Ecology and Environment ›› 2023, Vol. 32 ›› Issue (4): 784-793.DOI: 10.16258/j.cnki.1674-5906.2023.04.016
• Research Articles • Previous Articles Next Articles
DAI Demin1(), JIANG Xusheng1, LIU Jie1,2,*(
), WANG Luyang1, CHEN Shiqi1, HAN Qingkun1
Received:
2022-08-22
Online:
2023-04-18
Published:
2023-07-12
Contact:
LIU Jie
代德敏1(), 蒋旭升1, 刘杰1,2,*(
), 王路洋1, 陈诗奇1, 韩庆坤1
通讯作者:
刘杰
作者简介:
代德敏(1996年生),女,硕士研究生,主要研究方向为矿山环境生态恢复。E-email: 2120200428@glut.edu.cn
基金资助:
CLC Number:
DAI Demin, JIANG Xusheng, LIU Jie, WANG Luyang, CHEN Shiqi, HAN Qingkun. Study on Suitability of Pb/Zn Mine Tailings Using Three Different Organic Amendments[J]. Ecology and Environment, 2023, 32(4): 784-793.
代德敏, 蒋旭升, 刘杰, 王路洋, 陈诗奇, 韩庆坤. 3种有机改良剂对铅锌矿尾砂适生性改善的研究[J]. 生态环境学报, 2023, 32(4): 784-793.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.04.016
参数 | 铅锌尾砂 | 发酵羊粪 | 污泥 | 生物炭 |
---|---|---|---|---|
pH | 7.50 | 7.28 | 7.81 | 7.90 |
电导率/(mS∙cm−1) | 0.06 | 5.29 | 2.89 | 2.90 |
w(有效磷)/(mg∙kg−1) | 1.20 | 187 | 132 | 348 |
w(速效钾)/(mg∙kg−1) | 2.78 | 2280 | 556 | 2512 |
w(总氮)/(g∙kg−1) | 0.40 | 6.10 | 39.3 | 3.60 |
w(总碳)/(g∙kg−1) | 22.1 | 369 | 219 | 754 |
w(总镉)/(mg∙kg−1) | 18.8 | 0.43 | 0.35 | ND |
w(总铅)/(mg∙kg−1) | 3425 | 43.8 | 53.1 | 20.6 |
w(总锌)/(mg∙kg−1) | 3400 | 368 | 964 | 33.7 |
Table 1 Basic properties of the test materials
参数 | 铅锌尾砂 | 发酵羊粪 | 污泥 | 生物炭 |
---|---|---|---|---|
pH | 7.50 | 7.28 | 7.81 | 7.90 |
电导率/(mS∙cm−1) | 0.06 | 5.29 | 2.89 | 2.90 |
w(有效磷)/(mg∙kg−1) | 1.20 | 187 | 132 | 348 |
w(速效钾)/(mg∙kg−1) | 2.78 | 2280 | 556 | 2512 |
w(总氮)/(g∙kg−1) | 0.40 | 6.10 | 39.3 | 3.60 |
w(总碳)/(g∙kg−1) | 22.1 | 369 | 219 | 754 |
w(总镉)/(mg∙kg−1) | 18.8 | 0.43 | 0.35 | ND |
w(总铅)/(mg∙kg−1) | 3425 | 43.8 | 53.1 | 20.6 |
w(总锌)/(mg∙kg−1) | 3400 | 368 | 964 | 33.7 |
[1] |
AJAYI A E, HORN R, 2016. Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar[J]. Soil and Tillage Research, 164: 34-44.
DOI URL |
[2] | AL-LAMI M K, OUSTRIERE N, GONZALES E, et al., 2019. Amendment-assisted revegetation of mine tailings: Improvement of tailings quality and biomass production[J]. Internation Journal of Phytoremediation, 21(5): 425-434. |
[3] |
AL-LAMI M K, OUSTRIERE N, GONZALES E, et al., 2022. Phytomanagement of Pb/Zn/Cu tailings using biosolids-biochar or -humus combinations: Enhancement of bioenergy crop production, substrate functionality, and ecosystem services[J]. Science of the Total Environment, 836: 155676.
DOI URL |
[4] |
ALVAREZ-ROGEL J, TERCERO-GOMEZ M D C, CONESA H M, et al., 2018. Biochar from sewage sludge and pruning trees reduced porewater Cd, Pb and Zn concentrations in acidic, but not basic, mine soils under hydric conditions[J]. Journal of Environmental Management, 223: 554-565.
DOI URL |
[5] |
ARLO L, BERETTA A, SZOGI A A, et al., 2022. Biomass production, metal and nutrient content in sorghum plants grown on soils amended with sewage sludge[J]. Heliyon, 8(1): e08658.
DOI URL |
[6] |
CHIU K K, YE Z H, WONG M H, 2006. Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: A greenhouse study[J]. Bioresource Technology, 97(1): 158-170.
DOI URL |
[7] | DE FIGUEIREDO C C, COSER T R, MOREIRA T N, et al., 2019. Carbon mineralization in a soil amended with sewage sludge-derived biochar[J]. Applied Science-Basel, 9(21): 4481. |
[8] |
EL RASAFI T, OUKARROUM A, HADDIOUI A, 2021. Response of maize to coniferous tree woods biochar and sheep manure application to contaminated mine soil[J]. Biomass Conversion and Biorefinery, 13: 3917-3927.
DOI |
[9] |
ELOUEAR Z, BOUHAMED F, BOUJELBEN N, et al., 2016. Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants[J]. Sustainable Environment Research, 26(3): 131-135.
DOI URL |
[10] |
FU Y T, DE JONGE L W, MOLDRUP P, et al., 2022. Improvements in soil physical properties after long-term manure addition depend on soil and crop type[J]. Geoderma, 425: 116062.
DOI URL |
[11] |
GONZAGA M I S, MACKOWIAK C, DE ALMEIDA A Q, et al., 2018. Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition[J]. Catena, 162: 414-420.
DOI URL |
[12] |
HOUBEN D, EVRARD L, SONNET P, 2013. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere, 92(11): 1450-1457.
DOI PMID |
[13] |
HU Y L, MGELWA A S, SINGH A N, et al., 2018. Differential responses of the soil nutrient status, biomass production, and nutrient uptake for three plant species to organic amendments of placer gold mine-tailing soils[J]. Land Degradation & Development, 29(9): 2836-2845.
DOI URL |
[14] |
IBRAHIM A, HORTON R, 2021. Biochar and compost amendment impacts on soil water and pore size distribution of a loamy sand soil[J]. Soil Science Society of America Journal, 85(4): 1021-1036.
DOI URL |
[15] |
JAYNES W F, ZARTMAN R E, 2005. Origin of tale, iron phosphates, and other minerals in biosolids[J]. Soil Science Society of America Journal, 69(4): 1047-1056.
DOI URL |
[16] |
JIA Y H, LI J, ZENG X B, et al., 2022. The performance and mechanism of cadmium availability mitigation by biochars differ among soils with different pH: Hints for the reasonable choice of passivators[J]. Journal of Environmental Management, 312: 114903.
DOI URL |
[17] |
KANG M W, YIBELTAL M, KIM Y H, et al., 2022. Enhancement of soil physical properties and soil water retention with biochar-based soil amendments[J]. Science of Total Environment, 836: 155746.
DOI URL |
[18] |
KHAWKOMOL S, NEAMCHAN R, THONGSAMER T, et al., 2021. Potential of biochar derived from agricultural residues for sustainable management[J]. Sustainability, 13(15): 1-14.
DOI URL |
[19] |
LI J Q, MARSCHNER P, 2019. Phosphorus pools and plant uptake in manure-amended soil[J]. Journal of Soil Science and Plant Nutrition, 19(1): 175-186.
DOI |
[20] |
LIN H, JIANG X Y, LI B, et al., 2021. Soilless revegetation: An efficient means of improving physicochemical properties and reshaping microbial communities of high-salty gold mine tailings[J]. Ecotoxicology and Environmental Safety, 207: 111246.
DOI URL |
[21] |
LIU C J, LIN H, HE P D, et al., 2022. Peat and bentonite amendments assisted soilless revegetation of oligotrophic and heavy metal contaminated nonferrous metallic tailing[J]. Chemosphere, 287(Part 1): 132101.
DOI URL |
[22] |
LIU C j, LIN H, LI B, et al., 2021. Endophyte Pseudomonas putida enhanced Trifolium repens L. growth and heavy metal uptake: A promising in-situ non-soil cover phytoremediation method of nonferrous metallic tailing[J]. Chemosphere, 272: 129816.
DOI URL |
[23] |
LU J Y, YANG J F, KEITEL C, et al., 2020. Rhizosphere priming effects of Lolium perenne and Trifolium repens depend on phosphorus fertilization and biological nitrogen fixation[J]. Soil Biology and Biochemistry, 150: 108005.
DOI URL |
[24] |
NAVARRO-CANO J A, VERDU M, GOBERNA M, et al., 2018. Trait-based selection of nurse plants to restore ecosystem functions in mine tailings[J]. Journal of Applied Ecology, 55(3): 1195-1206.
DOI URL |
[25] |
SARATHCHANDRA S S, RENGEL Z, SOLAIMAN Z M, 2022. Remediation of heavy metal-contaminated iron ore tailings by applying compost and growing perennial ryegrass (Lolium perenne L.)[J]. Chemosphere, 288(2): 132573.
DOI URL |
[26] |
SONG L, QIAN J Z, ZHANG F W, et al., 2022. An ecological remediation model combining optimal substrate amelioration and native hyperaccumulator colonization in non-ferrous metal tailings pond[J]. Journal of Environmental Management, 322: 116141.
DOI URL |
[27] |
VAN DER SLOOT M, KLEIJN D, DE DEYN G B, et al., 2022. Carbon to nitrogen ratio and quantity of organic amendment interactively affect crop growth and soil mineral N retention[J]. Crop and Environment, 1(3): 161-167.
DOI URL |
[28] |
WANG Z P, SHEN R, JI S B, et al., 2021. Effects of biochar derived from sewage sludge and sewage sludge/cotton stalks on the immobilization and phytoavailability of Pb, Cu, and Zn in sandy loam soil[J]. Journal of Hazardous Materials, 419: 126468.
DOI URL |
[29] |
XIE L, VAN ZYL D, 2020. Distinguishing reclamation, revegetation and phytoremediation, and the importance of geochemical processes in the reclamation of sulfidic mine tailings: A review[J]. Chemosphere, 252: 126446.
DOI URL |
[30] | YAN W C, QU J B, QU Y P, et al., 2022. Effect of biochar addition on mechanism of heavy metal migration and transformation in biogas residue aerobic compost[J]. Fermentation-Basel, 8(10): 523. |
[31] |
YANG Y H, WU J C, DU Y L, et al., 2022. Effect on soil properties and crop yields to long-term application of superabsorbent polymer and manure[J]. Frontiers in Environmental Science, 10: 859434.
DOI URL |
[32] |
ZAHEDIFAR M, 2020. Effect of biochar on cadmium fractions in some polluted saline and sodic soils[J]. Environmental Management, 66(6): 1133-1141.
DOI PMID |
[33] | ZHANG B, ZHANG M Y, ZHOU X X, et al., 2022. Effect of the mineral-microbial complexes on the quality, soil nutrients, and microbial community of tailing substrates for growing potted Rorippa[J]. Microbiology Research, 262: 127084. |
[34] | 曹秀芹, 刘丰, 柴莲莲, 等, 2022. 污泥与污泥生物炭对比修复铜、镉污染土壤[J]. 应用化工, 51(4): 1036-1041. |
CAO X Q, LIU F, CHAI L L, et al., 2022. Restoration of Cu and Cd heavy metal contaminated soil by sludge and sludge-derived biochar[J]. Applied Chemical Industry, 51(4): 1036-1041. | |
[35] | 陈奕暄, 邓昭赞, 吴双军, 等, 2021. 速效钾对沟叶结缕草吸收和转运Cd的影响[J]. 北方园艺 (17): 66-74. |
CHEN Y X, DENG Z Z, WU S J, et al., 2021. Effects of available potassium on cadmium accumulation in Zoysia Matrella[J]. Northern Horticulture (17): 66-74. | |
[36] |
崔保伟, 刘全永, 秦广利, 等, 2021. 发酵羊粪与松土促根剂配施对土壤理化性状及朝天椒品质和产量的影响[J]. 华北农学报, 36(2): 182-187.
DOI |
CUI B W, LIU Q Y, QIN G L, et al., 2021. Effect of combined application of fermented sheep manure and soil loosening and root promoting agent on soil physical and chemical properties yield and quality of red cluster pepper[J]. Acta Agriculturae Boreali-Sinica, 36(2): 182-187.
DOI |
|
[37] | 黄雷, 张时伟, 任重, 等, 2016. 不同修复材料对铅锌尾砂中DTPA浸提态Pb、Zn、Cu、Cd含量的影响[J]. 环境工程, 34(9): 166-170. |
HUANG L, ZHANG S W, REN Z, et al., 2016. Effect of different remediation materials on DTPA extractable contents of Pb, Zn, Cu and Cd in lead-zinc mine tailings[J]. Environmental Engineering, 34(9): 166-170. | |
[38] | 黄小洋, 邵劲松, 马运涛, 2017. 施用猪粪有机肥对土壤环境质量的影响[J]. 河南农业科学, 46(11): 60-68. |
HUANG X Y, SHAO J S, MA Y T, 2017. Effects of the application of pig manure organic fertilizers on soil environment quality[J]. Journal of Henan Agricultural Sciences, 46(11): 60-68. | |
[39] | 李程, 姚义鸣, 李逍逍, 等, 2022. 多环芳烃和镉土壤复合暴露条件下黑麦草的氧化应激指标变化[J]. 农业环境科学学报, 41(8): 1739-1749. |
LI C, YAO Y M, LI X X, et al., 2022. Changes of oxidative stress indexes of ryegrass (Lolium perenne L.) under compound exposure to polycyclic aromatic hydrocarbons and cadmium in soil[J]. Journal of Agro-Environment Science, 41(8): 1739-1749. | |
[40] | 刘洁, 孙可, 韩兰芳, 2021. 生物炭对土壤重金属形态及生物有效性影响的研究进展[J]. 环境化学, 40(6): 1643-1658. |
LIU J, SUN K, HAN L F, 2021. Effect of biochar on soil heavy metal speciation and bioavailability: A review[J]. Environmental Chemistry, 40(6): 1643-1658. | |
[41] | 刘蓉, 邓茂, 李莹莹, 等, 2020. 不同酸碱度土壤阳离子交换量的测定研究[J]. 中国环境监测, 36(1): 125-130. |
LIU R, DENG M, LI Y Y, et al., 2022. Optimization for the determination of cation exchange capacity in soils with different acidity and alkalinity[J]. Environmental Monitoring in China, 36(1): 125-130. | |
[42] | 罗大富, 2018. 市政污泥用于矿区土壤改良的污染风险评估及配比分析[J]. 地球环境学报, 9(1): 101-108. |
LUO D F, 2018. The pollution risk assessment and matched analysis of municipal sullage being used for soil improvement in mining area[J]. Journal of Earth Environment, 9(1): 101-108. | |
[43] |
马宜林, 吴广海, 申洪涛, 等, 2021. 羊粪有机肥与化肥配施对烤烟生长及土壤肥力特性的影响[J]. 核农学报, 35(10): 2423-2430.
DOI |
MA Y L, WU G H, SHEN H T, et al., 2021. Effects of combined application of sheep manure-derived organic fertilizer and chemical fertilizer on tobacco growth and soil fertility[J]. Journal of Nuclear Agricultural Sciences, 35(10): 2423-2430.
DOI |
|
[44] | 彭维新, 杨源通, 冯嘉仪, 等, 2020. 污泥及强化措施对稀土矿区废弃地土壤的改良[J]. 华南农业大学学报, 41(5): 65-72. |
PENG W X, YANG Y T, FENG J Y, et al., 2020. Improvement of sewage sludge and enhanced measure on soil of rare earth mine wasteland[J]. Journal of South China Agricultural University, 41(5): 65-72. | |
[45] | 任怀新, 王冬梅, 王慧, 等, 2021. 生物炭对盐碱胁迫下黑麦草和紫花苜蓿光合及抗氧化特征的影响[J]. 农业工程学报, 37(17): 116-123. |
REN H X, WANG D M, WANG H, et al., 2021. Effects of biochar on the photosynthetic and antioxidant characteristics of ryegrass and alfalfa under saline-alkali stress[J]. Transactions of the Chinese Society of Agricultural Engineering, 37(17): 116-123. | |
[46] | 谭川疆, 潘忠图, 罗有发, 等, 2022. 不同改良剂对黔西北锌冶炼区农用地土壤重金属修复效果研究[J]. 地球与环境, 50(4): 575-585. |
TAN C J, PAN Z T, LUO Y F, et al., 2022. Remediation effect of different amendments on heavy metals in agricultural soil in zinc smelting area of northwest Guizhou[J]. Earth and Environment, 50(4): 575-585. | |
[47] | 陶晨斌, 竺宇航, 陈建军, 等, 2022. 不同人工植被群落对铅锌矿废弃地径流重金属流失特征的影响[J]. 水土保持学报, 36(1): 375-383. |
TAO C B, ZHU Y H, CHEN J J, et al., 2022. Effects of different artificial vegetation communities on characterisitics of heavy meatal loss in runoff of lead zinc mine wasteland[J]. Journal of Soil and Water Conservation, 36(1): 375-383. | |
[48] |
吴慧, 吴程龙, 张仕颖, 等, 2021. 施用有机-无机改良剂对锡尾矿化学属性的影响[J]. 生态环境学报, 30(11): 2244-2250.
DOI URL |
WU H, WU C L, ZHANG S Y, et al., 2021. Effects of applying organic-inorganic modifiers on the chemical properties of tin tailings[J]. Ecology and Environmental Sciences, 30(11): 2244-2250. | |
[49] | 殷飞, 王海娟, 李燕燕, 等, 2015. 不同钝化剂对重金属复合污染土壤的修复效应研究[J]. 农业环境科学学报, 34(3): 438-448. |
YIN F, WANG H J, LI Y Y, et al., 2015. Remediation of multiple heavy metal polluted soil using different immobilizing agents[J]. Journal of Agro-Environment Science, 34(3): 438-448. | |
[50] | 余杭, 潘佳虹, 杨柳生, 等, 2021. 金沙江干热河谷优势草本植物生物量与土壤物理性质的关系[J]. 应用与环境生物学报, 27(4): 884-892. |
YU H, PAN J H, YANG L S, et al., 2021. Relationship between biomass of dominant herbaceous plants and soil physical properties in a dry-hot valley area of the Jinsha River[J]. Chinese Journal of Applied and Environmental Biology, 27(4): 884-892. | |
[51] | 张紫翔, 马龙, 刘廷玺, 等, 2023. 内蒙古典型铅锌矿及其影响区地下水重金属污染生态环境风险评估[EB/OL]. 生态学杂志, 1-13 [2023-04-25]. http://kns.cnki.net/kcms/detail/21.1148.Q.20221019.1714.021.html. |
ZHANG Z X, MA L, LIU T X, et al., 2023. Ecological risk assessment of heavy metal pollution in groundwater of typical lead-zinc mine and influenced area in Inner Mongolia[EB/OL]. Chinese Journal of Ecology, 1-13 [2023-04-25]. http://kns.cnki.net/kcms/detail/21.1148.Q.20221019.1714.021.html |
[1] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[2] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[3] | ZHANG Beier, WU Jianqiang, WANG Min, XIONG Lijun, TAN Juan, SHEN Cheng, HUANG Botao, HUANG Shenfa. Evaluation of Soil Health in Different Arable Land Ecological Conservation Projects [J]. Ecology and Environment, 2023, 32(2): 388-396. |
[4] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[5] | LONG Jing, HUANG Yao, LIU Zhanfeng, JIAN Shuguang, WEI Liping, WANG Jun. Leaf Traits and Nutrient Resorption of Two Woody Species on A Tropical Coral Island [J]. Ecology and Environment, 2022, 31(2): 248-256. |
[6] | YU Fei, YE Caihong, XU Tiaozi, ZHANG Zhongrui, ZHU Hangyong, ZHANG Geng, HUA Lei, DENG Jianfeng, DING Xiaogang. Evaluation of Heavy Metal Pollution in Woodland Soil of Granite Area in Shaoguan City [J]. Ecology and Environment, 2022, 31(2): 354-362. |
[7] | SHENG Jifeng, LI Yao, YU MeiJia, HAN Yanying, YE Yanhui. Effects of Nitrogen and Phosphorus An Addition on Soil Nutrients and Activity of Related Enzymes in Alpine Grassland [J]. Ecology and Environment, 2022, 31(12): 2302-2309. |
[8] | ZHANG Xiaoli, WANG Guoli, CHANG Fangdi, ZHANG Hongyuan, PANG Huancheng, ZHANG Jianli, WANG Jing, JI Hongjie, LI Yuyi. Effects of Microbial Agents on Physicochemical Properties and Microbial Flora of Rhizosphere Saline-alkali Soil [J]. Ecology and Environment, 2022, 31(10): 1984-1992. |
[9] | LI Chunhuan, WANG Pan, HAN Cui, XU Yixin, HUANG Juying. Variation Characteristics of Soil Properties Around A Northwest Desert Coal-mining Region under Sulphur and Nitrogen Deposition [J]. Ecology and Environment, 2022, 31(1): 170-180. |
[10] | LIAO Yingchun, DUAN Honglang, SHI Xingxing, MENG Qingyin, LIU Wenfei, SHEN Fangfang, FAN Houbao, ZHU Tao. The Relationship between the Stand Growth and Root Biomass of Cunninghamia lanceolate Plantations [J]. Ecology and Environment, 2021, 30(6): 1121-1128. |
[11] | BAO Yufei, HU Mingming, WANG Dianchang, WU Xinghua, WANG Yuchun, LI Shanze, WANG Qiwen, WEN Jie. Distribution and Pollution Assessment of Nutrients and Heavy Metals in Sediments of the Cascade Reservoirs in Huangbai River [J]. Ecology and Environment, 2021, 30(5): 1005-1016. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn