and Fertility of Soils, 49(1): 1-2.
DOI URL |
[6] |
JANA U, CHASSANY V, BERTRAND G, et al., 2012. Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation[J]. Journal of environmental management, 110: 188-193.
DOI PMID |
[7] |
JEONG S, MOON H S, SHIN D, et al., 2013. Survival of introduced phosphate-solubilizing bacteria (PSB) and their impact on microbial community structure during the phytoextraction of Cd-contaminated soil[J]. Journal of hazardous materials, 263: 441-449.
DOI URL |
[8] |
LONG X X, CHEN X M, WONG J W C, et al., 2013. Feasibility of enhanced phytoextraction of Zn contaminated soil with Zn mobilizing and plant growth promoting endophytic bacteria[J]. Transactions of Nonferrous Metals Society of China, 23(8): 2389-2396.
DOI URL |
[9] |
LIU H L, WANG H, WANG G J, 2012. Intrasporangium chromatireducens sp. nov., a chromate-reducing actinobacterium isolated from manganese mining soil, and emended description of the genus Intrasporangium[J]. International journal of systematic and evolutionary microbiology, 62(Part 2): 403-408.
DOI URL |
[10] | LI Z G, PENG A J, QU L B, 2009. Effects of microbial remediation inocula on microbial community in gold-tailings soil with secondary tillage[J]. Hunan Agricultural Sciences, 5: 46-49. |
[11] |
MA Y, RAJKUMAR M, FREITAS H, 2009. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea[J]. Journal of Environmental Management, 90(2): 831-837.
DOI URL |
[12] |
MARSCHNER P, CROWLEY D, RENGEL Z, 2011. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis-model and research methods[J]. Soil Biology and Biochemistry, 43(5): 883-894.
DOI URL |
[13] |
MA Y, RAJKUMAR M, ZHANG C, et al., 2016a. Beneficial role of bacterial endophytes in heavy metal phytoremediation[J]. Journal of environmental management, 174: 14-25.
DOI URL |
[14] |
MA Y, RAJKUMAR M, ZHANG C, et al., 2016b. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions[J]. Journal of Hazardous Materials, 320: 36-44.
DOI URL |
[15] |
MEI C S, CHRETIEN R L, AMARADASA B S, et al., 2021. Characterization of phosphate solubilizing bacterial endophytes and plant growth promotion in vitro and in greenhouse[J]. Microorganisms, 9(9): 1935.
DOI URL |
[16] |
PANDA B, RAHMAN H, PANDA J, 2016. Phosphate solubilizing bacteria from the acidic soils of Eastern Himalayan region and their antagonistic effect on fungal pathogens[J]. Rhizosphere, 2: 62-71.
DOI URL |
[17] |
REZAKHANI L, MOTESHAREZADEH B, TEHRANI M M, et al., 2019. Phosphate-solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source[J]. Ecotoxicology and Environmental Safety, 173: 504-513.
DOI URL |
[18] |
RAJKUMAR M, FREITAS H, 2008. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals[J]. Chemosphere, 71(5): 834-842.
DOI URL |
[19] |
RICHARDSON A E, SIMPSON R J, 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant physiology, 156(3): 989-996.
DOI PMID |
[20] |
RODRÍGUEZ H, FRAGA R, GONZALEZ T, et al., 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria[J]. Plant and Soil, 287(1): 15-21.
DOI URL |
[21] |
SUN X X, XU R, DONG Y R, et al., 2020. Investigation of the ecological roles of putative keystone taxa during tailing revegetation[J]. Environmental Science & Technology, 54(18): 11258-11270.
DOI URL |
[22] |
SUN X X, SONG B R, XU R, et al., 2021. Root-associated (rhizosphere and endosphere) microbiomes of the Miscanthus sinensis and their response to the heavy metal contamination[J]. Journal of Environmental Sciences, 104(6): 387-398.
DOI URL |
[23] |
SARAVANAN V S, MADHAIYAN M, 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus[J]. Chemosphere, 66(9): 1794-1798.
DOI URL |
[24] |
SHENG X F, XIA J J, 2006. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria[J]. Chemosphere, 64(6): 1036-1042.
DOI URL |
[25] |
SULTANA M, VOGLER S, ZARGAR K, et al., 2012. New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil[J]. Archives of microbiology, 194(7): 623-635.
DOI PMID |
[26] | SHARIATI S, POURBABAEE A A, ALIKHANI H A, et al., 2021. Biodegradation of DEHP by a new native consortium An6 (Gordonia sp. and Pseudomonas sp.) adapted with phthalates, isolated from a natural strongly polluted wetland[J]. Environmental Technology & Innovation, 24: 101936. |
[27] |
SULEMAN M, YASMIN S, RASUL M, et al., 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat[J]. PloS one, 13(9): e0204408.
DOI URL |
[28] |
TIAN J, GE F, ZHANG D Y, et al., 2021. Roles of Phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle[J]. Biology, 10(2): 158.
DOI URL |
[29] |
WILKINSON B H, MCELROY B J, 2007. The impact of humans on continental erosion and sedimentation[J]. Geological society of America bulletin, 119(1-2): 140-156.
DOI URL |
[30] | XUE Y Y, YE W, YANG S, et al., 2019. Isolation and identification of P-dissolving fungi strain and its effects on phosphate-solubilizing and plant growth promotion[J]. Agricultural Research in the Arid Areas, 37(4): 253-262. |
[31] |
XIE J G, YAN Z Q, WANG G F, et al., 2021. A bacterium isolated from soil in a Karst rocky desertification region has efficient phosphate-solubilizing and plant growth-promoting ability[J]. Frontiers in Microbiology, 11: 625450.
DOI URL |
[32] |
SHEN Z J, WANG Y P, SUN Y S, et al., 2014. Effect of vegetation succession on organic carbon, carbon of humus acids and dissolved organic carbon in soils of copper mine tailings sites[J]. Pedosphere, 24(2): 271-279.
DOI URL |
[33] | 崔永亮, 袁星, 涂卫国, 等, 2018. 尾矿土中解磷细菌的筛选及对镉的耐受研究[J]. 资源开发与市场, 34(6): 838-843. |
CUI Y L, YUAN X, TU W G, et al., 2018. Analysis on screening and identification of phosphorus dissolving bacteria from V-Ti magnetite tailings and the tolerance to cadmium[J]. Resource Development & Market, 34(6): 838-843. | |
[34] | 范延辉, 王君, 尚帅, 等, 2022. 两株根际真菌的耐盐, 溶磷, 促生效果及其分类鉴定[J]. 土壤通报, 53(1): 127-134. |
FAN Y H, WANG J, SHANG S, et al., 2022. Salt-tolerant, phosphate-dissolving and growth-promoting effects of two rhizosphere fungi and their classification and Identification[J]. Chinese Journal of Soil Science, 53(1): 127-134. | |
[35] | 谷艳, 2018. 氧化尾矿与白茅根际尾矿中可培养溶磷菌比较研究[J]. 土壤通报, 49(1): 119-125. |
GU Y, 2018. Comparison of phosphate-solubilizing bacteria from oxidized tailings and rhizosphere tailings of Imperata cylindrical[J]. Chinese Journal of Soil Science, 49(1): 119-125. | |
[36] | 姜威, 孟利强, 陈靖宇, 等, 2019. 环境因素对Bacillus amyloliquefaciens TF28在土壤中定殖的影响[J]. 西北农业学报, 28(9): 1479-1484. |
JIANG W, MENG L Q, CHEN J Y, et al., 2019. Effect of environmental factor on colonization of bacillus amyloliquedaciens TF28 in soil[J]. Acta Agriculturae Boreali-occidentalis Sinica, 28(9): 1479-1484. | |
[37] | 李晓莹, 徐学华, 郭江, 等, 2014. 不同造林树种对铁尾矿基质理化性质和土壤动物的影响[J]. 生态学报, 34(20): 5746-5757. |
LI X Y, XU X H, GUO J, et al., 2014. Effects of different forestation species on the substrate physicochemical properties and soil fauna in iron tailings[J]. Acta Ecologica Sinica, 34(20): 5746-5757. | |
[38] |
李玉娥, 姚拓, 荣良燕, 2010. 溶磷菌溶磷和分泌IAA特性及对苜蓿生长的影响[J]. 草地学报, 18(1): 84-88.
DOI |
LI Y E, YAO T, RONG L Y, 2010. Characteristics of IAA secretion and phosphate dissolving of phosphate-solubilizing bacteria and its effect on alfalfa growth[J]. Acta Agrestia Sinica, 18(1): 84-88. | |
[39] | 刘辉, 吴小芹, 叶建仁, 等, 2021. 荧光假单胞菌的溶磷机制及其在杨树菌根际的定殖动态[J]. 林业科学, 57(3): 90-97. |
LIU H, WU X Q, YE J R, et al., 2021. Phosphate-dissolving mechanisms of Pseudomonas fluorescens and its colonizing dynamics in the mycorrhizosphere of poplars[J]. Scientia Silvae Sinicae, 57(3): 90-97. | |
[40] | 谭志远, 彭桂香, 徐培智, 等, 2009. 普通野生稻 (Oryza rufipogon) 内生固氮菌多样性及高固氮酶活性[J]. 科学通报 (13): 1885-1893. |
TAN Z Y, PENG G X, XU P Z, et al., 2009. Diversity of endophytic nitrogen-fixing bacteria and high nitrogen-fixing enzyme activity in common wild rice (Oryza rufipogon) high nitrogen fixing enzyme activity[J]. Chinese Science Bulletin (13): 1885-1893. | |
[41] | 田江, 2014. 尾矿废弃地土壤中解磷菌的筛选、鉴定和特性研究[D]. 北京: 北京林业大学. |
TIAN J, 2014. Isolation, identification and characterization of phosphate solubilizing microorganisms from the mining tail soils[D]. Beijing: Beijing Forestry University. | |
[42] |
王俊娟, 阎爱华, 王薇, 等, 2016. 铁尾矿区油松根际溶磷泛菌D2的筛选鉴定及溶磷特性[J]. 应用生态学报, 27(11): 3705-3711.
DOI |
WANG J J, YAN A H, WANG W, et al., 2016. Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing bacteria strain D2 (Pantoea sp.) in rhizosphere of Pinus tabuliformis in iron tailings yard[J]. Chinese Journal of Applied Ecology, 27(11): 3705-3711.
DOI |
|
[43] | 张国霞, 茅庆, 何忠义, 等, 2006. 陵水普通野生稻 (Oryza rufipogon) 内生菌的固氮及溶磷特行[J]. 应用与环境生物学报, 12(4): 457-460. |
ZHANG G X, MAO Q, HE Z Y, et al., 2006. Detection of nitrogenase activity and phosphorus dissolving ability of endophytic isolates from Oryza rufipogon in Lingshui[J]. Chinese Journal of Applied & Environmental Biology, 12(4): 457-460. | |
[44] | 周德明, 李蓉, 2012. 杉木根际固氮菌筛选及其溶磷性与分泌IAA特性研究[J]. 四川师范大学学报 (自然科学版), 35(4): 562-566. |
ZHOU D M, LI R, 2012. Screening of nitrogen-fixing bacteria in rhizosphere of Cunninghaimia lanceolata and investigation on their properties of phosphate-solubilizing and IAA-producing[J]. Journal of Sichuan Normal University (Natural Science), 35(4): 562-566. | |
[45] |
朱慧明, 张彦, 杨洪江, 2015. 高产铁载体假单胞菌的筛选及其对铁氧化物的利用[J]. 生物技术通报, 31(9): 177-182.
DOI |
ZHU H M, ZHANG Y, YANG H J, 2015. Screening of pseudomonas strains producing high-yield siderophore and its utilization of iron hydroxides[J]. Biotechnology Bulletin, 31(9): 177-182. |
[1] | WANG Jiayi, SUN Tingting, SHA Runyu, CHEN Tinghong, XING Ran, QIN Boqiang, SHI Wenqing. Study on the Synergic Effect of Algae Salvage on Pollution Control and Carbon Emission Reduction in Eutrophic Lakes [J]. Ecology and Environment, 2023, 32(6): 1108-1114. |
[2] | WANG Chao, YANG Qiannan, ZHANG Chi, LIU Tongxu, ZHANG Xialong, CHEN Jing, LIU Kexue. The Characteristics of Soil Phosphorus Fractions and Their Availability under Different Land Use Types in Danxia Mountain [J]. Ecology and Environment, 2023, 32(5): 889-897. |
[3] | WANG Tiezheng, QU Xinyue, LIU Chunxiang, LI Youzhi. Spatial and Temporal Changes in Water Quality in the Dongjiang Lake and Their Relationships with Land Use in the Watershed [J]. Ecology and Environment, 2023, 32(4): 722-732. |
[4] | DAI Demin, JIANG Xusheng, LIU Jie, WANG Luyang, CHEN Shiqi, HAN Qingkun. Study on Suitability of Pb/Zn Mine Tailings Using Three Different Organic Amendments [J]. Ecology and Environment, 2023, 32(4): 784-793. |
[5] | ZHANG Guangyi, ZHANG Jiatao, WANG Xiaowei. Phosphorus Speciation Distribution and Release in Lake Sediment Microbial Fuel Cells [J]. Ecology and Environment, 2023, 32(3): 590-598. |
[6] | FAN Huilin, ZHANG Jiamin, LI Huan, WANG Yanling. Study on the Profile Storage Pattern and Loss Risk of Phosphorus in Sloping Paddy Red Soil [J]. Ecology and Environment, 2023, 32(2): 283-291. |
[7] | HUANG Weijia, LIU Chun, LIU Yue, HUANG Bin, LI Dingqiang, YUAN Zaijian. Soil Ecological Stoichiometry and Its Influencing Factors at Different Elevations in Nanling Mountains [J]. Ecology and Environment, 2023, 32(1): 80-89. |
[8] | LIU Ning, LIU Yang, XU Jingping, SONG Huiping, FENG Zhengjun, CHENG Fangqin. Effects of Arbuscular Mycorrhizal Fungi on Plant Growth and Water Purification in Constructed Wetlands [J]. Ecology and Environment, 2022, 31(7): 1434-1441. |
[9] | SHI Jianfei, JIN Zhengzhong, ZHOU Zhibin, WANG Xin. Evaluation of Heavy Metal Pollution in the Soil Around A Typical Tailing Reservoir in Irtysh River Basin [J]. Ecology and Environment, 2022, 31(5): 1015-1023. |
[10] | HE Bin, HU Maochuan. Evaluation of Agriculture Non-point Pollution Load and Its Characteristics in All Districts and Counties of Guangdong [J]. Ecology and Environment, 2022, 31(4): 771-776. |
[11] | SU Yan, QUAN Yanhong, HUAN Ziyan, YAO Jia, SU Xiaojuan. Effect of phosphate-modified Biochar on Remediation of Pb- and Zn-polluted Farmlands Around A Pb/Zn Mine in Yunnan Province, China [J]. Ecology and Environment, 2022, 31(3): 593-602. |
[12] | CUI Jian, DU Yi, DING Chengcheng, LI Jinfeng, GAO Fangshu, CHANG Yajun, ZHANG Jibiao, LIU Xiaojing, YAO Dongrui. Phosphorus Fraction and Abatement of Lakes in China: A Review [J]. Ecology and Environment, 2022, 31(3): 621-633. |
[13] | SHENG Jifeng, LI Yao, YU MeiJia, HAN Yanying, YE Yanhui. Effects of Nitrogen and Phosphorus An Addition on Soil Nutrients and Activity of Related Enzymes in Alpine Grassland [J]. Ecology and Environment, 2022, 31(12): 2302-2309. |
[14] | GUO Lifang, YANG Rui, SUN Weimin. Nitrogen-Fixing Bacteria Isolation from Mine Tailings and Their Plant Growth Promoting Properties [J]. Ecology and Environment, 2022, 31(11): 2180-2188. |
[15] | SONG Xianchong, CAI Xuemei, CHEN Tao, PAN Wen, SHI Yuanyuan, TANG Jian, CAO Jizhao. Variation Characteristics of Rhizosphere and Non-rhizosphere Soil Nutrient in Successive Eucalyptus Plantation [J]. Ecology and Environment, 2021, 30(9): 1814-1820. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn