Ecology and Environment ›› 2022, Vol. 31 ›› Issue (4): 715-722.DOI: 10.16258/j.cnki.1674-5906.2022.04.009
• Research Articles • Previous Articles Next Articles
LIU Hongmei(), HAI Xiang, AN Kerui, ZHANG Haifang, WANH Hui, ZHANG Yanjun, WANG Lili, ZHANG Guilong, YANG Dianlin
Received:
2021-11-22
Online:
2022-04-18
Published:
2022-06-22
刘红梅(), 海香, 安克锐, 张海芳, 王慧, 张艳军, 王丽丽, 张贵龙, 杨殿林
作者简介:
刘红梅(1976年生),女,副研究员,主要从事生物多样性与生态农业研究。E-mail: liuhongmei@caas.cn
基金资助:
CLC Number:
LIU Hongmei, HAI Xiang, AN Kerui, ZHANG Haifang, WANH Hui, ZHANG Yanjun, WANG Lili, ZHANG Guilong, YANG Dianlin. Effects of Different Fertilization Regimes on Community Structure Diversity of CO2-assimilating Bacteria in Maize Field of Fluvo-aquic Soil in North China[J]. Ecology and Environment, 2022, 31(4): 715-722.
刘红梅, 海香, 安克锐, 张海芳, 王慧, 张艳军, 王丽丽, 张贵龙, 杨殿林. 不同施肥措施对华北潮土区玉米田土壤固碳细菌群落结构多样性的影响[J]. 生态环境学报, 2022, 31(4): 715-722.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.04.009
施肥处理 Fertilizationtreatments | pH | 有机碳质量分数 w(total organic carbon)/ (g∙kg-1) | 全氮质量分数 w(total nitrogen)/ (g∙kg-1) | 全磷质量分数 w(total phosphorus)/ (g∙kg-1) | 硝态氮质量分数 w(nitrate-nitrogen)/ (mg∙kg-1) | 铵态氮质量分数 w(ammonium-nitrogen)/ (mg∙kg-1) | 微生物量碳质量分数 w(microbial biomass carbon)/ (mg∙kg-1) | 微生物量氮质量分数 w(microbial biomass nitrogen)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
A0 | 8.71±0.03a | 8.97±0.11d | 1.23±0.18e | 0.98±0.01d | 6.39±0.10e | 1.17±0.08c | 365.97±32.76d | 69.12±6.04b |
A1 | 8.47±0.09bc | 11.03±0.19b | 2.08±0.04bc | 1.54±0.03c | 8.34±0.28d | 1.22±0.08c | 433.49±57.76cd | 86.62±11.14a |
A2 | 8.52±0.04b | 9.94±0.30c | 1.96±0.01c | 1.55±0.04c | 10.29±0.23c | 1.70±0.22a | 530.46±25.20ab | 97.88±12.30a |
A3 | 8.29±0.10de | 11.37±0.25b | 2.21±0.07b | 1.64±0.03b | 11.00±0.07bc | 1.62±0.22ab | 466.44±30.10bc | 94.79±0.37a |
A4 | 8.19±0.07e | 12.28±0.29a | 2.43±0.09a | 1.89±0.01a | 12.77±0.32a | 1.37±0.13bc | 557.25±53.33a | 89.06±6.33a |
A5 | 8.39±0.03cd | 8.08±0.14e | 1.64±0.21d | 1.02±0.01d | 11.39±0.97b | 1.70±0.13a | 389.52±10.71d | 68.89±4.94b |
Table 1 Soil chemical properties in different fertilization treatments
施肥处理 Fertilizationtreatments | pH | 有机碳质量分数 w(total organic carbon)/ (g∙kg-1) | 全氮质量分数 w(total nitrogen)/ (g∙kg-1) | 全磷质量分数 w(total phosphorus)/ (g∙kg-1) | 硝态氮质量分数 w(nitrate-nitrogen)/ (mg∙kg-1) | 铵态氮质量分数 w(ammonium-nitrogen)/ (mg∙kg-1) | 微生物量碳质量分数 w(microbial biomass carbon)/ (mg∙kg-1) | 微生物量氮质量分数 w(microbial biomass nitrogen)/ (mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
A0 | 8.71±0.03a | 8.97±0.11d | 1.23±0.18e | 0.98±0.01d | 6.39±0.10e | 1.17±0.08c | 365.97±32.76d | 69.12±6.04b |
A1 | 8.47±0.09bc | 11.03±0.19b | 2.08±0.04bc | 1.54±0.03c | 8.34±0.28d | 1.22±0.08c | 433.49±57.76cd | 86.62±11.14a |
A2 | 8.52±0.04b | 9.94±0.30c | 1.96±0.01c | 1.55±0.04c | 10.29±0.23c | 1.70±0.22a | 530.46±25.20ab | 97.88±12.30a |
A3 | 8.29±0.10de | 11.37±0.25b | 2.21±0.07b | 1.64±0.03b | 11.00±0.07bc | 1.62±0.22ab | 466.44±30.10bc | 94.79±0.37a |
A4 | 8.19±0.07e | 12.28±0.29a | 2.43±0.09a | 1.89±0.01a | 12.77±0.32a | 1.37±0.13bc | 557.25±53.33a | 89.06±6.33a |
A5 | 8.39±0.03cd | 8.08±0.14e | 1.64±0.21d | 1.02±0.01d | 11.39±0.97b | 1.70±0.13a | 389.52±10.71d | 68.89±4.94b |
处理 Fertilization treatments | pH | 有机碳 Total organic carbon | 全氮 Total nitrogen | 全磷 Total phosphorus | 硝态氮 Nitrate nitrogen | 铵态氮 Ammonium nitrogen | 微生物量碳 Microbial biomass carbon | 微生物量氮 Microbial biomass nitrogen |
---|---|---|---|---|---|---|---|---|
Chao1指数 Chao1 index | 0.074 | 0.169 | 0.074 | 0.175 | 0.031 | 0.124 | 0.058 | 0.122 |
Observed_species指数 Observed_species index | 0.025 | 0.188 | 0.049 | 0.148 | 0.035 | 0.119 | -0.059 | -0.014 |
PD_whole_tree指数 PD_whole_tree index | -0.038 | 0.084 | -0.160 | -0.060 | -0.019 | -0.170 | -0.106 | -0.291 |
Shannon指数 Shannon index | 0.447* | 0.140 | -0.030 | 0.147 | -0.521** | -0.187 | -0.008 | 0.313 |
Table 2 Correlation analysis between soil CO2-assimilating bacterial α-diversity index and soil chemical properties
处理 Fertilization treatments | pH | 有机碳 Total organic carbon | 全氮 Total nitrogen | 全磷 Total phosphorus | 硝态氮 Nitrate nitrogen | 铵态氮 Ammonium nitrogen | 微生物量碳 Microbial biomass carbon | 微生物量氮 Microbial biomass nitrogen |
---|---|---|---|---|---|---|---|---|
Chao1指数 Chao1 index | 0.074 | 0.169 | 0.074 | 0.175 | 0.031 | 0.124 | 0.058 | 0.122 |
Observed_species指数 Observed_species index | 0.025 | 0.188 | 0.049 | 0.148 | 0.035 | 0.119 | -0.059 | -0.014 |
PD_whole_tree指数 PD_whole_tree index | -0.038 | 0.084 | -0.160 | -0.060 | -0.019 | -0.170 | -0.106 | -0.291 |
Shannon指数 Shannon index | 0.447* | 0.140 | -0.030 | 0.147 | -0.521** | -0.187 | -0.008 | 0.313 |
Figure 2 Soil CO2-assimilating bacteria community composition and relative abundance at phylum (a), class (b) and genus (c) level with different fertilization treatments
[1] |
BERG I A, 2011. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways[J]. Applied and Environmental Microbiology, 77(6): 1925-1936.
DOI URL |
[2] |
HUANG X Z, WANG C, LIU Q, et al., 2018. Abundance of microbial C02-fixing genes during the late rice season in a long-term management paddy field amended with straw and straw-derived biochar[J]. Canadian Journal of Soil Science, 98(2): 306-316.
DOI URL |
[3] |
KARL-HEINZ E, SEBASTIAAN L, PATRICK M, et al., 2017. Land management: Data availability and process understanding for global change studies[J]. Global Change Biology, 23(2): 512-533.
DOI URL |
[4] |
NANBA K, KING G M, DUNFIELD K, 2004. Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase[J]. Applied and Environmental Microbiology, 70(4):2245-2253.
DOI URL |
[5] |
QIN J, LI M, ZHANG H F, et al., 2021. Nitrogen Deposition Reduces the Diversity and Abundance of cbbL Gene-Containing CO2-Fixing Microorganisms in the Soil of the Stipa baicalensis Steppe[J]. Frontiers in microbiology, DOI: 10.3389/fmicb.2021.570908.
DOI |
[6] | SELESI D, SCHMID M, HARTMANN A, 2005. Diversity of green-like and red-like ribulose-1.5-bisphosphate carboxylase/oxygenase large- subunit genes (cbbL) in differently managed agricultural soils[J]. Applied and Environmental Microbiology, 171(1): 175-184. |
[7] |
SMITH P, 2004, Carbon sequestration in croplands: the potential in Europe and the global context[J]. European Journal of Agronomy, 20(3): 229-236.
DOI URL |
[8] | STOCKDALE E A, SHEPHERD M A, FORTUNE S, et al., 2002. Soil fertility in organic farming systems-fundamentally different?[J]. Soil Use and Management, 18(1): 301-308. |
[9] |
TOLLI J, KING G M, 2005. Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils[J]. Applied and Environmental Microbiology, 71(12): 8411-8418.
DOI URL |
[10] |
XIAO K Q, BAO P, BAO Q L, et al., 2014. Quantitative analyses of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils[J]. FEMS Microbiology Ecology, 87(1): 89-101.
DOI URL |
[11] |
YUAN H Z, GE T D, WU X H, et al., 2012. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1, 5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil[J]. Applied Microbiology and Biotechnology, 95(4): 1061-1071.
DOI URL |
[12] |
YUAN H Z, GE T D, ZOU S Y, et al., 2013. Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large subunit gene abundance in soils[J]. Biology and Fertility of Soils, 49(5): 609-616.
DOI URL |
[13] |
ZHAO K, KONG W D, WANG F, et al., 2018. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric C02fixation capacity than meadow soils[J]. Soil Biology and Biochemistry, 127: 230-238.
DOI URL |
[14] |
ZHOU Z F, WEI W L, SHI X J, et al., 2019. Twenty-six years of chemical fertilization decreased soil RubisCO activity and changed the ecological characteristics of soil cbbL-carrying bacteria in an entisol[J]. Applied Soil Ecology, 141: 1-9.
DOI URL |
[15] | 鲍士旦, 2000. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社. |
BAO S D, 2000. Soil and agriculture chemistry analysis[M]. 3rd Edition. Beijing: China Agriculture Press. | |
[16] | 陈晓娟, 吴小红, 简燕, 等, 2014. 农田土壤自养微生物碳同化潜力及其功能基因数量、关键酶活性分析[J]. 环境科学, 35(3): 1144-1150. |
CHEN X J, WU X H, JIAN Y, et al., 2014. Carbon dioxide assimilation potential, functional gene amount and RubisCO activity of autotrophic microorganisms in agricultural soils[J]. Environmental Science, 35(3): 1144-1150. | |
[17] | 戴雅婷, 闫志坚, 解继红, 等, 2017. 基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究[J]. 土壤学报, 54(3): 735-748. |
DAI Y T, YAN Z J, XIE J H, et al., 2017. Soil bacteria diversity in rhizosphere under two types of vegetation restoration based on high throughput sequencing[J]. Acta Pedologica Sinica, 54(3): 735-748. | |
[18] | 俄胜哲, 丁宁平, 李利利, 等, 2018. 长期施肥条件下黄土高原黑垆土作物产量与土壤碳氮的关系[J]. 应用生态学报, 29(12): 4047-4055. |
E S Z, DING N P, LI L L, et al., 2018. Relationship of crop yield and soil organic carbon and nitrogen under long-term fertilization in black loessial soil region on the Loess Plateau in China[J]. Chinese Journal of Applied Ecology, 29(12): 4047-4055. | |
[19] | 高静, SAID M, 岳琳艳, 等, 2018. 藏北高原草甸土壤固碳微生物群落特征随海拔和季节的变化[J]. 生态学报, 38(11): 3816-3824. |
GAO J, SAID M, YU L Y, et al., 2018. Changes in CO2-fixing microbial community characteristics with elevation and season in alpine meadow soils on the northern Tibetan Plateau[J]. Acta Ecologica Sinica, 38(11): 3816-3824. | |
[20] | 李倩, 马琨, 冶秀香, 等, 2018. 不同培肥方式对土壤有机碳与微生物群落结构的影响[J]. 中国生态农业学报, 26(12): 1866-1875. |
LI Q, MA K, YE X X, et al., 2018. Effect of fertilization managements on soil organic carbon and microbial community structure[J]. Chinese Journal of Eco-Agriculture, 26(12): 1866-1875. | |
[21] | 刘红梅, 安克锐, 王慧, 等, 2020. 不同施肥措施对华北潮土区玉米田土壤微生物碳源代谢多样性的影响[J]. 农业环境科学学报, 39(10): 2336-2344. |
LIU H M, AN K R, WANG H, et al., 2020. Effects of fertilization regimes on the metabolic diversity of microbial carbon sources in a maize field of fluvo-aquic soil in North China[J]. Journal of Agro-Environment Science, 39(10):2336-2344. | |
[22] | 刘茗, 曹林桦, 刘彩霞, 等, 2021. 亚热带4种典型森林植被土壤固碳细菌群落结构及数量特征[J]. 土壤学报, 58(4): 1028-1039. |
LIU M, CAO L H, LIU C X, et al., 2021. Characterization of population and community structure of carbon-sequestration bacteria in soils under four types of forest vegetations typical of subtropical zone[J]. Acta Pedologica Sinica, 58(4): 1028-1039. | |
[23] | 刘琼, 魏晓梦, 吴小红, 等, 2017. 稻田土壤固碳功能微生物群落结构和数量特征[J]. 环境科学, 38(2): 760-768. |
LIU Q, WEI X M, WU X H, et al., 2017. Characteristic of abundances and diversity of carbon dioxide fixation microbes in paddy soils[J]. Environmental Science, 38(2): 760-768. | |
[24] | 陆海飞, 郑金伟, 余喜初, 等, 2015. 长期无机有机肥配施对红壤性水稻土微生物群落多样性及酶活性的影响[J]. 植物营养与肥料学报, 21(3): 632-643. |
LU H F, ZENG J W, YU X C, et al., 2015. Microbial community diversity and enzyme activity of red paddy soil under long-term combined inorganic-organic fertilization[J]. Journal of Plant Nutrition and Fertilizer, 21(3): 632-643. | |
[25] | 苏鑫, 郭迎岚, 卢嫚, 等, 2020. 3种碳添加对退化农田土壤固碳细菌群落结构多样性的影响[J]. 环境科学学报, 40(1): 234-241. |
SU X, GUO Y L, LU M, et al., 2020. Effects of three kinds of carbon addition on community structure diversity of CO2-assimilating bacterial in degraded farmland soil[J]. Acta Scientiae Circumstantiae, 40(1): 234-241. | |
[26] | 吴金水, 林启美, 黄巧云, 等,. 2006. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社. |
WU J S, LIN Q M, HUANG Q Y, et al., 2006. Method for measuring soil microbial biomass and its application[M]. Beijing: China Meteorological Press. | |
[27] | 张双双, 靳振江, 贾远航, 等, 2019. 岩溶地区不同土地利用方式土壤固碳细菌群落结构特征[J]. 环境科学, 40(1): 412-420. |
ZHANG S S, JIN Z J, JIA Y H, et al., 2019. Community structure of CO2-fixing soil bacteria from different land use types in Karst areas[J]. Environmental Science, 40(1): 412-420.
DOI URL |
[1] | HOU Hui, YAN Peixuan, XIE Qinmi, ZHAO Hongliang, PANG Danbo, CHEN Lin, LI Xuebin, HU Yang, LIANG Yongliang, NI Xilu. Characterization of Arbuscular Mycorrhizal Fungal Community Diversity in the Rhizosphere Soils of Prunus mongolica Scrub of Helan Mountain [J]. Ecology and Environment, 2023, 32(5): 857-865. |
[2] | JIANG Yongwei, DING Zhenjun, YUAN Junbin, ZHANG Zheng, LI Yang, WEN Qingchun, WANG Yeyao, JIN Xiaowei. Study on Benthic Macroinvertebrates Community Structure and Water Quality Evaluation in Main Rivers of Liaoning Province [J]. Ecology and Environment, 2023, 32(5): 969-979. |
[3] | WANG Yun, ZHENG Xilai, CAO Min, LI Lei, SONG Xiaoran, LIN Xiaolei, GUO Kai. Study on Denitrification Performance and Control Factors in Brackish-Freshwater Transition Zone of Coastal Aquifer [J]. Ecology and Environment, 2023, 32(5): 980-988. |
[4] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
[5] | HU Fang, LIU Jutao, WEN Chunyun, HAN Liu, WEN Hui. Phytoplankton Community Structure and Evaluation of Aquatic Ecological Conditions in Fu River Basin [J]. Ecology and Environment, 2023, 32(4): 744-755. |
[6] | YU Fei, ZENG Hailong, FANG Huaiyang, FU Lingfang, LIN Shu, DONG Jiahao. Spatio-temporal Variation Characteristics of Phytoplankton Functional Groups and Water Quality Evaluation in the Typical Tidal River Network [J]. Ecology and Environment, 2023, 32(4): 756-765. |
[7] | SHENG Meijun, LI Shengjun, YANG Xinyue, WANG Rui, LI Jie, LI Gang, XIU Weiming. Changes of Soil Enzyme Activities in Cropland with Different Land Use Intensities in Fluvo-aquic Soil Area, North China [J]. Ecology and Environment, 2023, 32(2): 299-308. |
[8] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[9] | ZHU Yihao, LI Qingmei, LIU Xiaoli, LI Na, SONG Fengling, CHEN Weifeng. Characteristics of Soil Microbial Community in Newly Cultivated Land under Different Land Consolidation Types [J]. Ecology and Environment, 2022, 31(5): 909-917. |
[10] | WANG Yingcheng, YAO Shiting, JIN Xin, YU Wenzhen, LU Guangxin, WANG Junbang. Comparative Study on Soil Bacterial Diversity of Degraded Alpine Meadow in the Sanjiangyuan Region [J]. Ecology and Environment, 2022, 31(4): 695-703. |
[11] | XIA Kai, DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu. Changes of Soil Bacterial Community Structure and Diversity from Conversion of Masson Pine Secondary Forest to Slash Pine and Chinese Fir Plantations [J]. Ecology and Environment, 2022, 31(3): 460-469. |
[12] | SONG Xiuli, HUANG Ruilong, KE Caijie, HUANG Wei, ZHANG Wu, TAO Bo. Effects of Different Cropping Systems on Bacterial Community Structure and Diversity in Continuous Cropping Soil [J]. Ecology and Environment, 2022, 31(3): 487-496. |
[13] | YANG Hu, WANG Peiyao, LI Xiaowei, WANG Jifei, YANG Junlong. Distribution of Soil Fungal Diversity and Community Structure in Different Vegetation Types on the Eastern Slopes of Helan Mountains [J]. Ecology and Environment, 2022, 31(2): 239-247. |
[14] | ZHANG Xiaoli, WANG Guoli, CHANG Fangdi, ZHANG Hongyuan, PANG Huancheng, ZHANG Jianli, WANG Jing, JI Hongjie, LI Yuyi. Effects of Microbial Agents on Physicochemical Properties and Microbial Flora of Rhizosphere Saline-alkali Soil [J]. Ecology and Environment, 2022, 31(10): 1984-1992. |
[15] | BAI Haifeng, WANG Yirui, SONG Jinxi, KONG Feihe, ZHANG Xuexian, LI Qi. Characteristics of Plankton Community Structure and Its Relation to Environmental Factors in Weihe River, China [J]. Ecology and Environment, 2022, 31(1): 117-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn