Ecology and Environment ›› 2023, Vol. 32 ›› Issue (1): 175-182.DOI: 10.16258/j.cnki.1674-5906.2023.01.019
• Research Articles • Previous Articles Next Articles
XIAO Jieyun1(), ZHOU Wei1,*(
), SHI Peiqi2,3
Received:
2022-10-21
Online:
2023-01-18
Published:
2023-04-06
Contact:
ZHOU Wei
通讯作者:
周伟
作者简介:
肖洁芸(2000年生),女,硕士研究生,主要从事土壤污染评价。E-mail: xjy513930@email.swu.edu.cn
基金资助:
CLC Number:
XIAO Jieyun, ZHOU Wei, SHI Peiqi. Hyperspectral Inversion of Soil Heavy Metals[J]. Ecology and Environment, 2023, 32(1): 175-182.
肖洁芸, 周伟, 石佩琪. 土壤重金属含量高光谱反演[J]. 生态环境学报, 2023, 32(1): 175-182.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.01.019
土壤重金属 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | 偏度 | 峰度 |
---|---|---|---|---|---|---|---|
Cu | 15.950 | 103.860 | 32.149 | 19.164 | 0.596 | 2.853 | 7.913 |
Zn | 52.860 | 216.270 | 104.046 | 30.115 | 0.289 | 1.663 | 3.234 |
Cr | 26.930 | 102.580 | 64.391 | 14.368 | 0.223 | 0.433 | 1.293 |
Ni | 8.578 | 41.444 | 28.082 | 7.396 | 0.263 | -0.275 | 0.147 |
Pb | 17.020 | 79.414 | 32.560 | 13.612 | 0.418 | 2.024 | 3.953 |
Fe | 13320 | 40386.140 | 32282.602 | 4803.021 | 0.149 | -1.343 | 3.857 |
Mn | 281.25 | 1152.970 | 656.201 | 165.696 | 0.253 | 1.036 | 2.235 |
Table 1 Statistics analysis of soil heavy metal mass fraction in study area mg·kg-1
土壤重金属 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 | 偏度 | 峰度 |
---|---|---|---|---|---|---|---|
Cu | 15.950 | 103.860 | 32.149 | 19.164 | 0.596 | 2.853 | 7.913 |
Zn | 52.860 | 216.270 | 104.046 | 30.115 | 0.289 | 1.663 | 3.234 |
Cr | 26.930 | 102.580 | 64.391 | 14.368 | 0.223 | 0.433 | 1.293 |
Ni | 8.578 | 41.444 | 28.082 | 7.396 | 0.263 | -0.275 | 0.147 |
Pb | 17.020 | 79.414 | 32.560 | 13.612 | 0.418 | 2.024 | 3.953 |
Fe | 13320 | 40386.140 | 32282.602 | 4803.021 | 0.149 | -1.343 | 3.857 |
Mn | 281.25 | 1152.970 | 656.201 | 165.696 | 0.253 | 1.036 | 2.235 |
土壤有机质与重金属 | SOM | Fe | Mn | Cu | Zn | Pb | Cr | Ni |
---|---|---|---|---|---|---|---|---|
SOM | 1 | |||||||
Fe | 0.480 | 1 | ||||||
Mn | -0.131 | 0.338** | 1 | |||||
Cu | 0.340** | 0.495** | 0.260* | 1 | ||||
Zn | 0.439** | 0.537** | 0.202 | 0.596** | 1 | |||
Pb | 0.591** | 0.282* | 0.278* | 0.391** | 0.719** | 1 | ||
Cr | -0.049 | 0.824** | 0.388** | 0.569** | 0.350** | 0.144 | 1 | |
Ni | -0.108* | 0.723** | 0.335** | 0.575** | 0.351** | 0.124 | 0.827** | 1 |
Table 2 Correlation coefficients for organic matters and heavy metals in soil of Chongqing
土壤有机质与重金属 | SOM | Fe | Mn | Cu | Zn | Pb | Cr | Ni |
---|---|---|---|---|---|---|---|---|
SOM | 1 | |||||||
Fe | 0.480 | 1 | ||||||
Mn | -0.131 | 0.338** | 1 | |||||
Cu | 0.340** | 0.495** | 0.260* | 1 | ||||
Zn | 0.439** | 0.537** | 0.202 | 0.596** | 1 | |||
Pb | 0.591** | 0.282* | 0.278* | 0.391** | 0.719** | 1 | ||
Cr | -0.049 | 0.824** | 0.388** | 0.569** | 0.350** | 0.144 | 1 | |
Ni | -0.108* | 0.723** | 0.335** | 0.575** | 0.351** | 0.124 | 0.827** | 1 |
土壤重金属 | 光谱指标 | 建模集 | 验证集 | |||
---|---|---|---|---|---|---|
rM2 | σRMSEM | rV2 | σRMSEV | |||
Cu | 倒数对数 | 0.402 | 7.831 | 0.293 | 6.495 | |
Zn | 倒数对数 | 0.397 | 19.280 | 0.315 | 14.100 | |
Cr | 倒数对数 | 0.208 | 12.980 | 0.177 | 12.036 | |
Ni | 二阶微分 | 0.430 | 5.380 | 0.209 | 5.650 | |
Pb | 倒数对数 | 0.271 | 10.306 | 0.018 | 8.726 |
Table 3 Scatter plot of prediction accuracy of four heavy metal content models based on partial least squares
土壤重金属 | 光谱指标 | 建模集 | 验证集 | |||
---|---|---|---|---|---|---|
rM2 | σRMSEM | rV2 | σRMSEV | |||
Cu | 倒数对数 | 0.402 | 7.831 | 0.293 | 6.495 | |
Zn | 倒数对数 | 0.397 | 19.280 | 0.315 | 14.100 | |
Cr | 倒数对数 | 0.208 | 12.980 | 0.177 | 12.036 | |
Ni | 二阶微分 | 0.430 | 5.380 | 0.209 | 5.650 | |
Pb | 倒数对数 | 0.271 | 10.306 | 0.018 | 8.726 |
土壤重金属 | 光谱指标 | 建模集 | 验证集 | |||
---|---|---|---|---|---|---|
rM2 | σRMSEM | rV2 | σRMSEV | |||
Cu | 去包络线 | 0.711 | 5.503 | 0.680 | 5.216 | |
Zn | 去包络线 | 0.686 | 15.526 | 0.434 | 12.643 | |
Cr | 去包络线 | 0.859 | 5.927 | 0.447 | 8.712 | |
Ni | 去包络线 | 0.820 | 3.213 | 0.417 | 4.243 | |
Pb | 去包络线 | 0.811 | 4.985 | 0.598 | 5.773 |
Table 4 Prediction accuracy of soil heavy metal content model based on support vector machine
土壤重金属 | 光谱指标 | 建模集 | 验证集 | |||
---|---|---|---|---|---|---|
rM2 | σRMSEM | rV2 | σRMSEV | |||
Cu | 去包络线 | 0.711 | 5.503 | 0.680 | 5.216 | |
Zn | 去包络线 | 0.686 | 15.526 | 0.434 | 12.643 | |
Cr | 去包络线 | 0.859 | 5.927 | 0.447 | 8.712 | |
Ni | 去包络线 | 0.820 | 3.213 | 0.417 | 4.243 | |
Pb | 去包络线 | 0.811 | 4.985 | 0.598 | 5.773 |
[1] | CHENG N C, ZHENG Y J, HE X F, et al., 2017. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 36(9): 1689-1692. |
[2] | COLLOBERT R, BENGIO S, 2001. SVMTorch: Support vector machines for large-scale regression problems[J]. Journal of Machine Learning Research, 1(2): 143-160. |
[3] |
DIAN Y Y, LE Y, FANG S H, et al., 2016. Influence of spectral bandwidth and position on chlorophyll content retrieval at leaf and canopy levels[J]. Journal of the Indian Society of Remote Sensing, 44(4): 583-593.
DOI URL |
[4] | GUO D D, HUANG S M, ZHANG S Q, et al., 2014. Comparative analysis of various hyperspectral prediction models of fluvo-aquic soil organic matter[J]. Nongye Gongcheng Xuebao (Beijing), 30(21): 192-200. |
[5] | HE J L, CUI J L, ZHANG S Y, et al., 2019. Hyperspectral estimation of heavy metal Cu content in soil based on partial least square method[J]. Remote Sensing Technology and Application, 34(5): 998-1004. |
[6] |
HOU L, LI X J, LI F, 2019. Hyperspectral-based inversion of heavy metal content in the soil of coal mining areas[J]. Journal of Environmental Quality, 48(1): 57-63.
DOI PMID |
[7] |
LIU M L, LIU X N, WU L, et al., 2011. Wavelet-based detection of crop zinc stress assessment using hyperspectral reflectance[J]. Computers & Geosciences. 37(9): 1254-1263.
DOI URL |
[8] |
LUO Y, XU L, RYSZ M, et al., 2011. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science and Technology, 45(5): 1827-1833.
DOI PMID |
[9] | MA W B, TAN K, LI H D, et al., 2016. Hyperspectral inversion of heavy metals in soil of a mining area using extreme learning machine[J]. Journal of Ecology and Rural Environment, 32(2): 213-218. |
[10] | MEVIK B H, WEHRENS R, 2007. The PLS package: Principal component and partial least squares regression in R[J]. Journal of Statistical Software, 18(2): 1-23. |
[11] |
MOROS J, VALLEJUELO S F D, GREDILLA A, et al., 2009. Use of reflectance infrared spectroscopy for monitoring the metal content of the estuarine sediments of the Nerbioi-Ibaizabal river (Metropolitan bilbao, bay of bis-cay, basque country)[J]. Environmental Science & Technology, 43(24): 9314-9320.
DOI URL |
[12] | PAN L X, LIU Y, LIN M L, 2017. Pollution evaluation of soil heavy metal in coal mining area[J]. Coal Technology, 36(7): 301-303. |
[13] |
PENG X H, ZHU Q H, ZHANG Z B, et al., 2017. Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers[J]. Soil Biology and Biochemistry, 109: 81-94.
DOI URL |
[14] |
SUMMERS D, LEWIS M, OSTENDORF B, et al., 2011. Visible near infrared reflrctance spectroscopy as a predictive indicator of soil properties[J]. Ecological Indicators, 11(1): 123-131.
DOI URL |
[15] | TU Y L, ZOU B, JIANG X L, et al., 2018. Hyperspectral remote sensing based modeling of Cu content in mining soil[J]. Spectroscopy and Spectral Analysis, 38(2): 575-581. |
[16] |
VEGA F A, COVELO E F, ANDRADE M L, et al., 2004. Relationships between heavy metals content and soil properties in minesoils[J]. Analytica Chimica Acta, 524(1-2): 141-150.
DOI URL |
[17] | VISCARRA ROSSEL R A, BUI E N, CARITAT P D, et al., 2010. Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra[J]. Journal of Geophysical Rearch, 115(F04031): 001645. |
[18] |
WU Y Z, CHEN J, WU X M, et al., 2005. Possibilities of reflectance spectroscopy for the assessment of contaminant elements in suburban soils[J]. Applied Geochemistry, 20(6): 1051-1059.
DOI URL |
[19] |
XU M X, WU S H, ZHOU S L, 2011. Hyperspectral reflectance models for retrieving heavy metal content: Application in the archaeological soil[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 30(2): 109-114.
DOI URL |
[20] |
ZHOU W, LI H R, WEN S Y, et al., 2022. Simulation of soil organic carbon content based on laboratory spectrum in the Three-Rivers Source Region of China[J]. Remote Sensing, 14: 1521.
DOI URL |
[21] |
ZHOU W, YANG H, XIE L J, et al., 2021. Hyperspectral inverion of soil heavy metals in Three-Rivers Source Region based on random forest model[J]. Catena, 202: 105222.
DOI URL |
[22] | 柴磊, 王新, 马良, 等, 2020. 基于PMF模型的兰州耕地土壤重金属来源解析[J]. 中国环境科学, 40(9): 3919-3929. |
CHAI L, WANG X, MA L, et al., 2020. Sources appointment of heavy metals in cultivated soils of Lanzhou based on PMF models[J]. China Environmental Science, 40(9): 3919-3929. | |
[23] | 陈凤娇, 2020. 农用地土壤重金属Cu、Zn含量的高光谱反演研究[D]. 成都: 成都理工大学. |
CHEN F J, 2020. Studies on Cu and Zn content of agricultural land soil based on the hyperspectrum estimation model[D]. Chengdu: Chengdu University of Technology. | |
[24] | 程先锋, 宋婷婷, 陈玉, 等, 2017. 滇西兰坪铅锌矿区土壤重金属含量的高光谱反演分析[J]. 岩石矿物学杂志, 36(1): 60-69. |
CHENG X F, SONG T T, CHEN Y, et al., 2017. Retrival and analysis of heavy metal content in soil base on measured spectra in the Lanping Zn-Pb mining area, western Yunnan Province[J]. Acta Petrologica Et Mineralogica, 36(1): 60-69. | |
[25] | 龚绍琦, 王鑫, 沈润平, 等, 2010. 滨海盐土重金属含量高光谱遥感研究[J]. 遥感技术与应用, 25(2): 169-177. |
GONG S Q, WANG X, SHEN R P, et al., 2010. Study on heavy metal element content in the coastal saline soil by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 25(2): 169-177. | |
[26] | 古丽扎提·艾买提, 阿不都拉·阿不力孜, 茹克亚·沙吾提, 等, 2018. 准东煤田土壤铅含量高光谱估算[J]. 土壤通报, 49(5): 1233-1239. |
GULZAT A, ABDULLA A, RUKIYA S, et al., 2018. Estimating soil lead content in the Eastern Junggar coalfield using hyperspectral data[J]. Chinese Journal of Soil Science, 49(5): 1233-1239. | |
[27] | 贺军亮, 张淑媛, 查勇, 等, 2015. 高光谱遥感反演土壤重金属含量研究进展[J]. 遥感技术与应用, 30(3): 407-412. |
HE J L, ZHANG S Y, ZHA Y, et al., 2015. Review of retrieving soil heavy metal content by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 30(3): 407-412. | |
[28] | 刘晖, 刘杰, 张玉玲, 等, 2021. 外源水稻根系和茎叶碳氮在稻田土壤中释放的特征[J]. 土壤学报, 58(4): 989-997. |
LIU H, LIU J, ZHANG Y L, et al., 2021. Release of exogenous carbon and nitrogen in rice root, stem and leaf in paddy soil[J]. Acta Pedologica Sinica, 58(4): 989-997. | |
[29] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社:474. |
LU R K, 2000. Methods for chemical analysis of soil agriculture[M]. Beijing: China Agricultural Science and Technology Press:474. | |
[30] | 刘彦平, 罗晴, 程和发, 2020. 高光谱遥感技术在土壤重金属含量测定领域的应用和发展[J]. 农业环境科学学报, 39(12): 2699-2709. |
LIU Y P, LUO Q, CHENG H F, 2020. Application and development of hyperspectral remote sensing technology to determine the heavy metal content in soil[J]. Journal of Agro-Environment Science, 39(12): 2699-2709. | |
[31] | 马磊, 颜安, 2019. 基于地物光谱和Landsat8遥感影像的土壤铅含量反演研究[J]. 山东农业科学, 51(12): 120-126. |
MA L, YAN A, 2019. Study on soil lead content inversion based on hyperspectral and Landsat8 remote sensing images[J]. Shandong Agricultural Sciences, 51(12): 120-126. | |
[32] |
施建飞, 靳正忠, 周智彬, 等, 2022. 额尔齐斯河流域典型尾矿库区周边土壤重金属污染评价[J]. 生态环境学报, 31(5): 1015-1023.
DOI URL |
SHI J F, JIN Z Z, ZHOU Z B, et al., 2022. Evaluation of heavy metal pollution in the soil around a typical tailing reservoir in Irtysh River Basin[J]. Ecology and Environmental Sciences, 31(5): 1015-1023. | |
[33] |
石文静, 周翰鹏, 孙涛, 等, 2022. 矿区周边土壤重金属污染优先控制因子及健康风险评价研究[J]. 生态环境学报, 31(8): 1616-1628.
DOI URL |
SHI W J, ZHOU H P, SUN T, et al., 2022. Research on priority control factors and health risk assessment of heavy metal pollution in soil around mining areas[J]. Ecology and Environmental Sciences, 31(8): 1616-1628. | |
[34] | 石雨佳, 方林发, 方标, 等, 2022. 三峡库区 (重庆段) 菜地土壤重金属污染特征、潜在风险评估及源解析[EB/OL]. 环境科学, https://doi.org/10.13227/j.hjkx.202202204. |
SHI Y J, FANG L F, FANG B, et al., 2022. Pollution characteristics and source apportionment of heavy metals in vegetable field in the Three Gorges Reservoir area (Chongqing section)[EB/OL]. Environmental Science, https://doi.org/10.13227/j.hjkx.202202204. | |
[35] | 滕靖, 何政伟, 倪忠云, 等, 2016. 西范坪矿区土壤铜元素的高光谱响应与反演模型研究[J]. 光谱学与光谱分析, 36(11): 3637-3642. |
TENG J, HE Z W, NI Z Y, et al., 2016. Spectral response and inversion models for prediction of total copper content in soil of Xifangping Ming area[J]. Spectroscopy and Spectral Analysis, 36(11): 3637-3642. | |
[36] | 王维, 沈润平, 吉曹翔, 2011. 基于高光谱的土壤重金属铜的反演研究[J]. 遥感技术与应用, 26(3): 348-354. |
WANG W, SHEN R P, JI C X, 2011. Study on heavy metal Cu based on hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 26(3): 348-354. | |
[37] |
王雪梅, 玉米提·买明, 毛东雷, 等, 2021. 干旱区绿洲耕层土壤重金属铬含量的高光谱估测[J]. 生态环境学报, 30(10): 2076-2084.
DOI URL |
WANG X M, YUMITI M, MAO D L, et al., 2021. Hyperspectral estimation of heavy metal chromium content in arable soil of arid area oasis[J]. Ecology and Environmental Sciences, 30(10): 2076-2084. | |
[38] | 吴明珠, 李小梅, 沙晋明, 2014. 亚热带土壤铬元素的高光谱响应和反演模型[J]. 光谱学与光谱分析, 34(6): 1660-1666. |
WU M Z, LI X M, SHA J M, 2014. Spectral inversiong models for prediction of total chromium content in subtropical soil[J]. Spectroscopy and Spectral Analysis, 34(6): 1660-1666. | |
[39] | 肖捷颖, 王燕, 张倩, 等, 2013. 土壤重金属含量的高光谱遥感反演方法综述[J]. 湖北农业科学, 52(6): 1248-1253. |
XIAO J Y, WANG Y, ZHANG Q, et al., 2013. Review on methods of monitoring soil heavy metal based on hyperspectral remote sensing data[J]. Hubei Agricultural Sciences, 52(6): 1248-1253. | |
[40] | 解宪丽, 孙波, 郝红涛, 2007. 土壤可见光-近红外反射光谱与重金属含量之间的相关性[J]. 土壤学报, 44(6): 982-993. |
XIE X L, SUN B, HAO H T, 2007. Relationship between visible near infrared reflectance spectroscopy and heavy metal of soil concentration[J]. Acta Pedologica Sinica, 44(6): 982-993. | |
[41] | 杨安, 王艺涵, 胡建, 等, 2020. 青藏高原表土重金属污染评价与来源解析[J]. 环境科学, 41(2): 886-894. |
YANG A, WANG Y H, HU J, et al., 2020. Evaluation and sorce of heavymetal pollution in surface soil of Qinghai-Tibet Plateau[J]. Environmental Science, 41(2): 886-894. | |
[42] | 杨晗, 2020. 三江源区土壤重金属含量高光谱反演研究[D]. 重庆: 重庆交通大学. |
YANG H, 2020. Hyperspectral inversion of soil heavy metal content in the Three-River Source region[D]. Chongqing: Chongqing Jiaotong University. | |
[43] | 杨杉, 汪军, 李洪刚, 等, 2018. 重庆市绿地土壤重金属污染特征及健康风险评价[J]. 土壤通报, 49(4): 966-972. |
YANG S, WANG J, LI H G, et al., 2018. Pollution characteristics and health risk assessment of heavy metals in green space of Chongqing City[J]. Chinese Journal of Soil Science, 49(4): 966-972. | |
[44] | 张威, 高小红, 杨扬, 等, 2014. 基于光谱分析的土壤重金属含量估算研究——以三江源区玉树县和玛多县为例[J]. 土壤, 46(6): 1052-1060. |
ZHANG W, GAO X H, YANG Y, et al., 2014. Estimating heavy metal contents for topsoil based on spectral analysis: A case study of Yushu and Maduo counties in the Three-River Source Region[J]. Soils, 46(6): 1052-1060. | |
[45] | 周伟, 李丽丽, 周旭, 等, 2021a. 基于地理探测器的土壤重金属影响因子分析及其污染风险评价[J]. 生态环境学报, 30(1): 173-180. |
ZHOU W, LI L L, ZHOU X, et al., 2021. Influence factor analysis of soil heavy metal based on geographic detector and its pollution risk assessment[J]. Ecology and Environmental Sciences, 30(1): 173-180. | |
[46] | 周伟, 谢丽娟, 杨晗, 等, 2021b. 基于高光谱的三江源区土壤有机质含量反演[J]. 土壤通报, 52(3): 564-574. |
ZHOU W, XIE L J, YANG H, et al., 2021. Hyperspectral inversion of soil organic matter content in the Three-Rivers Source Region[J]. Chinese Journal of Soil Science, 52(3): 564-574. | |
[47] | 卓荦, 2010. 基于高光谱遥感的土壤重金属空间分布研究[D]. 武汉: 武汉大学. |
ZHUO L, 2010. The research of estimating heavy metal spatial distribution of soil using hyperspectral data[D]. Wuhan: Wuhan University. |
[1] | WANG Xuemei, YANG Xuefeng, ZHAO Feng, AN Baisong, HUANG Xiaoyu. Estimation of Aboveground Biomass in the Arid Oasis Based on the Machine Learning Algorithm [J]. Ecology and Environment, 2023, 32(6): 1007-1015. |
[2] | ZHOU Yuxiang, ZHAO Yu, NIE Rendong, DING Ding, GUO Lihua, ZHOU Jiazheng. Characterization and Prediction of Land Desertification in the Lower Liaohe River Plain [J]. Ecology and Environment, 2023, 32(6): 1133-1139. |
[3] | CHEN Minyi, ZHU Hanghai, SHE Weiduo, YIN Guangcai, HUANG Zuzhao, YANG Qiaoling. Health Risk Assessment and Source Apportionment of Soil Heavy Metals at A Legacy Shipyard Site in Pearl River Delta [J]. Ecology and Environment, 2023, 32(4): 794-804. |
[4] | QIAN Haiming, ZHANG Yunlin, LI Na, WANG Weijia, SUN Xiao, ZHANG Yibo, SHI Kun, FENG Sheng, GAO Yanghui. High Frequency Monitoring of Water Quality Dynamics for River Drinking Water Source during the Typical Rainfall Process [J]. Ecology and Environment, 2023, 32(3): 579-589. |
[5] | LIU Di, SU Chao, ZHANG Hong, QIN Guanyu. Pollution Characteristics and Risk Assessment of Heavy Metal Pollution in A Typical Coal-based Industrial Cluster Zone [J]. Ecology and Environment, 2022, 31(2): 391-399. |
[6] | LIANG Yongchun, YIN Fang, ZHAO Yingfen, LIU Lei. Remote Sensing Inversion of Biochemical Oxygen Demand in Taihu Lake Based on Landsat 8 Images [J]. Ecology and Environment, 2021, 30(7): 1492-1502. |
[7] | TA Weiyuan, KANG Zhen, MENG Zhaojun, JIN Shenghua, YANG Xing, GUO Longfei, ZHAO Dongxu, ZHANG Xin. Research of Pollution Characteristics of Heavy Metals in Soil of Typical Closed Zinc Smelting Enterprises in Qinling Mountains [J]. Ecology and Environment, 2021, 30(7): 1513-1521. |
[8] | WANG Ruifan, WEI Nibin, ZHANG Canghao, BAO Tiantian, LIU Jian, YU Kunyong, WANG Fan. UAV Multi Angle Remote Sensing Quantification of Understory Vegetation Coverage in the Hilly Region of South China [J]. Ecology and Environment, 2021, 30(12): 2294-2302. |
[9] | WANG Xuemei, YUMITI∙Maiming , MAO Donglei, LIANG Ting. Hyperspectral Estimation of Heavy Metal Chromium Content in Arable Soil of Arid Area Oasis [J]. Ecology and Environment, 2021, 30(10): 2076-2084. |
[10] | CHA Lijuan, ZHOU Dandan, FENG Hongjuan, ZHAO Shuyuan, FENG Kaiping. Research on the Bioaccumulation Characteristics of Two Kinds of Wild Edible Fungi to Soil Heavy Metals [J]. Ecology and Environment, 2021, 30(10): 2093-2099. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn