Ecology and Environment ›› 2023, Vol. 32 ›› Issue (1): 158-165.DOI: 10.16258/j.cnki.1674-5906.2023.01.017
• Research Articles • Previous Articles Next Articles
CUI Yuanyuan1(), ZHANG Zhengyun2, LIU Peng1, ZHANG Yunchun1, ZHANG Qiaoying3,*(
)
Received:
2022-08-18
Online:
2023-01-18
Published:
2023-04-06
Contact:
ZHANG Qiaoying
崔远远1(), 张征云2, 刘鹏1, 张运春1, 张桥英3,*(
)
通讯作者:
张桥英
作者简介:
崔远远(1997年生),女,硕士研究生,研究方向为植物对环境污染物的响应机制。E-mail: 2978996593@qq.com
基金资助:
CLC Number:
CUI Yuanyuan, ZHANG Zhengyun, LIU Peng, ZHANG Yunchun, ZHANG Qiaoying. Morphological Characteristics and Fractal Dimension of Brassia chinensis Root System under Cadmium and Polyethylene Microplastic Stress[J]. Ecology and Environment, 2023, 32(1): 158-165.
崔远远, 张征云, 刘鹏, 张运春, 张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响[J]. 生态环境学报, 2023, 32(1): 158-165.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.01.017
镉质量分数/ (mg·kg-1) | 聚乙烯 质量分数/ (g·kg-1) | 根长 l/mm | 根平均 直径 d/mm | 根表面积A/mm2 | 根体积V/mm3 | 根生物量 B/g | 根尖数 N | 比根长 ls/(mm·g-1) | 比表面积 As/ (mm²·g-1) | 根尖密度RTD/mm-1 | 根组织密度RTID/ (g·mm-3) | 根细度 RFN/ (mm·mm-3) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 470.423± 151.299b | 0.923± 0.161a | 126.255± 28.945b | 2.791± 0.476a | 0.380± 0.104a | 1016± 272c | 1240.921± 292.995b | 337.058± 46.026c | 2.236± 0.365b | 0.135± 0.019b | 168.760± 50.095d |
18 | 484.349± 154.629b | 0.833± 0.106b | 121.934± 25.110b | 2.516± 0.352a | 0.333± 0.047b | 1130± 372c | 1457.507± 445.624b | 366.730± 60.795c | 2.328± 0.056a | 0.132± 0.004b | 1457.507± 445.624c | |
36 | 362.895± 72.393c | 0.950± 0.114a | 105.027± 12.455c | 2.469± 0.220a | 0.314± 0.026b | 722± 96d | 1152.090± 188.300b | 334.382± 23.023c | 2.026± 0.209b | 0.127± 0.009b | 1152.090± 188.300d | |
10 | 0 | 291.120± 57.192c | 0.954± 0.133a | 86.570± 12.538c | 2.174± 0.535b | 0.230± 0.058c | 670± 115d | 2340.990± 392.969b | 390.924± 67.661c | 2.321± 0.208a | 0.106± 0.014b | 1340.990± 392.969d |
18 | 488.987± 128.297b | 0.643± 0.097c | 99.345± 34.485c | 1.658± 0.750b | 0.287± 0.034b | 1240± 256b | 1692.470± 365.558b | 340.011± 93.271c | 2.614± 0.382a | 0.213± 0.093a | 1692.470± 365.558a | |
36 | 452.949± 152.111b | 0.794± 0.126b | 107.485± 25.632c | 2.087± 0.341b | 0.257± 0.090c | 919± 348c | 1804.568± 314.035b | 447.948± 85.895b | 2.029± 0.254b | 0.120± 0.033b | 1804.568± 314.035c | |
20 | 0 | 367.651± 126.272c | 0.896± 0.148a | 97.280± 27.700c | 2.092± 0.573b | 0.242± 0.062c | 844± 335c | 1482.841± 319.768b | 402.769± 85.024b | 2.231± 0.240b | 0.120± 0.027b | 1482.841± 319.768d |
18 | 630.235± 162.527b | 0.711± 0.079b | 134.427± 23.784b | 2.309± 0.249a | 0.244± 0.039c | 1616± 322a | 2634.514± 688.160a | 561.687± 109.915a | 2.618± 0.304a | 0.106± 0.014b | 2634.514± 688.160b | |
36 | 832.475± 262.402a | 0.666± 0.077c | 169.235± 38.329a | 2.820± 0.466a | 0.337± 0.070b | 1669± 595a | 2518.831± 796.660a | 511.231± 111.584a | 1.978± 0.109b | 0.119± 0.012b | 2518.831± 796.660b |
Table 1 Changes in root traits of Brassica chinensis under different stress concentrations
镉质量分数/ (mg·kg-1) | 聚乙烯 质量分数/ (g·kg-1) | 根长 l/mm | 根平均 直径 d/mm | 根表面积A/mm2 | 根体积V/mm3 | 根生物量 B/g | 根尖数 N | 比根长 ls/(mm·g-1) | 比表面积 As/ (mm²·g-1) | 根尖密度RTD/mm-1 | 根组织密度RTID/ (g·mm-3) | 根细度 RFN/ (mm·mm-3) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 470.423± 151.299b | 0.923± 0.161a | 126.255± 28.945b | 2.791± 0.476a | 0.380± 0.104a | 1016± 272c | 1240.921± 292.995b | 337.058± 46.026c | 2.236± 0.365b | 0.135± 0.019b | 168.760± 50.095d |
18 | 484.349± 154.629b | 0.833± 0.106b | 121.934± 25.110b | 2.516± 0.352a | 0.333± 0.047b | 1130± 372c | 1457.507± 445.624b | 366.730± 60.795c | 2.328± 0.056a | 0.132± 0.004b | 1457.507± 445.624c | |
36 | 362.895± 72.393c | 0.950± 0.114a | 105.027± 12.455c | 2.469± 0.220a | 0.314± 0.026b | 722± 96d | 1152.090± 188.300b | 334.382± 23.023c | 2.026± 0.209b | 0.127± 0.009b | 1152.090± 188.300d | |
10 | 0 | 291.120± 57.192c | 0.954± 0.133a | 86.570± 12.538c | 2.174± 0.535b | 0.230± 0.058c | 670± 115d | 2340.990± 392.969b | 390.924± 67.661c | 2.321± 0.208a | 0.106± 0.014b | 1340.990± 392.969d |
18 | 488.987± 128.297b | 0.643± 0.097c | 99.345± 34.485c | 1.658± 0.750b | 0.287± 0.034b | 1240± 256b | 1692.470± 365.558b | 340.011± 93.271c | 2.614± 0.382a | 0.213± 0.093a | 1692.470± 365.558a | |
36 | 452.949± 152.111b | 0.794± 0.126b | 107.485± 25.632c | 2.087± 0.341b | 0.257± 0.090c | 919± 348c | 1804.568± 314.035b | 447.948± 85.895b | 2.029± 0.254b | 0.120± 0.033b | 1804.568± 314.035c | |
20 | 0 | 367.651± 126.272c | 0.896± 0.148a | 97.280± 27.700c | 2.092± 0.573b | 0.242± 0.062c | 844± 335c | 1482.841± 319.768b | 402.769± 85.024b | 2.231± 0.240b | 0.120± 0.027b | 1482.841± 319.768d |
18 | 630.235± 162.527b | 0.711± 0.079b | 134.427± 23.784b | 2.309± 0.249a | 0.244± 0.039c | 1616± 322a | 2634.514± 688.160a | 561.687± 109.915a | 2.618± 0.304a | 0.106± 0.014b | 2634.514± 688.160b | |
36 | 832.475± 262.402a | 0.666± 0.077c | 169.235± 38.329a | 2.820± 0.466a | 0.337± 0.070b | 1669± 595a | 2518.831± 796.660a | 511.231± 111.584a | 1.978± 0.109b | 0.119± 0.012b | 2518.831± 796.660b |
[1] |
BANDOW N, WILL V, WACHTENDORF V, et al., 2017. Contaminant release from aged microplastic[J]. Environmental Chemistry, 14(6): 394-405.
DOI URL |
[2] |
CHUN H C, LEE S, CHOI Y D, et al., 2021. Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean[J]. Journal of Integrative Agriculture, 20(10): 2639-2651.
DOI |
[3] |
COMAS L H, EISSENSTAT D M, 2004. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species[J]. Functional Ecology, 18(3): 388-397.
DOI URL |
[4] |
COSTA C, DWYER L M, DUTILLEUL P, et al., 2003. Morphology and fractal dimension of root systems of maize hybrids bearing the leafy trait[J]. Canadian Journal of Botany, 81(7): 706-713.
DOI URL |
[5] |
DANNOWSKI M, BLOCK A, 2005. Fractal geometry and root system structures of heterogeneous plant communities[J]. Plant and Soil, 272(1-2): 61-76.
DOI URL |
[6] |
FERNÁNDEZ-MARTÍNEZ M, SÁNCHZE-GRANERO M A, 2014. Fractal dimension for fractal structures[J]. Topology and its Applications, 163: 93-111.
DOI URL |
[7] |
HENKE M, SARLIKIOTI V, KURTH W, et al., 2014. Exploring root developmental plasticity to nitrogen with a three-dimensional architectural model[J]. Plant and Soil, 385(1-2): 49-62.
DOI URL |
[8] |
KHALID N, AQEEL M, NOMAN A, 2020. Microplastics could be a threat to plants in terrestrial systems directly or indirectly[J]. Environmental Pollution, 267: 115653.
DOI URL |
[9] |
MOONEY K A, HALITSCHKE R, KESSLER A, et al., 2010. Evolutionary trade-offs in plants mediate the strength of trophic cascades[J]. Science, 327(5973): 1642-1644.
DOI PMID |
[10] |
RISTOVA D, BUSCH W, 2014. Natural variation of root traits: from development to nutrient uptake[J]. Plant Physiology, 166(2): 518-527.
DOI PMID |
[11] |
ROGERS E D, BENFEY P N, 2015. Regulation of plant root system architecture: Implications for crop advancement[J]. Current Opinion in Biotechnology, 32: 93-98.
DOI PMID |
[12] |
TURNER A, HOLMES L A, 2015. Adsorption of trace metals by microplastic pellets in fresh water[J]. Environmental Chemistry, 12(5): 600-610.
DOI URL |
[13] |
WAHL S, RYSER P, 2000. Root tissue structure is linked to ecological strategies of grasses[J]. New Phytologist, 148(3): 459-471.
DOI PMID |
[14] |
ZHANG J, WANG J M, CHEN J Y, et al., 2019. Soil moisture determines horizontal and vertical root extension in the perennial grass Lolium perenne L. growing in Karst soil[J]. Frontiers in Plant Science, 10: 00629.
DOI URL |
[15] | 鲍广灵, 杨庆波, 陶荣浩, 等, 2022. 铜陵市义安区蔬菜产地镉污染调查与评价[J]. 环境监测管理与技术, 34(3): 40-44. |
BAO G L, YANG Q B, TAO R H, et al, 2022. Investigation and evaluation of cadmium pollution in vegetable growing areas in Yi’an district, Tongling City[J]. The Administration and Technique of Environment Monitoring, 34(3): 40-44. | |
[16] | 陈吉虎, 余新晓, 有祥亮, 等, 2006. 不同水分条件下银叶椴根系的分形特征[J]. 中国水土保持科学, 4(2): 71-74. |
CHEN J H, YU X Q, YOU X L, et al., 2006. Fractal characteristics of Tilia tomentosa’s root system under different water conditions[J]. Science of Soil and Water Conservation, 4(2): 71-74. | |
[17] |
陈丽丽, 田爽, 鲁伟丹, 等, 2022. 镉胁迫对3种植物生长及镉吸收和积累的影响[J]. 新疆农业科学, 59(4): 1009-1015.
DOI |
CHEN L L, TIAN S, LU W D, et al., 2022. Effects of cadmium stress on growth in three plants and cadmium uptake and its accumulation[J]. Xinjiang Agricultural Science, 59(4): 1009-1015. | |
[18] | 黄东华, 麦淑华, 仇曙, 等, 2022. 镉对堇叶碎米荠生长生理特性的影响[J]. 湖北农业科学, 61(5): 87-90. |
HUANG D H, MAI S H, QIU S, et al., 2022. Effects of cadmium on growth and physiological characteristics of Cardamine violifolia[J]. Hubei Agricultural Sciences, 61(5): 87-90. | |
[19] | 嵇晓雷, 2010. 分形理论应用于植物根系形态分布的研究进展及其应用前景[J]. 安徽农业科学, 38(25): 13693-13694. |
JI X L, 2010. Research progress and application prospect of morphology distribution of plants root with fractal theory[J]. Journal of Anhui Agricultural Sciences, 38(25):13693-13694. | |
[20] | 雷晓婷, 雷金银, 周丽娜, 等, 2020. 微塑料对农田土壤质量的影响研究现状与分析[J]. 宁夏农林科技, 61(2): 26-28. |
LEI X T, LEI J Y, ZHOU L N, et al., 2020. Status and analysis of study on effects of microplastics on farmland soil quality[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 61(2): 26-28. | |
[21] | 李贞霞, 李庆飞, 李瑞静, 等, 2020. 黄瓜幼苗对微塑料和镉污染的生理响应[J]. 农业环境科学学报, 39(5): 973-981. |
LI Z X, LI Q F, LI R J, et al., 2020. Physiological response of cucumber seedlings to microplastics and cadmium[J]. Journal of Agro-Environment Science, 39(5): 973-981. | |
[22] | 连加攀, 沈玫玫, 刘维涛, 2019. 微塑料对小麦种子发芽及幼苗生长的影响[J]. 农业环境科学学报, 38(4): 737-745. |
LIAN J P, SHEN M M, LIU W T, 2019. Effects of microplastics on wheat seed germination and seedling growth[J]. Journal of Agro-Environment Science, 38(4): 737-745. | |
[23] | 廖成章, 余翔华, 2001. 分形理论在植物根系结构研究中的应用[J]. 江西农业大学学报, 23(2): 192-196. |
LIAO C Z, YU X H, 2001. Application of fractal theory on studies of the root structure of Plant[J]. Acta Agriculture Universitatis Jiangxiensis, 23(2): 192-196. | |
[24] | 廖苑辰, 娜孜依古丽·加合甫别克, 李梅, 等, 2019. 微塑料对小麦生长及生理生化特性的影响[J]. 环境科学, 40(10): 4661-4667. |
LIAO Y C, NAZYGUL J, LI M, et al., 2019. Effects of microplastics on the growth, physiology, and biochemical characteristics of wheat (Triticum aestivum)[J]. Environmental Science, 40(10): 4661-4667. | |
[25] |
刘晓红, 刘柳青青, 栗敏, 等, 2022. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 31(6): 1263-1271.
DOI URL |
LIU X H, LIU L Q Q, LI M, et al., 2022. Effects of polyethylene microplastics with different particle sizes on seed germination and seedling growth of maize and cucumber[J]. Ecology and Environmental Sciences, 31(6): 1263-1271. | |
[26] |
刘晓宇, 郭月峰, 姚云峰, 等, 2021. 砒砂岩区不同留茬高度及坡向下沙棘根系分形特征[J]. 生态环境学报, 30(1): 100-107.
DOI URL |
LIU X Y, GUO Y F, YAO Y F, et al., 2021. Fractal features of Hippophae rhamnoides roots under different stubble height and slopes in soft sandstone area[J]. Ecology and Environmental Sciences, 30(1): 100-107. | |
[27] | 骆永明, 周倩, 章海波, 等, 2018. 重视土壤中微塑料污染研究防范生态与食物链风险[J]. 中国科学院院刊, 33(10): 1021-1030. |
LUO Y M, ZHOU Q, ZHANG H B, et al., 2018. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Environmental Pollution and Control Strategy of Microplastics, 33(10): 1021-1030. | |
[28] | 马雄忠, 王新平, 2020. 阿拉善高原2种荒漠植物根系构型及生态适应性特征[J]. 生态学报, 40(17): 6001-6008. |
MA X Z, WANG X P, 2020. Root architecture and adaptive strategy of two desert plants in the Alxa Plateau[J]. Acta Ecologica Sinica, 40(17): 6001-6008. | |
[29] | 倪薇, 霍常富, 王朋, 2014. 落叶松 (Larix) 细根形态特征沿纬度梯度的可塑性[J]. 生态学杂志, 33(9): 2322-2329. |
NI W, HUO C F, WANG P, 2014. Morphological plasticity of fine root traits in Larix plantations across a latitude gradient[J]. Chinese Journal of Ecology, 33(9): 2322-2329. | |
[30] | 乔海涛, 2009. 苹果砧木幼苗根系构型及根区土壤生物学特性研究[D]. 泰安: 山东农业大学: 73. |
QIAO H T, 2009. Studies on root architecture and biological characteristics of rhizosphere in apple stock[D]. Tai’an: Shangdong Agricultural University: 73. | |
[31] | 乔海涛, 杨洪强, 申为宝, 等, 2010. 平邑甜茶根系形态构型对氯化镉处理的响应[J]. 林业科学, 46(1): 56-60. |
QIAO H T, YANG H Q, SHEN W B, et al., 2010. Responses of root morphology and architecture in Malus hupehensis var. pingyiensis seedlings to cadmium chloride[J]. Scientia Silvae Sinicae, 46(1): 56-60. | |
[32] |
曲梦雪, 宋杰, 孙菁, 等, 2022. 镉胁迫对不同耐镉型玉米品种苗期根系生长的影响[J]. 作物学报, 48(11): 2945-2952.
DOI |
QU M X, SONG J, SUN J, et al., 2022. Effects of cadmium stress on root growth of maize (Zea mays L.) varieties with different cadmium-tolerant at seedling stage[J]. Acta Agronomica Sinica, 48(11): 2945-2952. | |
[33] | 任永哲, 徐艳花, 丁锦平, 等, 2011. 非生物因素调控植物根系发育可塑性的研究进展[J]. 中国农学通报, 27(9): 34-38. |
REN Y Z, XU Y H, DING J P, et al., 2011, Regulation of abiotic factors on the plasticity of plant root development[J]. Chinese Agricultural Science Bulletin, 27(9): 34-38. | |
[34] | 单立山, 李毅, 董秋莲, 等, 2012. 红砂根系构型对干旱的生态适应[J]. 中国沙漠, 32(5): 1283-1290. |
SHAN L S, LI Y, DONG Q L, et al., 2012. Ecological adaptation of Reaumuria Soongorica root system architecture to arid environment[J]. Journal of Desert Research, 32(5): 1283-1290. | |
[35] |
宋清华, 赵成章, 史元春, 等, 2015. 高寒草地甘肃臭草根系分形结构的坡向差异性[J]. 植物生态学报, 39(8): 816-824.
DOI |
SONG Q H, ZHAO C Z, SHI Y C, et al., 2015. Fractal root system of Melica przewalskyi along different aspect in degraded grassland[J]. Chinese Journal of Plant Ecology, 39(8): 816-824.
DOI URL |
|
[36] | 孙垦, 华宇峰, 王镇岳, 2022. 工业废水重金属污染与健康风险评价研究[J]. 华北水利水电大学学报 (自然科学版), 43(3): 99-108. |
SUN K, HUA Y F, WANG Z Y, 2022. Research progress on heavy metal pollution and health risk assessment of the industrial wastewater[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 43(3): 99-108. | |
[37] | 汪堃, 南丽丽, 郭全恩, 等, 2022. 干旱胁迫对不同根型苜蓿根系构型的影响[J]. 生态学报, 42(20): 1-9. |
WANG K, NAN L L, GUO Q E, et al., 2022. Effects of drought stress on root architecture of different root- type alfalfa[J]. Acta Ecologica Sinica, 42(20): 1-9 | |
[38] | 王艺霖, 周玫, 李苹, 等. 根系形态可塑性决定黄栌幼苗在瘠薄土壤中的适应对策[J]. 北京林业大学学报, 2017, 39(06):60-69. |
WANG Y L, ZHOU M, LI P, et al., 2017. Root morphological plasticity determing the adaptive strategies of Cotinus coggygria seedlings in barren soil environment. | |
[39] | 魏畅, 焦秋娟, 柳海涛, 等, 2022. 镉暴露条件下玉米生长及根系构型分级特征研究[J]. 草业学报, 31(3): 101-113. |
WEI C, JIAO Q J, LIU H T, et al., 2022. Physiological effects of different Cd concentration on maize root architecture and classification[J]. Acta Prataculturae Sinica, 31(3): 101-113. | |
[40] | 席佳锐, 吴玲玲, 付融冰, 等, 2021. 土壤环境中锑的生物毒性评价方法比较[J]. 环境监测管理与技术, 33(2): 9-13. |
XI J R, WU L L, FU R B, et al., 2021. Comparison of biotoxicity evaluation methods of antimony in soil environment[J]. The Administration and Technique of Environment Monitoring, 33(2): 9-13 | |
[41] | 闫励, 杨方社, 李怀恩, 等, 2019. 砒砂岩区不同立地下沙棘根系分形特征[J]. 干旱区研究, 36(2): 467-473. |
YAN L, YANG F D, LI H E, et al., 2019. Fractal features of Hippophae rhamnoides roots under different site conditions in soft sandstone area[J]. Arid Zone Research, 36(2): 467-473. | |
[42] | 郑伟, 陈敬仁, 2020. 微塑料在土壤环境中的研究进展[J]. 污染防治技术, 33(3): 4-6. |
ZHENG W, CHEN J R, 2020. Research progress of microplastics in soil environment[J]. Pollution Control Technology, 33(3): 4-6. | |
[43] | 郑文俊, 李腾, 张振涛, 2020. 微塑料对水体中重金属吸附机理的研究[J]. 云南化工, 47(2): 40-41, 44. |
ZHENG W J, LI T, ZHANG Z T, 2020. Adsorption mechanism of heavy metals in water by microplastics[J]. Yunnan Chemical Technology, 47(2): 40-41, 44. | |
[44] | 左华丽, 2015. 尾矿库植物根系发育的分形特征及对植物铀分布的影响[D]. 衡阳: 南华大学: 59. |
ZUO H L, 2015. The fractal characteristic of plant root system and it’s influence on uranium distribution in plant from tailings[D]. Hengyang: University of South China: 59. |
[1] | DU Dandan, GAO Ruizhong, FANG Lijing, XIE Longmei. Spatial Variation of Soil Heavy Metals and Their Responses to Physicochemical Factors of Salt Lake Basin in Arid Area [J]. Ecology and Environment, 2023, 32(6): 1123-1132. |
[2] | ZHAO Liangxia, GAO Kun, HUANG Tingting, GAO Ye, JU Tangdan, JIANG Qiuyang, JIN Heng, XIONG Lei, TANG Zailin, GAO Canhong. The Cadmium Accumulation Characteristics of Maize Inbred Lines with High/Low Grain Cadmium Accumulation at Different Growth Stages [J]. Ecology and Environment, 2023, 32(4): 766-775. |
[3] | YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland [J]. Ecology and Environment, 2023, 32(3): 627-634. |
[4] | XU Min, XU Chao, YU Guanghui, YIN Lichu, ZHANG Quan, ZHU Hanhua, ZHU Qihong, ZHANG Yangzhu, HUANG Daoyou. Effects of Groundwater Level and Long-term Straw Return on Soil Cadmium Availability and Cadmium Concentration in Rice [J]. Ecology and Environment, 2023, 32(1): 150-157. |
[5] | LI Xiaohui, AI Xianbin, LI Liang, WANG Xiyang, XIN Zaijun, SUN Xiaoyan. Study on Passivation Effects of New Modified Rice Husk Biochar Materials on Cadmium Contaminated Soil [J]. Ecology and Environment, 2022, 31(9): 1901-1908. |
[6] | LI Xiuhua, ZHAO Ling, TENG Ying, LUO Yongming, HUANG Biao, LIU Chong, LIU Benle, ZHAO Qiguo. Characteristics, Spatial Distribution and Risk Assessment of Combined Mercury and Cadmium Pollution in Farmland Soils Surrounding Mercury Mining Areas in Guizhou [J]. Ecology and Environment, 2022, 31(8): 1629-1636. |
[7] | FANG Xianbao, ZHANG Zhijun, LAI Yangqing, YE Mai, DIAO Zenghui. Remediation of Heavy Metals Cr and Cd in Soil by A Novel Sludge-derived Biochar [J]. Ecology and Environment, 2022, 31(8): 1647-1656. |
[8] | LIU Xiaohong, LIU Liuqingqing, LI Min, LIU Qiang, CAO Dongdong, ZHENG Hao, LUO Xianxiang. Effects of Polyethylene Microplastics with Different Particle Sizes on Seed Germination and Seedling Growth of Maize and Cucumber [J]. Ecology and Environment, 2022, 31(6): 1263-1271. |
[9] | ZHAO Chaofan, ZHOU Dandan, SUN Jiancai, QIAN Kunpeng, LI Fangfang. The Effect of Soluble Components on the Adsorption of Cadmium on Biochar [J]. Ecology and Environment, 2022, 31(4): 814-823. |
[10] | WEN Dian, ZHAO Peihua, CHEN Chuguo, LI Furong, DU Ruiying, HUANG Yongdong, LI Lei, WANG Fuhua. Study on Safety Threshold of Soil Cadmium in the Vegetable Producing Areas of the Pearl River Delta [J]. Ecology and Environment, 2022, 31(3): 603-609. |
[11] | QIN Kun, WANG Zhikang, WANG Zhanghong, YANG Cheng, LIU Jiegang, SHEN Dekui. Cd(II) Adsorption Capability of the Biochar Derived from Co-pyrolysis of Lignin and Polyethylene [J]. Ecology and Environment, 2022, 31(2): 344-353. |
[12] | SHI Hanzhi, JIANG Qi, LIU Fan, WEN Dian, HUANG Yongdong, DENG Tenghaobo, WANG Xu, XU Aiping, LI Furong, WU Zhichao, LI Meixia, PENG Jinfen, DU Ruiying. Effects of Returning Rice Stubble to Field on Cadmium Accumulation in Soil and Rice [J]. Ecology and Environment, 2022, 31(2): 363-369. |
[13] | SHANG GUAN Yuxian, YIN Hongliang, XU Yi, ZHONG Hongmei, HE Mingjiang, QIN Yusheng, GUO Song, YU Hua. Effects of Different Passivators on Cadmium Absorption in Rice and Wheat Grains [J]. Ecology and Environment, 2022, 31(2): 370-379. |
[14] | GAO Ge, GE Xiaogai, ZHOU Jungang, ZHOU Benzhi, LI Zhengcai, YANG Nan. Effect of Drought Stress and Nitrogen Addition on the Biomass and Root Morphology of Cunninghamia lanceolata and Cyclobalanopsis glauca Seedlings [J]. Ecology and Environment, 2022, 31(12): 2292-2301. |
[15] | QIN Qin, DUAN Haiqin, SONG Ke, SUN Lijuan, SUN Yafei, ZHOU Bin, XUE Yong. Effect of Conventional Fertilization on the Adsorption-desorption Characteristics and Chemical forms of Cadmium in Soil Water-stable Aggregates [J]. Ecology and Environment, 2022, 31(12): 2403-2413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn