Ecology and Environment ›› 2023, Vol. 32 ›› Issue (1): 80-89.DOI: 10.16258/j.cnki.1674-5906.2023.01.009
• Research Articles • Previous Articles Next Articles
HUANG Weijia1,2,3(), LIU Chun1, LIU Yue4, HUANG Bin2,3, LI Dingqiang2,3, YUAN Zaijian2,3,*(
)
Received:
2022-08-10
Online:
2023-01-18
Published:
2023-04-06
Contact:
YUAN Zaijian
黄伟佳1,2,3(), 刘春1, 刘岳4, 黄斌2,3, 李定强2,3, 袁再健2,3,*(
)
通讯作者:
袁再健
作者简介:
黄伟佳(1997年生),女,硕士研究生,主要研究方向为土壤碳循环。E-mail: 976652113@qq.com
基金资助:
CLC Number:
HUANG Weijia, LIU Chun, LIU Yue, HUANG Bin, LI Dingqiang, YUAN Zaijian. Soil Ecological Stoichiometry and Its Influencing Factors at Different Elevations in Nanling Mountains[J]. Ecology and Environment, 2023, 32(1): 80-89.
黄伟佳, 刘春, 刘岳, 黄斌, 李定强, 袁再健. 南岭山地不同海拔土壤生态化学计量特征及影响因素[J]. 生态环境学报, 2023, 32(1): 80-89.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.01.009
样地 | 海拔/m | 坡向 | 坡度/(°) | 经纬度 | 土壤类型 | 植被类型 | 优势植被 |
---|---|---|---|---|---|---|---|
S1 | 402 | SW | 8 | 112°47′23.49″E, 24°50′21.82″N | 山地红壤 | 沟谷常绿阔叶林 | 广东润楠 Machiluskwangtungensis、石栎 Lithocarpusglaber、鹿角锥 Castanopsislamontii、 赤楠 Syzygiumbuxifolium |
S2 | 809 | NE | 15 | 112°44′28.47″E, 24°55′28.46″N | 山地红壤 | 沟谷常绿阔叶林 | 广东润楠 Machiluskwangtungensis、青冈 Cyclobalanopsisglauca、罗浮锥 Castanopsisfabri、 小叶青冈Cyclobalanopsismyrsinifolia |
S3 | 1184 | NE | 10 | 113°0′19.08″E, 24°56′8.79″N | 山地黄壤 | 山地常绿阔叶林 | 鹿角锥 Castanopsislamontii、青冈 Cyclobalanopsisglauca、千年桐 Verniciamontana、罗浮锥 Castanopsisfabri、甜槠 Castanopsiseyrei |
S4 | 1364 | NE | 15 | 113°1′20.83″E, 24°53′50.52″N | 山地黄壤 | 针阔混交林 | 广东松 PinusKwangtungensis、荷木 Schimasuperba、马尾松 Pinusmassoniana、甜槠 Castanopsiseyrei、青冈 Cyclobalanopsisglauca |
S5 | 1536 | SW | 5 | 112°58′12.27″E, 24°55′22.30″N | 山地草甸土 | 山顶草甸 | 五节芒 Miscanthusfloridulus |
S6 | 1653 | SE | 8 | 112°59′8.22″E, 24°55′48.56″N | 山地黄壤 | 山顶矮林 | 野茉莉 Styrax japonicus、少花桂 Cinnamomum pauciflorum、青冈 Cyclobalanopsisglauca |
Table 1 The basic situation of the sample plot in Nanling research area
样地 | 海拔/m | 坡向 | 坡度/(°) | 经纬度 | 土壤类型 | 植被类型 | 优势植被 |
---|---|---|---|---|---|---|---|
S1 | 402 | SW | 8 | 112°47′23.49″E, 24°50′21.82″N | 山地红壤 | 沟谷常绿阔叶林 | 广东润楠 Machiluskwangtungensis、石栎 Lithocarpusglaber、鹿角锥 Castanopsislamontii、 赤楠 Syzygiumbuxifolium |
S2 | 809 | NE | 15 | 112°44′28.47″E, 24°55′28.46″N | 山地红壤 | 沟谷常绿阔叶林 | 广东润楠 Machiluskwangtungensis、青冈 Cyclobalanopsisglauca、罗浮锥 Castanopsisfabri、 小叶青冈Cyclobalanopsismyrsinifolia |
S3 | 1184 | NE | 10 | 113°0′19.08″E, 24°56′8.79″N | 山地黄壤 | 山地常绿阔叶林 | 鹿角锥 Castanopsislamontii、青冈 Cyclobalanopsisglauca、千年桐 Verniciamontana、罗浮锥 Castanopsisfabri、甜槠 Castanopsiseyrei |
S4 | 1364 | NE | 15 | 113°1′20.83″E, 24°53′50.52″N | 山地黄壤 | 针阔混交林 | 广东松 PinusKwangtungensis、荷木 Schimasuperba、马尾松 Pinusmassoniana、甜槠 Castanopsiseyrei、青冈 Cyclobalanopsisglauca |
S5 | 1536 | SW | 5 | 112°58′12.27″E, 24°55′22.30″N | 山地草甸土 | 山顶草甸 | 五节芒 Miscanthusfloridulus |
S6 | 1653 | SE | 8 | 112°59′8.22″E, 24°55′48.56″N | 山地黄壤 | 山顶矮林 | 野茉莉 Styrax japonicus、少花桂 Cinnamomum pauciflorum、青冈 Cyclobalanopsisglauca |
采样点 | 深度/cm | pH | 容重/(g·cm-3) | 含水率/% | w(有机碳)/(g·kg-1) | w(总氮)/(g·kg-1) | w(总磷)/(g·kg-1) |
---|---|---|---|---|---|---|---|
S1 | 0-20 | 4.15±0.06bBC | 0.94±0.15aA | 38.64±2.79aABC | 36.12±7.85aD | 2.58±0.57aC | 0.32±0.04aB |
20-40 | 4.31±0.08abB | 1.15±0.16aAB | 34.45±0.39aCD | 24.15±6.09abC | 1.51±0.52bC | 0.29±0.01aA | |
40-60 | 4.40±0.10aC | 1.21±0.07aB | 32.07±3.63aC | 17.89±6.38bBC | 1.02±0.32bCD | 0.23±0.02bAB | |
S2 | 0-20 | 4.68±0.09aA | 0.70±0.01bAB | 33.14±1.83aC | 44.13±8.88aCD | 2.04±0.19aC | 0.20±0.03aC |
20-40 | 4.73±0.13aA | 1.39±0.10aA | 30.25±0.03aD | 13.11±4.12bD | 0.35±0.16bD | 0.18±0.06aBC | |
40-60 | 4.80±0.04aA | 1.44±0.12aA | 32.85±3.38aC | 8.83±1.17bC | 0.19±0.05bE | 0.17±0.10aBC | |
S3 | 0-20 | 4.22±0.17bBC | 0.81±0.05bAB | 37.78±3.55aBC | 71.07±14.75aB | 3.63±0.44aB | 0.31±0.02aBC |
20-40 | 4.62±0.17aA | 0.99±0.10abB | 42.65±9.17aABC | 49.16±3.53bA | 2.31±0.60bB | 0.25±0.06abAB | |
40-60 | 4.68±0.21aAB | 1.25±0.10aAB | 42.22±1.98aABC | 36.79±8.27bA | 1.73±0.52bB | 0.20±0.04bBC | |
S4 | 0-20 | 3.86±0.11bD | 0.56±0.15bB | 49.85±4.92aA | 104.87±9.93aA | 4.24±0.23aAB | 0.21±0.02aC |
20-40 | 4.48±0.18aAB | 1.02±0.11aB | 48.78±10.33aAB | 37.90±3.43bB | 1.66±0.25bBC | 0.15±0.02bC | |
40-60 | 4.55±0.17aBC | 1.14±0.03aB | 43.82±4.72aAB | 22.53±5.35cB | 0.92±0.24cD | 0.13±0.02bC | |
S5 | 0-20 | 4.31±0.29bB | 0.69±0.13bAB | 46.66±8.62aAB | 65.66±3.44aB | 4.53±0.52aA | 0.47±0.12aA |
20-40 | 4.62±0.16abA | 0.95 ± 0.07abB | 53.97±0.23aA | 45.96±3.31bA | 3.11±0.17bA | 0.32±0.04bA | |
40-60 | 4.73±0.08aAB | 1.06±0.02aB | 54.55±2.15aA | 33.17±6.26cA | 2.49±0.38bA | 0.29±0.01bA | |
S6 | 0-20 | 4.01±0.04bCD | 0.96±0.14aA | 35.89±0.64aBC | 58.31±4.74aBC | 3.87±0.42aAB | 0.3±0.00aBC |
20-40 | 4.26±0.10aB | 1.19±0.12aAB | 38.28±0.86aBCD | 29.31±4.41bC | 2.08±0.37bBC | 0.19±0.01bBC | |
40-60 | 4.36±0.06aC | 1.11±0.09aB | 39.72±7.42aBC | 21.20±1.95cB | 1.57±0.24bBC | 0.16±0.03bBC |
Table 2 Basic physical and chemical properties of soil at different elevations
采样点 | 深度/cm | pH | 容重/(g·cm-3) | 含水率/% | w(有机碳)/(g·kg-1) | w(总氮)/(g·kg-1) | w(总磷)/(g·kg-1) |
---|---|---|---|---|---|---|---|
S1 | 0-20 | 4.15±0.06bBC | 0.94±0.15aA | 38.64±2.79aABC | 36.12±7.85aD | 2.58±0.57aC | 0.32±0.04aB |
20-40 | 4.31±0.08abB | 1.15±0.16aAB | 34.45±0.39aCD | 24.15±6.09abC | 1.51±0.52bC | 0.29±0.01aA | |
40-60 | 4.40±0.10aC | 1.21±0.07aB | 32.07±3.63aC | 17.89±6.38bBC | 1.02±0.32bCD | 0.23±0.02bAB | |
S2 | 0-20 | 4.68±0.09aA | 0.70±0.01bAB | 33.14±1.83aC | 44.13±8.88aCD | 2.04±0.19aC | 0.20±0.03aC |
20-40 | 4.73±0.13aA | 1.39±0.10aA | 30.25±0.03aD | 13.11±4.12bD | 0.35±0.16bD | 0.18±0.06aBC | |
40-60 | 4.80±0.04aA | 1.44±0.12aA | 32.85±3.38aC | 8.83±1.17bC | 0.19±0.05bE | 0.17±0.10aBC | |
S3 | 0-20 | 4.22±0.17bBC | 0.81±0.05bAB | 37.78±3.55aBC | 71.07±14.75aB | 3.63±0.44aB | 0.31±0.02aBC |
20-40 | 4.62±0.17aA | 0.99±0.10abB | 42.65±9.17aABC | 49.16±3.53bA | 2.31±0.60bB | 0.25±0.06abAB | |
40-60 | 4.68±0.21aAB | 1.25±0.10aAB | 42.22±1.98aABC | 36.79±8.27bA | 1.73±0.52bB | 0.20±0.04bBC | |
S4 | 0-20 | 3.86±0.11bD | 0.56±0.15bB | 49.85±4.92aA | 104.87±9.93aA | 4.24±0.23aAB | 0.21±0.02aC |
20-40 | 4.48±0.18aAB | 1.02±0.11aB | 48.78±10.33aAB | 37.90±3.43bB | 1.66±0.25bBC | 0.15±0.02bC | |
40-60 | 4.55±0.17aBC | 1.14±0.03aB | 43.82±4.72aAB | 22.53±5.35cB | 0.92±0.24cD | 0.13±0.02bC | |
S5 | 0-20 | 4.31±0.29bB | 0.69±0.13bAB | 46.66±8.62aAB | 65.66±3.44aB | 4.53±0.52aA | 0.47±0.12aA |
20-40 | 4.62±0.16abA | 0.95 ± 0.07abB | 53.97±0.23aA | 45.96±3.31bA | 3.11±0.17bA | 0.32±0.04bA | |
40-60 | 4.73±0.08aAB | 1.06±0.02aB | 54.55±2.15aA | 33.17±6.26cA | 2.49±0.38bA | 0.29±0.01bA | |
S6 | 0-20 | 4.01±0.04bCD | 0.96±0.14aA | 35.89±0.64aBC | 58.31±4.74aBC | 3.87±0.42aAB | 0.3±0.00aBC |
20-40 | 4.26±0.10aB | 1.19±0.12aAB | 38.28±0.86aBCD | 29.31±4.41bC | 2.08±0.37bBC | 0.19±0.01bBC | |
40-60 | 4.36±0.06aC | 1.11±0.09aB | 39.72±7.42aBC | 21.20±1.95cB | 1.57±0.24bBC | 0.16±0.03bBC |
化学计量比 stoichiometric ratio | pH | 容重 soil bulk density/ (g·cm-3) | 含水率 Soil moisture content/% | 有机碳 w(TOC)/ (g·kg-1) | 总氮 w(TN)/ (g·kg-1) | 总磷 w(TP)/ (g·kg-1) |
---|---|---|---|---|---|---|
w(C)/w(N) | 0.421 | 0.387 | -0.35 | -0.203 | -0.532* | -0.524* |
w(C)/w(P) | -0.524* | -0.701** | 0.405 | 0.846** | 0.564* | -0.101 |
w(N)/w(P) | -0.677** | -0.802** | 0.513* | 0.879** | 0.793** | 0.155 |
w(MBC)/w(MBN) | 0.12 | -0.048 | -0.244 | 0.09 | 0.054 | 0.199 |
w(MBC)/w(MBP) | 0.162 | -0.094 | -0.627** | -0.021 | -0.201 | -0.084 |
w(MBN)/w(MBP) | 0.082 | -0.109 | -0.543* | -0.018 | -0.194 | -0.163 |
BG:NAG | 0.038 | -0.435 | 0.712** | 0.357 | 0.560* | 0.755** |
BG:AP | -0.502* | -0.595** | 0.217 | 0.599** | 0.476* | 0.393 |
NAG:AP | -0.14 | 0.236 | -0.631** | -0.159 | -0.401 | -0.518* |
Table 3 Results of correlation analysis between soil stoichiometric ratio and basic physical and chemical properties
化学计量比 stoichiometric ratio | pH | 容重 soil bulk density/ (g·cm-3) | 含水率 Soil moisture content/% | 有机碳 w(TOC)/ (g·kg-1) | 总氮 w(TN)/ (g·kg-1) | 总磷 w(TP)/ (g·kg-1) |
---|---|---|---|---|---|---|
w(C)/w(N) | 0.421 | 0.387 | -0.35 | -0.203 | -0.532* | -0.524* |
w(C)/w(P) | -0.524* | -0.701** | 0.405 | 0.846** | 0.564* | -0.101 |
w(N)/w(P) | -0.677** | -0.802** | 0.513* | 0.879** | 0.793** | 0.155 |
w(MBC)/w(MBN) | 0.12 | -0.048 | -0.244 | 0.09 | 0.054 | 0.199 |
w(MBC)/w(MBP) | 0.162 | -0.094 | -0.627** | -0.021 | -0.201 | -0.084 |
w(MBN)/w(MBP) | 0.082 | -0.109 | -0.543* | -0.018 | -0.194 | -0.163 |
BG:NAG | 0.038 | -0.435 | 0.712** | 0.357 | 0.560* | 0.755** |
BG:AP | -0.502* | -0.595** | 0.217 | 0.599** | 0.476* | 0.393 |
NAG:AP | -0.14 | 0.236 | -0.631** | -0.159 | -0.401 | -0.518* |
[1] |
BAI X J, ZENG Q C, FAKHER A, et al., 2018. Characteristics of soil enzyme activities and microbial biomass carbon and nitrogen under different vegetation zones on the Loess Plateau, China[J]. Arid Land Research and Management, 32(4): 438-454.
DOI URL |
[2] |
BANGROO S A, NAJAR G R, RASOOL A, 2017. Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range[J]. Catena, 158: 63-68.
DOI URL |
[3] |
BING H J, WU Y H, ZHOU J, et al., 2016. Stoichiometric variation of carbon, nitrogen, and phosphorus in soils and its implication for nutrient limitation in alpine ecosystem of Eastern Tibetan Plateau[J]. Journal of Soils and Sediments, 16(2): 405-416.
DOI URL |
[4] |
BROOKES P C, POWLSON D S, JENKINSON D S, 1982. Measurement of microbial biomass phosphorus in soil[J]. Soil Biology and Biochemistry, 14(4): 319-329.
DOI URL |
[5] |
CAO R Y, YANG W Q, CHANG C H, et al., 2021. Differential seasonal changes in soil enzyme activity along an altitudinal gradient in an alpine-gorge region[J]. Applied Soil Ecology, 166: 104078.
DOI URL |
[6] |
ČAPEK P, STARKE R, HOFMOCKEL K S, et al., 2019. Apparent temperature sensitivity of soil respiration can result from temperature driven changes in microbial biomass[J]. Soil Biology and Biochemistry, 135: 286-293.
DOI URL |
[7] |
CARRINO-KYKER S R, KLUBER L A, PETERSEN S M, et al., 2016. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests[J]. FEMS Microbiology Ecology, 92(3): fiw024.
DOI URL |
[8] |
HE Q Q, WU Y H, BING H J, et al., 2020. Vegetation type rather than climate modulates the variation in soil enzyme activities and stoichiometry in subalpine forests in the eastern Tibetan Plateau[J]. Geoderma, 374: 114424.
DOI URL |
[9] |
HEUCK C, WEIG A, SPOHN M, 2015. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus[J]. Soil Biology and Biochemistry, 85: 119-129.
DOI URL |
[10] |
MENG L, QU F Z, BI X L, et al., 2021. Elemental stoichiometry (C, N, P) of soil in the Yellow River Delta nature reserve: Understanding N and P status of soil in the coastal estuary[J]. Science of The Total Environment, 751: 141737.
DOI URL |
[11] |
QIU L P, ZHANG Q, ZHU H S, et al., 2021. Erosion reduces soil microbial diversity, network complexity and multifunctionality[J]. The ISME Journal, 15(8): 2474-2489.
DOI |
[12] |
SHEN R C, XU M, LI R Q, et al., 2015. Spatial variability of soil microbial biomass and its relationships with edaphic, vegetational and climatic factors in the Three-River Headwaters region on Qinghai-Tibetan Plateau[J]. Applied Soil Ecology, 95:191-203.
DOI URL |
[13] |
SINGH J S, RAGHUBANSHI A S, SINGH R S, et al., 1989. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna[J]. Nature, 338(6215): 499-500.
DOI |
[14] |
SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al., 2008. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 11(11): 1252-1264.
DOI PMID |
[15] |
SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J, 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 462(7274): 795-798.
DOI |
[16] |
TIAN L M, ZHAO L, WU X D, et al., 2018. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland[J]. Science of The Total Environment, 622-623: 192-202.
DOI URL |
[17] |
VANCE E D, BROOKES P C, JENKINSON D S, 1987. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 19(6): 703-707.
DOI URL |
[18] |
WANG R Z, DORODNIKOV M, YANG S, et al., 2015. Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland[J]. Soil Biology and Biochemistry, 81: 159-167.
DOI URL |
[19] |
WANG Y, REN Z, MA P P, et al., 2020. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau[J]. Science of the Total Environment, 722: 137910.
DOI URL |
[20] |
WARING B G, WEINTRAUB S R, SINSABAUGH R L, 2014. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils[J]. Biogeochemistry, 117(1): 101-113.
DOI URL |
[21] |
XU Z W, YU G R, ZHANG X Y, et al., 2017. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J]. Soil Biology and Biochemistry, 104: 152-163.
DOI URL |
[22] |
XU Z W, ZHANG T Y, WANG S Z, et al., 2020. Soil pH and C/N ratio determines spatial variations in soil microbial communities and enzymatic activities of the agricultural ecosystems in Northeast China: Jilin Province case[J]. Applied Soil Ecology, 155: 103629.
DOI URL |
[23] |
ZHANG A L, LI X Y, WU S X, et al., 2021. Spatial pattern of C:N:P stoichiometry characteristics of alpine grassland in the Altunshan Nature Reserve at North Qinghai-Tibet Plateau[J]. Catena, 207: 105691.
DOI URL |
[24] |
ZHANG Y, LI C, WANG M L, 2019. Linkages of C: N: P stoichiometry between soil and leaf and their response to climatic factors along altitudinal gradients[J]. Journal of Soils and Sediments, 19(4): 1820-1829.
DOI |
[25] | 陈涛, 张宏达, 1994. 南岭植物区系地理学研究——Ⅰ.植物区系的组成和特点[J]. 热带亚热带植物学报, 2(1): 10-23. |
CHEN T, ZHANG H D, 1994. The floristic geography of Nanling mountain range, China: Ⅰ. floristic composition and characteristics[J]. Journal of Tropical and Subtropical Botany, 2(1): 10-23. | |
[26] |
邓娇娇, 朱文旭, 周永斌, 等, 2018. 不同土地利用模式对辽东山区土壤微生物群落多样性的影响[J]. 应用生态学报, 29(7): 2269-2276.
DOI |
DENG J J, ZHU W X, ZHOU Y B, et al., 2018. Effects of different land use patterns on the soil microbial community diversity in montane region of eastern Liaoning Province, China[J]. Chinese Journal of Applied Ecology, 29(7): 2269-2276. | |
[27] | 董廷发, 2021. 不同海拔云南松林土壤养分及其生态化学计量特征[J]. 生态学杂志, 40(3): 672-679. |
DONG T F, 2021. Soil nutrients and their ecological stoichiometry of Pinus yunnanensis forest along an elevation gradient[J]. Chinese Journal of Ecology, 40(3): 672-679. | |
[28] | 冯德枫, 包维楷, 2017. 土壤碳氮磷化学计量比时空格局及影响因素研究进展[J]. 应用与环境生物学报, 23(2): 400-408. |
FENG D F, BAO W K, 2017. Review of the temporal and spatial patterns of soil C:N:P stoichiometry and its driving factors[J]. Chinese Journal of Applied and Environmental Biology, 23(2): 400-408. | |
[29] |
贺金生, 韩兴国, 2010. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报, 34(1): 2-6.
DOI |
HE J S, HAN X G, 2010. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 34(1): 2-6. | |
[30] | 黄斌, 王泉泉, 李定强, 等, 2022. 南岭山地土壤有机碳及组分海拔梯度变化特征[J]. 土壤通报, 53(2): 374-383. |
HUANG B, WANG Q Q, LI D Q, et al., 2022. Variation characteristics of organic carbon and fractions in soils along the altitude gradient in Nanling Mountains[J]. Chinese Journal of Soil Science, 53(2): 374-383. | |
[31] | 贾培龙, 安韶山, 李程程, 等, 2020. 黄土高原森林带土壤养分和微生物量及其生态化学计量变化特征[J]. 水土保持学报, 34(1): 315-321. |
JIA P L, AN S S, LI C C, et al., 2020. Dynamics of soil nutrients and their ecological stoichiometry characteristics under different longitudes in the east-west forest belt of the Loess Plateau[J]. Journal of Soil and Water conservation, 34(1): 315-321. | |
[32] | 李新星, 刘桂民, 吴小丽, 等, 2020. 马衔山不同海拔土壤碳、氮、磷含量及生态化学计量特征[J]. 生态学杂志, 39(3): 758-765. |
LI X X, LIU G M, WU X L, et al., 2020. Elevational distribution of soil organic carbon, nitrogen and phosphorus contents and their ecological stoichiometry on Maxian Mountain[J]. Chinese Journal of Ecology, 39(3): 758-765. | |
[33] |
林惠瑛, 周嘉聪, 曾泉鑫, 等, 2022. 土壤酶计量揭示了武夷山黄山松林土壤微生物沿海拔梯度的碳磷限制变化[J]. 应用生态学报, 33(1): 33-41.
DOI |
LIN H Y, ZHOU J C, ZENG Q X, et al., 2022. Soil enzyme stoichiometry revealed the changes of soil microbial carbon and phosphorus limitation along an elevational gradient in a Pinus taiwanensis forest of Wuyi Mountains, Southeast China[J]. Chinese Journal of Applied Ecology, 33(1): 33-41. | |
[34] |
刘秉儒, 2010. 贺兰山东坡典型植物群落土壤微生物量碳、氮沿海拔梯度的变化特征[J]. 生态环境学报, 19(4): 883-888.
DOI URL |
LIU B R, 2010. Changes in soil microbial biomass carbon and nitrogen under typical plant communies along an altitudinal gradient in east side of Helan Mountain[J]. Ecology and Environmental Sciences, 19(4): 883-888. | |
[35] | 刘敏, 苏志尧, 2010. 广东低山林下土壤理化特征分析[J]. 中南林业科技大学学报, 30(2): 36-40, 59. |
LIU M, SU Z Y, 2010. Soil physicochemical regime analysis of low hills under forest in Guangdong province[J]. Journal of Central South University of Forestry & Technology, 30(2): 36-40, 59. | |
[36] |
卢建男, 刘凯军, 王瑞雄, 等, 2022. 中国荒漠植物-土壤系统生态化学计量学研究进展[J]. 中国沙漠, 42(2): 173-182.
DOI |
LU J N, LIU K J, WANG R X, et al., 2022. Research advances in stoichiometry of desert plant-soil system in China[J]. Journal of Desert Research, 42(2): 173-182.
DOI |
|
[37] | 孙德斌, 栗云召, 于君宝, 等, 2022. 黄河三角洲湿地不同植被类型下土壤营养元素空间分布及其生态化学计量学特征[J]. 环境科学, 43(6): 3241-3252. |
SUN D B, LI Y Z, YU J B, et al., 2022. Spatial Distribution and eco-stoichiometric characteristics of soil nutrient elements under different vegetation types in the Yellow River Delta Wetland[J]. Environmental Science, 43(6): 3241-3252. | |
[38] |
唐立涛, 刘丹, 罗雪萍, 等, 2019. 青海省森林土壤磷储量及其分布格局[J]. 植物生态学报, 43(12): 1091-1103.
DOI |
TANG L T, LIU D, LUO X P, et al., 2019. Forest soil phosphorus stocks and distribution patterns in Qinghai, China[J]. Chinese Journal of Plant Ecology, 43(12): 1091-1103.
DOI URL |
|
[39] | 王绍强, 于贵瑞, 2008. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 28(8): 3937-3947. |
WANG S Q, YU G R, 2008. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 28(8): 3937-3947. | |
[40] | 温美丽, 杨龙, 王钧, 等, 2018. 南岭森林的土壤保持功能[J]. 林业与环境科学, 34(2): 123-130. |
WEN M L, YANG L, WANG J, et al., 2018. Soil Retention Function of Forest in NanLing Mountain[J]. Forestry and Environmental Science, 34(2): 123-130. | |
[41] |
吴昊, 邹梦茹, 王思芊, 等, 2019. 秦岭松栎林土壤生态化学计量特征及其对海拔梯度的响应[J]. 生态环境学报, 28(12): 2323-2331.
DOI URL |
WU H, ZOU M R, WANG S Q, et al., 2019. Eco-stoichiometry characteristics of soil within pine and oak mixed forest and theirs responses to elevation gradient in Qinling Mountains[J]. Ecology and Environmental Sciences, 28(12): 2323-2331. | |
[42] | 许淼平, 任成杰, 张伟, 等, 2018. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制[J]. 应用生态学报, 29(7): 2445-2454. |
XU M P, REN C J, ZHANG W, et al., 2018. Responses mechanism of C:N:P stoichiometry of soil microbial biomass and soil enzymes to climate change[J]. Chinese Journal of Applied Ecology, 29(7): 2445-2454. | |
[43] | 薛立, 邝立刚, 陈红跃, 等, 2003. 不同林分土壤养分、微生物与酶活性的研究[J]. 土壤学报, 40(2): 280-285. |
XUE L, KUANG L G, CHEN H Y, et al., 2003. Soil nutrients, microorganisms and enzyme activities of different stands[J]. Acta Pedologica Sinica, 40(2): 280-285. | |
[44] | 张剑, 宿力, 王利平, 等, 2019. 植被盖度对土壤碳、氮、磷生态化学计量比的影响——以敦煌阳关湿地为例[J]. 生态学报, 39(2): 580-589. |
ZHANG J, SU L, WANG L P, et al., 2019. The effect of vegetation cover on ecological stoichiometric ratios of soil carbon, nitrogen and phosphorus: A case study of the Dunhuang Yangguan wetland[J]. Acta Ecologica Sinica, 39(2): 580-589. | |
[45] | 张星星, 杨柳明, 陈忠, 等, 2018. 中亚热带不同母质和森林类型土壤生态酶化学计量特征[J]. 生态学报, 38(16): 5828-5836. |
ZHANG X X, YANG L M, CHEN Z, et al., 2018. Patterns of ecoenzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas[J]. Acta Ecologica Sinica, 38(16): 5828-5836. | |
[46] | 朱秋莲, 邢肖毅, 张宏, 等, 2013. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 33(15): 4674-4682. |
ZHU Q L, XING X Y, ZHANG H, et al., 2013. Soil ecological stoichiometry under different vegetation area on loess hilly-gully region[J]. Acta Ecologica Sinica, 33(15): 4674-4682.
DOI URL |
|
[47] | 宗天韵, 周玮莹, 周平, 2019. 南岭山地1968到2015年降雨的时空变化特征研究[J]. 生态科学, 38(2): 182-190. |
ZONG T Y, ZHOU W Y, ZHOU P, 2019. Analysis of temporal and spatial variation of rainfall in 1968-2015 in Nanling[J]. Ecological Science, 38(2): 182-190. |
[1] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[2] | DONG Zhijin, ZHANG Chengchun, ZHAN Xiuli, ZHANG Weifu. Spatial Distribution Characteristics of Soil Nutrients of Biological Soil Crusts and Their Underlying Soil of Sandy Land in the East of Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(5): 910-919. |
[3] | PAN Yuling, QU Xiangning, LI Qing, WANG Lei, WANG Xiaoping, TAN Peng, CUI Geng, AN Yu, TONG Shouzheng. Spatial Distribution Characteristics of Soil Physicochemical Factors and Their Response to Microtopography in a Typical Beach Wetland of the Yellow River in Ningxia [J]. Ecology and Environment, 2023, 32(4): 668-677. |
[4] | DAI Demin, JIANG Xusheng, LIU Jie, WANG Luyang, CHEN Shiqi, HAN Qingkun. Study on Suitability of Pb/Zn Mine Tailings Using Three Different Organic Amendments [J]. Ecology and Environment, 2023, 32(4): 784-793. |
[5] | QIAN Haiming, ZHANG Yunlin, LI Na, WANG Weijia, SUN Xiao, ZHANG Yibo, SHI Kun, FENG Sheng, GAO Yanghui. High Frequency Monitoring of Water Quality Dynamics for River Drinking Water Source during the Typical Rainfall Process [J]. Ecology and Environment, 2023, 32(3): 579-589. |
[6] | ZHANG Beier, WU Jianqiang, WANG Min, XIONG Lijun, TAN Juan, SHEN Cheng, HUANG Botao, HUANG Shenfa. Evaluation of Soil Health in Different Arable Land Ecological Conservation Projects [J]. Ecology and Environment, 2023, 32(2): 388-396. |
[7] | TONG Yindong, HUANG Lanlan, YANG Ning, ZHANG Yiyan, LI Zipeng, SHAO Bo. Distribution Characteristics and Potential Environmental Risk Analysis of Microcystins in Global Water Bodies [J]. Ecology and Environment, 2023, 32(1): 129-138. |
[8] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[9] | LIU Zhanhang, ZHANG Shuyan, HOU Yuping, ZHU Shuyu, WANG Lidong, SHI Xinyue, LI Peiguang, HAN Guangxuan, XIE Baohua. Effects of Spartina alterniflora Invasion on Soil Carbon, Nitrogen, Phosphorus and Their Ecostoichiometric Characteristics in the Yellow River Estuary Wetlands [J]. Ecology and Environment, 2022, 31(7): 1360-1369. |
[10] | XIA Enlong, NONG Junqing, WEI Songpo, LIU Xizhen, LIU Guanglu. Changes in Soil Nutrient Characteristics in Moso Bamboo Forest Expanding into Broadleaved Forest [J]. Ecology and Environment, 2022, 31(6): 1110-1117. |
[11] | YU Yanghua, WU Yingu, SONG Yanping, LI Yitong. Stoichiometric Characteristics of Soil Microbial Concentration and Biomass in Zanthoxylum planispinum var. Dintanensis Plantations of Different Ages [J]. Ecology and Environment, 2022, 31(6): 1160-1168. |
[12] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[13] | WANG Xiaona, XU Danghui, WANG Xiejun, FANG Xiangwen. Changes of Shrub Community Structure with Altitudinal Gradient and Longitude in Qilian Mountains [J]. Ecology and Environment, 2022, 31(2): 231-238. |
[14] | LONG Jing, HUANG Yao, LIU Zhanfeng, JIAN Shuguang, WEI Liping, WANG Jun. Leaf Traits and Nutrient Resorption of Two Woody Species on A Tropical Coral Island [J]. Ecology and Environment, 2022, 31(2): 248-256. |
[15] | HUANG Qiaoyi, YU Junhong, HUANG Jianfeng, HUANG Xu, LI Ping, FU Hongting, TANG Shuanhu, LIU Yifeng, XU Peizhi. Nutrient Resources of Main Crop Straw and Its Potential of Substituting for Chemical Fertilizer in Guangdong Province [J]. Ecology and Environment, 2022, 31(2): 297-306. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn