Ecology and Environment ›› 2022, Vol. 31 ›› Issue (3): 487-496.DOI: 10.16258/j.cnki.1674-5906.2022.03.007
• Research Articles • Previous Articles Next Articles
SONG Xiuli1(), HUANG Ruilong1, KE Caijie1, HUANG Wei1, ZHANG Wu1,*(
), TAO Bo2,*(
)
Received:
2021-10-11
Online:
2022-03-18
Published:
2022-05-25
Contact:
ZHANG Wu,TAO Bo
宋秀丽1(), 黄瑞龙1, 柯彩杰1, 黄蔚1, 章武1,*(
), 陶波2,*(
)
通讯作者:
章武,陶波
作者简介:
宋秀丽(1984年生),女,讲师,博士,主要研究方向土壤资源与土壤生态。E-mail: songxiuli5251@163.com
基金资助:
CLC Number:
SONG Xiuli, HUANG Ruilong, KE Caijie, HUANG Wei, ZHANG Wu, TAO Bo. Effects of Different Cropping Systems on Bacterial Community Structure and Diversity in Continuous Cropping Soil[J]. Ecology and Environment, 2022, 31(3): 487-496.
宋秀丽, 黄瑞龙, 柯彩杰, 黄蔚, 章武, 陶波. 不同种植方式对连作土壤细菌群落结构和多样性的影响[J]. 生态环境学报, 2022, 31(3): 487-496.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2022.03.007
土壤化学性质 Soil chemical properties | 处理 Treatment | ||||
---|---|---|---|---|---|
CK | FS | CS | WS | SC | |
w(OM)/(g∙kg-1) | 74.22±2.71a | 60.53±8.41ab | 54.12±1.44bc | 46.04±1.91c | 74.02±3.62a |
w(N)/(mg∙kg-1) | 318±11.86b | 364±2.08ab | 311±7.54b | 248±8.39c | 387±37.54a |
w(P)/(mg∙kg-1) | 29.33±0.88c | 12.33±0.88e | 38.33±1.20b | 47.33±0.88a | 25.00±0.58d |
w(K)/(mg∙kg-1) | 313±13.22a | 228±0.58b | 152±11.32c | 231±2.52b | 323±1.76a |
pH | 6.29±0.04a | 6.13±0.05b | 6.25±0.01a | 6.19±0.04ab | 6.24±0.01ab |
w(Cu)/(mg∙kg-1) | 0.84±0.04c | 0.65±0.02d | 1.33±0.04b | 1.84±0.04a | 1.29±0.01b |
w(Zn)/(mg∙kg-1) | 0.19±0.01c | 0.46±0.09b | 0.14±0.04c | 0.50±0.03b | 0.69±0.02a |
w(Fe)/(mg∙kg-1) | 136.86±0.55d | 244±4.02b | 208±9.10c | 196±3.47c | 304±0.69a |
w(Mn)/(mg∙kg-1) | 35.09±0.21a | 10.91±0.23e | 13.95±0.72d | 16.48±0.54c | 32.54±0.19b |
w(B)/(mg∙kg-1) | 0.37±0.03ab | 0.30±0.00a | 1.02±0.64a | 0.96±0.11a | 0.70±0.27a |
Table 1 Soil chemical properties of different cropping systems
土壤化学性质 Soil chemical properties | 处理 Treatment | ||||
---|---|---|---|---|---|
CK | FS | CS | WS | SC | |
w(OM)/(g∙kg-1) | 74.22±2.71a | 60.53±8.41ab | 54.12±1.44bc | 46.04±1.91c | 74.02±3.62a |
w(N)/(mg∙kg-1) | 318±11.86b | 364±2.08ab | 311±7.54b | 248±8.39c | 387±37.54a |
w(P)/(mg∙kg-1) | 29.33±0.88c | 12.33±0.88e | 38.33±1.20b | 47.33±0.88a | 25.00±0.58d |
w(K)/(mg∙kg-1) | 313±13.22a | 228±0.58b | 152±11.32c | 231±2.52b | 323±1.76a |
pH | 6.29±0.04a | 6.13±0.05b | 6.25±0.01a | 6.19±0.04ab | 6.24±0.01ab |
w(Cu)/(mg∙kg-1) | 0.84±0.04c | 0.65±0.02d | 1.33±0.04b | 1.84±0.04a | 1.29±0.01b |
w(Zn)/(mg∙kg-1) | 0.19±0.01c | 0.46±0.09b | 0.14±0.04c | 0.50±0.03b | 0.69±0.02a |
w(Fe)/(mg∙kg-1) | 136.86±0.55d | 244±4.02b | 208±9.10c | 196±3.47c | 304±0.69a |
w(Mn)/(mg∙kg-1) | 35.09±0.21a | 10.91±0.23e | 13.95±0.72d | 16.48±0.54c | 32.54±0.19b |
w(B)/(mg∙kg-1) | 0.37±0.03ab | 0.30±0.00a | 1.02±0.64a | 0.96±0.11a | 0.70±0.27a |
Figure 1 Differences of soil bacterial community structure in different cropping systems(a) Principal component analysis of soil bacterial community (PCA diagram); (b) Similarity tree of soil bacterial community. CK: fallow; FS: fallow soybean rotation; CS: corn soybean rotation; WS: wheat soybean rotation; SC: soybean continuous cropping
多样性指数 Diversity index | CK | FS | CS | WS | SC |
---|---|---|---|---|---|
Chao1 | 4798±35b | 5541±205a | 4740±134b | 4592±49b | 4504±127b |
ACE | 4803±27b | 5553±156a | 4659±179b | 4563±35b | 4509±106b |
Shannon | 6.47±0.02b | 6.76±0.08a | 6.54±0.08b | 6.57±0.03b | 6.45±0.06b |
Table 2 Effects of different cropping systems on bacterial community abundance and diversity
多样性指数 Diversity index | CK | FS | CS | WS | SC |
---|---|---|---|---|---|
Chao1 | 4798±35b | 5541±205a | 4740±134b | 4592±49b | 4504±127b |
ACE | 4803±27b | 5553±156a | 4659±179b | 4563±35b | 4509±106b |
Shannon | 6.47±0.02b | 6.76±0.08a | 6.54±0.08b | 6.57±0.03b | 6.45±0.06b |
Figure 2 Venn diagram of soil bacteria OTUs under different cropping systems Different colors represent different cropping systems, and cross areas represent jointly owned species. Numbers represent the number of species
处理 Treatment | 潜在有益菌的相对丰度 Relative abundance of potentially beneficial bacteria | |||||
---|---|---|---|---|---|---|
硝化螺旋菌 Nitrospira/% | 根瘤菌 Rhizobium/% | 芽孢杆菌 Bacillus/% | 厌氧蝇菌 Anaerolinea/%×10 | 固氮菌 Azotobacter/%×102 | 甲烷八叠球菌 Methanosarcina/%×102 | |
CK | 0.32±0.01b | 0.05±0.00b | 0.01±0.00d | 0.00±0.06b | 0.00±0.00b | 0.00±0.00b |
FS | 0.68±0.06a | 0.05±0.01b | 0.02±0.00d | 0.31±0.01a | 0.37±0.19a | 0.12±0.12a |
CS | 0.34±0.01b | 0.22±0.02a | 0.07±0.00b | 0.01±0.01b | 0.00±0.00b | 0.00±0.00b |
WS | 0.37±0.02b | 0.22±0.04a | 0.12±0.01a | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b |
SC | 0.21±0.02c | 0.32±0.06a | 0.05±0.01c | 0.02±0.01b | 0.00±0.00b | 0.00±0.00b |
Table 3 Relative abundance of potentially beneficial bacteria in different cropping systems
处理 Treatment | 潜在有益菌的相对丰度 Relative abundance of potentially beneficial bacteria | |||||
---|---|---|---|---|---|---|
硝化螺旋菌 Nitrospira/% | 根瘤菌 Rhizobium/% | 芽孢杆菌 Bacillus/% | 厌氧蝇菌 Anaerolinea/%×10 | 固氮菌 Azotobacter/%×102 | 甲烷八叠球菌 Methanosarcina/%×102 | |
CK | 0.32±0.01b | 0.05±0.00b | 0.01±0.00d | 0.00±0.06b | 0.00±0.00b | 0.00±0.00b |
FS | 0.68±0.06a | 0.05±0.01b | 0.02±0.00d | 0.31±0.01a | 0.37±0.19a | 0.12±0.12a |
CS | 0.34±0.01b | 0.22±0.02a | 0.07±0.00b | 0.01±0.01b | 0.00±0.00b | 0.00±0.00b |
WS | 0.37±0.02b | 0.22±0.04a | 0.12±0.01a | 0.00±0.00b | 0.00±0.00b | 0.00±0.00b |
SC | 0.21±0.02c | 0.32±0.06a | 0.05±0.01c | 0.02±0.01b | 0.00±0.00b | 0.00±0.00b |
菌门 Phylum | 有机质 OM | 有效N Available N | 有效P Available P | 有效K Available K | pH | 有效Cu Available Cu | 有效Zn Available Zn | 有效Mn Available Mn | 有效Fe Available Fe |
---|---|---|---|---|---|---|---|---|---|
Proteobacteria | -0.59* | 0.67** | 0.82** | ||||||
Acidobacteria | 0.64* | 0.55* | -0.72** | -0.81** | |||||
Bacteroidetes | 0.60* | 0.52* | 0.60* | 0.64* | |||||
Actinobacteria | -0.66** | -0.61* | -0.70** |
Table 4 Correlations between dominant phyla of soil bacteria and soil chemical properties
菌门 Phylum | 有机质 OM | 有效N Available N | 有效P Available P | 有效K Available K | pH | 有效Cu Available Cu | 有效Zn Available Zn | 有效Mn Available Mn | 有效Fe Available Fe |
---|---|---|---|---|---|---|---|---|---|
Proteobacteria | -0.59* | 0.67** | 0.82** | ||||||
Acidobacteria | 0.64* | 0.55* | -0.72** | -0.81** | |||||
Bacteroidetes | 0.60* | 0.52* | 0.60* | 0.64* | |||||
Actinobacteria | -0.66** | -0.61* | -0.70** |
菌属 Genus | 菌门 Phylum | N | P | K | OM | pH | Cu | Zn | Fe | Mn | B |
---|---|---|---|---|---|---|---|---|---|---|---|
Gp4 | Acidobacteria | 0.52* | -0.66** | -0.68** | -0.55* | ||||||
Gp6 | Acidobacteria | 0.65** | -0.67** | 0.77** | -0.76** | 0.56* | |||||
Gemmatimonas | Gemmatimonadetes | -0.71** | -0.70** | ||||||||
Gp1 | Acidobacteria | -0.68** | 0.71** | -0.61* | |||||||
Gaiella | Actinobacteria | -0.60* | -0.54* | ||||||||
WPS-1 | candidate_division_WPS-1 | -0.63* | -0.53* | -0.55* | -0.70** | ||||||
Flavobacterium | Bacteroidetes | 0.80** | 0.58* | 0.91** | |||||||
Gp3 | Acidobacteria | 0.68** | |||||||||
Rhizomicrobium | Proteobacteria | -0.71** | -0.71** | ||||||||
Rhodanobacter | Proteobacteria | -0.58* | 0.55* | -0.58* | -0.74** | 0.60* | -0.61 | ||||
Terrimonas | Bacteroidetes | 0.76** | -0.52* | 0.66** | |||||||
Opitutus | Verrucomicrobia | 0.52 | 0.76** | 0.54* | |||||||
Pedobacter | Bacteroidetes | -0.71** | 0.69** | -0.64** | 0.77** |
Table 5 Correlations between potentially beneficial bacteria and soil chemical properties
菌属 Genus | 菌门 Phylum | N | P | K | OM | pH | Cu | Zn | Fe | Mn | B |
---|---|---|---|---|---|---|---|---|---|---|---|
Gp4 | Acidobacteria | 0.52* | -0.66** | -0.68** | -0.55* | ||||||
Gp6 | Acidobacteria | 0.65** | -0.67** | 0.77** | -0.76** | 0.56* | |||||
Gemmatimonas | Gemmatimonadetes | -0.71** | -0.70** | ||||||||
Gp1 | Acidobacteria | -0.68** | 0.71** | -0.61* | |||||||
Gaiella | Actinobacteria | -0.60* | -0.54* | ||||||||
WPS-1 | candidate_division_WPS-1 | -0.63* | -0.53* | -0.55* | -0.70** | ||||||
Flavobacterium | Bacteroidetes | 0.80** | 0.58* | 0.91** | |||||||
Gp3 | Acidobacteria | 0.68** | |||||||||
Rhizomicrobium | Proteobacteria | -0.71** | -0.71** | ||||||||
Rhodanobacter | Proteobacteria | -0.58* | 0.55* | -0.58* | -0.74** | 0.60* | -0.61 | ||||
Terrimonas | Bacteroidetes | 0.76** | -0.52* | 0.66** | |||||||
Opitutus | Verrucomicrobia | 0.52 | 0.76** | 0.54* | |||||||
Pedobacter | Bacteroidetes | -0.71** | 0.69** | -0.64** | 0.77** |
菌属 Genus | N | P | K | OM | pH | Cu | Zn | Fe | Mn | B |
---|---|---|---|---|---|---|---|---|---|---|
Nitrospira | 0.78** | 0.53* | 0.52* | 0.76** | ||||||
Rhizobium | -0.56* | -0.71** | -0.75** | -0.79** | ||||||
Bacillu | -0.59* | -0.52* | -0.84** | |||||||
Anaerolinea | 0.60* | 0.53* | 0.68** | 0.73** | ||||||
Azotobacter | 0.57* | 0.57* | 0.61* | |||||||
Methanosarcina | 0.64* | 0.52* | 0.57* |
Table 6 Correlations between potentially beneficial bacteria and soil chemical properties
菌属 Genus | N | P | K | OM | pH | Cu | Zn | Fe | Mn | B |
---|---|---|---|---|---|---|---|---|---|---|
Nitrospira | 0.78** | 0.53* | 0.52* | 0.76** | ||||||
Rhizobium | -0.56* | -0.71** | -0.75** | -0.79** | ||||||
Bacillu | -0.59* | -0.52* | -0.84** | |||||||
Anaerolinea | 0.60* | 0.53* | 0.68** | 0.73** | ||||||
Azotobacter | 0.57* | 0.57* | 0.61* | |||||||
Methanosarcina | 0.64* | 0.52* | 0.57* |
[1] |
AI C, LIANG G Q, SUN J W, et al., 2015. Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils[J]. Soil Biology and Biochemistry, 80: 70-78.
DOI URL |
[2] |
BENITEZ M S, OSBORNE S L, LEHMAN R M, 2017. Previous crop and rotation history effects on maize seedling health and associated rhizosphere microbiome[J]. Scientific Reports, 7(1): 15709.
DOI URL |
[3] |
EDGAR R C, 2013. UPARSE: Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 10(10): 996-998.
DOI URL |
[4] |
FAN F L, ZHANG F S, LU Y H, 2011. Linking plant identity and interspecific competition to soil nitrogen cycling through ammonia oxidizer communities[J]. Soil Biology and Biochemistry, 43(1): 46-54.
DOI URL |
[5] |
FIERER N, LAUBERR C L, RAMIREZ K S, et al., 2012. Comparative metagenomics, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME journal, 6(5): 1007-1017.
DOI URL |
[6] |
HAMID M I, HUSSAIN M, WU Y P, et al., 2017. Successive soybean-monoculture cropping assembles rhizosphere microbial communities for the soil suppression of soybean cyst nematode[J]. FEMS Microbiol Ecology, 93(1): fiw222.
DOI URL |
[7] |
LI J, WEN Y, LI X, et al., 2018. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain[J]. Soil and Tillage Research, 175: 281-290.
DOI URL |
[8] |
LI X G, DING C F, ZHANG T L, et al., 2014. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing[J]. Soil Biology and Biochemistry, 72: 11-18.
DOI URL |
[9] |
LI X Z, RUI J P, MAO Y J, et al., 2014. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar[J]. Soil Biology and Biochemistry, 68: 392-401.
DOI URL |
[10] |
LIU H, PAN F J, HAN X Z, et al., 2019. Response of soil fungal community structure to long-term continuous soybean cropping[J]. Frontiers in Microbiology, 9: 3316.
DOI URL |
[11] |
LIU J J, SUI Y Y, YU Z H, et al., 2014. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry, 70: 113-122.
DOI URL |
[12] |
LIU J J, YU Z H, YAO Q, et al., 2017. Distinct soil bacterial communities in response to the cropping system in a Mollisol of northeast China[J]. Applied Soil Ecology, 119: 407-416.
DOI URL |
[13] |
MENDES R, KRUIJT M, DE BRUIJN I, et al., 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 332(6033): 1097-1100.
DOI URL |
[14] |
MO A S, QIU Z Q, HE Q, et al., 2016. Effect of continuous monocropping of tomato on soil microorganism and microbial biomass carbon[J]. Communications in Soil Science and Plant Analysis, 47(9): 1069-1077.
DOI URL |
[15] |
NAVARRO-NOYA Y E, GOMEZ-ACATA S, MONTOYA-CIRIACO N, et al., 2013. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem[J]. Soil Biology and Biochemistry, 65: 86-95.
DOI URL |
[16] | OFEK-LALZAR M, SELA N, GOLDMAN-VORONOV M, et al., 2014. Niche and host-associated functional signatures of the root surface microbiome[J]. Nature Communications, 5(1): 1-9. |
[17] |
PANG G, CAI F, LI R X, et al., 2017. Trichoderma-enriched organic fertilizer can mitigate microbiome degeneration of monocropped soil to maintain better plant growth[J]. Plant and Soil, 416(1-2): 181-192.
DOI URL |
[18] |
PEREZ-BRANDAN C, ARZENO J L, HUIDOBRO J, et al., 2014. The effect of crop sequences on soil microbial, chemical and physical indicators and its relationship with soybean sudden death syndrome (complex of Fusarium species)[J]. Spanish Journal of Agricultural Research, 12(1): 252-264.
DOI URL |
[19] |
PII Y, MIMMO T, TOMASI N, et al., 2015. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review[J]. Biology and Fertility of Soils, 51(4): 403-415.
DOI URL |
[20] | SCHREINER K, HAGN A, KYSELKOVA M, et al., 2010. Comparison of barley succession and take-all disease as environmental factors shaping the rhizobacterial community during take-all decline[J]. American Society for Microbiology, 76(14): 4703-4712. |
[21] |
SMITH R G, GROSS K L, ROBERTSON G P, 2008. Effects of crop diversity on agroecosystem function: Crop yield response[J]. Ecosystems, 11(3): 355-366.
DOI URL |
[22] |
TAN Y, CUI Y S, LI H Y, et al., 2016. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices[J]. Microbiological Research, 194: 10-19.
DOI URL |
[23] |
TIAN W, WANG L, LI Y, et al., 2015. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen[J]. Agriculture, Ecosystems & Environment, 213: 219-227.
DOI URL |
[24] | VENTER O, SANDERSON E W, MAGRACH A, et al., 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation[J]. Nature communications, 7(1): 1-11. |
[25] |
WANG B B, LI R, RUAN Y Z, et al., 2015. Pineapple-banana rotation reduced the amount of Fusarium oxysporum more than maize-banana rotation mainly through modulating fungal communities[J]. Soil Biology and Biochemistry, 86: 77-86.
DOI URL |
[26] |
WANG Y, TU C, CHENG L, et al., 2011. Long-term impact of farming practices on soil organic carbon and nitrogen pools and microbial biomass and activity[J]. Soil and Tillage Research, 117: 8-16.
DOI URL |
[27] | XIONG W, ZHAO Q Y, XUE C, et al., 2016. Comparison of fungal community in black pepper-vanilla and vanilla monoculture systems associated with vanilla Fusarium wilt disease[J]. Frontiers in Microbiology, 7: 117. |
[28] |
XUN W B, HUANG T, ZHAO J, et al., 2015. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities[J]. Soil Biology and Biochemistry, 90: 10-18.
DOI URL |
[29] |
YIN C T, JONES K L, PETERSON D E, et al., 2010. Members of soil bacterial communities sensitive to tillage and crop rotation[J]. Soil Biology and Biochemistry, 42(12): 2111-2118.
DOI URL |
[30] |
ZENG Q C, AN S S, LIU Y, 2017. Soil bacterial community response to vegetation succession after fencing in the grassland of China[J]. Science of the Total Environment, 609: 2-10.
DOI URL |
[31] | 蔡元锋, 吴宇澄, 王书伟, 等, 2014. 典型淹水稻田土壤微生物群落的基因转录活性及其主要生理代谢过程[J]. 微生物学报, 54(9): 1033-1044. |
CAI Y F, WU Y C, WANG S W, et al., 2014. Microbial metabolism in typical flooded paddy soils[J]. Acta Microbiologica Sinica, 54(9): 1033-1044. | |
[32] | 陈雪丽, 2015. 黑土区连作大豆根际微生物群落特征研究[D]. 北京: 中国科学院大学. |
CHEN X L, 2015. Characterization of microorganism community in the rhizosphere of continuous cropping soybean in black soil[D]. Beijing: University of Chinese Academy of Sciences. | |
[33] | 韩丽梅, 鞠会艳, 王树起, 等, 2000. 大豆连作微量元素营养障碍与调控效果研究[J]. 吉林农业大学学报, 22(1): 73-80. |
HAN L M, JU H Y, WANG S Q, et al., 2000. The nutrtion barriers and regulating effects of micro element in continuous cropping soybean[J]. Journal of Jilin Agricultural University, 22(1): 73-80. | |
[34] | 李锐, 刘瑜, 褚贵新, 2015. 不同种植方式对绿洲农田土壤酶活性与微生物多样性的影响[J]. 应用生态学报, 26(2): 490-496. |
LI R, LIU Y, CHU G X, 2015. Effects of different cropping patterns on soil enzyme activities and soil microbial community diversity in oasis farmland[J]. Chinese Journal of Applied Ecology, 26(2): 490-496. | |
[35] | 李玉洁, 王慧, 赵建宁, 等, 2015. 耕作方式对农田土壤理化因子和生物学特性的影响[J]. 应用生态学报, 26(3): 939-948. |
LI Y J, WANG H, ZHAO J N, et al., 2015. Effects of tillage methods on soil physicochemical properties and biological characteristics in farmland: A review[J]. Chinese Journal of Applied Ecology, 26(3): 939-948. | |
[36] | 刘株秀, 刘俊杰, 徐艳霞, 等, 2019. 不同大豆连作年限对黑土细菌群落结构的影响[J]. 生态学报, 39(12): 4337-4346. |
LIU Z X, LIU J J, XU Y X, et al., 2019. Effects of continuous cropping years of soybean on the bacterial community structure in black soil[J]. Acta Ecologica Sinica, 39(12): 4337-4346. | |
[37] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 10-150. |
LU R K, 2000. Soil agrochemical analysis methods[M]. Beijing: China Agricultural Science and Technology Press: 10-150. | |
[38] | 潘孝晨, 唐海明, 肖小平, 等, 2019. 不同耕作和秸秆还田模式对紫云英-双季稻土壤微生物生物量碳、氮含量的影响[J]. 生态环境学报, 28(8): 1585-1595. |
PAN X C, TANG H M, XIAO X P, et al., 2019. Effects of different soil tillage and returning crop residues systems on soil microbial biomass carbon and nitrogen under Chinese milk vetch and double-cropping rice field[J]. Ecology and Environmental Sciences, 28(8): 1585-1595. | |
[39] | 沈冰洁, 祝贞科, 袁红朝, 等, 2015. 不同种植方式对亚热带红壤微生物多样性的影响[J]. 环境科学, 36(10): 3839-3844. |
SHEN B J, ZHU Z K, YUAN H C, et al., 2015. Effects of Different Plantation Type on the Abundance and Diversity of Soil Microbes in Subtropical Red Soils[J]. Environmental Science, 36(10): 3839-3844. | |
[40] | 宋杰, 2016. 连作土壤寄生真菌多样性及对大豆胞囊线虫抑制作用[D]. 哈尔滨: 东北农业大学. |
SONG J, 2016. Diversity and suppressive effect of parasitic fungi on soybean cyst nematode in soybean monoculture soil[D]. Harbin: Northeast Agricultural University. | |
[41] | 宋长青, 吴金水, 陆雅海, 等, 2013. 中国土壤微生物学研究10年回顾[J]. 地球科学进展, 28(10): 1087-1105. |
SONG C Q, WU J S, LU Y H, et al., 2013. Advances of soil microbiology in the last decade in China[J]. Advances in Earth Science, 28(10): 1087-1105. | |
[42] | 王闯进, 2014. 大豆连作对根际土壤生物群落的影响[D]. 北京: 中国农业大学. |
WANG C J, 2014. The impact of continuous soybean monoculture on soil communities in the rhizosphere[D]. Beijing: China Agricultural University. | |
[43] | 王芳, 陈井生, 刘大伟, 2018. 不同种植方式大豆根际土壤细菌多样性分析[J]. 作物学报, 44(10): 1539-1547. |
WANG F, CHEN J S, LIU D W, 2018. Bacterial Diversity of Soybean Rhizosphere Soil under Different Cropping Patterns[J]. Acta Agronomica Sinica, 44(10): 1539-1547.
DOI URL |
|
[44] | 夏围围, 贾仲君, 2014. 高通量测序和DGGE分析土壤微生物群落的技术评价[J]. 微生物学报, 54(12): 1489-1499. |
XIA W W, JIA Z J, 2014. Comparative analysis of soil microbial communities by pyrosequencing and DGGE[J]. Acta Microbiologica Sinica, 54(12): 1489-1499. | |
[45] | 徐光辉, 王洋, 王继红, 等, 2018. 休耕轮作对农田土壤微生物量碳的影响[J]. 土壤通报, 49(4): 897-901. |
XU G H, WANG Y, WANG J H, et al., 2018. Effect of Fallow Rotation on Microbial Biomass Carbon in Farmland[J]. Chinese Journal of Soil Science, 49(4): 897-901. | |
[46] |
周岚, 杨永, 王占海, 等, 2013. 玉米-大豆轮作及氮肥施用对土壤细菌群落结构的影响[J]. 作物学报, 39(11): 2016-2022.
DOI |
ZHOU L, YANG Y, WANG Z H, et al., 2013. Influence of Maize-Soybean Rotation and N Fertilizer on Bacterial Community Composition[J]. Acta Agronomica Sinica, 39(11): 2016-2022.
DOI |
|
[47] | 朱琳, 曾椿淋, 李雨青, 等, 2017. 基于高通量测序的大豆连作土壤细菌群落多样性分析[J]. 大豆科学, 36(3): 419-424. |
ZHU L, ZENG C L, LI Y Q, et al., 2017. The characteristic of bacterial community diversity in soybean field with continuous cropping based on the high-throughput sequencing[J]. Soybean Science, 36(3): 419-424. | |
[48] | 朱英波, 史凤玉, 张瑞敬, 等, 2014. 黑龙江大豆轮作和连作土壤细菌群落多样性比较[J]. 植物保护学报, 41(4): 403-409. |
ZHU Y B, SHI F Y, ZHANG R J, et al., 2014. Comparison of bacterial diversity in rotational and continuous soybean cropping soils in Heilongjiang[J]. Journal of Plant Protection, 41(4): 403-409. |
[1] | CHEN Junfang, WU Xian, LIU Xiaolin, LIU Juan, YANG Jiarong, LIU Yu. Shaping Characteristics of Elemental Stoichiometry on Microbial Diversity under Different Soil Water Contents [J]. Ecology and Environment, 2023, 32(5): 898-909. |
[2] | WANG Jie, SHAN Yan, MA Lan, SONG Yanjing, WANG Xiangyu. Effects of Straw and Biochar Synergistic Returning on the Improvement of Salt-affected Soil in the Yellow River Delta [J]. Ecology and Environment, 2023, 32(1): 90-98. |
[3] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[4] | HUA Li, CHENG Taozhi, LIANG Zhiyong. Remediation Effect of Petroleum-Contaminated Soil by Immobilized Mixed Bacteria in Northern Shaanxi Province of China [J]. Ecology and Environment, 2022, 31(8): 1610-1615. |
[5] | ZHU Yihao, LI Qingmei, LIU Xiaoli, LI Na, SONG Fengling, CHEN Weifeng. Characteristics of Soil Microbial Community in Newly Cultivated Land under Different Land Consolidation Types [J]. Ecology and Environment, 2022, 31(5): 909-917. |
[6] | WANG Yingcheng, YAO Shiting, JIN Xin, YU Wenzhen, LU Guangxin, WANG Junbang. Comparative Study on Soil Bacterial Diversity of Degraded Alpine Meadow in the Sanjiangyuan Region [J]. Ecology and Environment, 2022, 31(4): 695-703. |
[7] | LIU Zhijun, CUI Lijuan, LI Wei, LI Jing, LEI Yinru, ZHU Yinuo, WANG Rumiao, DOU Zhiguo. Effects of Spartina alterniflora Invasion on the Diversity and Community Structure of nirS-type Denitrifying Bacteria in Yancheng Coastal Wetlands [J]. Ecology and Environment, 2022, 31(4): 704-714. |
[8] | LIU Hongmei, HAI Xiang, AN Kerui, ZHANG Haifang, WANH Hui, ZHANG Yanjun, WANG Lili, ZHANG Guilong, YANG Dianlin. Effects of Different Fertilization Regimes on Community Structure Diversity of CO2-assimilating Bacteria in Maize Field of Fluvo-aquic Soil in North China [J]. Ecology and Environment, 2022, 31(4): 715-722. |
[9] | DENG Xiao, WU Chunyuan, YANG Guisheng, LI Yi, LI Qinfen. Improvement Effect of Coconut-shell Biochar on Coastal Soil in Hainan [J]. Ecology and Environment, 2022, 31(4): 723-731. |
[10] | XIA Kai, DENG Pengfei, MA Ruihao, WANG Fei, WEN Zhengyu, XU Xiaoniu. Changes of Soil Bacterial Community Structure and Diversity from Conversion of Masson Pine Secondary Forest to Slash Pine and Chinese Fir Plantations [J]. Ecology and Environment, 2022, 31(3): 460-469. |
[11] | YANG Hu, WANG Peiyao, LI Xiaowei, WANG Jifei, YANG Junlong. Distribution of Soil Fungal Diversity and Community Structure in Different Vegetation Types on the Eastern Slopes of Helan Mountains [J]. Ecology and Environment, 2022, 31(2): 239-247. |
[12] | ZHANG Xiaoli, WANG Guoli, CHANG Fangdi, ZHANG Hongyuan, PANG Huancheng, ZHANG Jianli, WANG Jing, JI Hongjie, LI Yuyi. Effects of Microbial Agents on Physicochemical Properties and Microbial Flora of Rhizosphere Saline-alkali Soil [J]. Ecology and Environment, 2022, 31(10): 1984-1992. |
[13] | LIU Bingru. Response of Thermal Adaptability of Soil Microbial Respiration and Microbial Community and Diversity to Global Climate Change: A Review [J]. Ecology and Environment, 2022, 31(1): 181-186. |
[14] | JIA Chenbo, GUO Yang, MA Chenglian, SU Jianyu, XU Chunyan. Difference on Soil Microbial Community and Function of Healthy and Diseased Plants of Lycium barbarum Ningqi-1 [J]. Ecology and Environment, 2021, 30(9): 1831-1841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn