Ecology and Environment ›› 2024, Vol. 33 ›› Issue (7): 1096-1106.DOI: 10.16258/j.cnki.1674-5906.2024.07.011
• Research Article [Environmental Science] • Previous Articles Next Articles
XIE Jie1,2(), CHEN Yuanhua1, XU Changxu1, YANG Tao1, LI Jianguo1, DONG Aiqin1,*(
)
Received:
2024-05-08
Online:
2024-07-18
Published:
2024-09-04
Contact:
DONG Aiqin
谢杰1,2(), 陈院华1, 徐昌旭1, 杨涛1, 李建国1, 董爱琴1,*(
)
通讯作者:
董爱琴
作者简介:
谢杰(1983年生),男,副研究员,博士,主要从事受污染耕地安全利用研究。E-mail: jerous.xie@outlook.com
基金资助:
CLC Number:
XIE Jie, CHEN Yuanhua, XU Changxu, YANG Tao, LI Jianguo, DONG Aiqin. Effects of Long-term Returning of Astragalus sinicus L. on Content and Forms of DOM and Cd in Paddy Soil[J]. Ecology and Environment, 2024, 33(7): 1096-1106.
谢杰, 陈院华, 徐昌旭, 杨涛, 李建国, 董爱琴. 紫云英长期还田对稻田土壤DOM和Cd形态影响研究[J]. 生态环境学报, 2024, 33(7): 1096-1106.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.07.011
试验点 | F处理 | F+M处理 |
---|---|---|
YJ | 早稻: 尿素330 kg∙hm−2, 过磷酸钙470 kg∙hm−2, 氯化钾190 kg∙hm−2 晚稻: 尿素390 kg∙hm−2, 过磷酸钙470 kg∙hm−2, 氯化钾240 kg∙hm−2 | 早稻: 翻压紫云英 (22500 kg∙hm−2), 化肥减为F处理的60% 晚稻: 同F处理 |
NC | 早稻: 尿素330 kg∙hm−2, 过磷酸钙375 kg∙hm−2, 氯化钾240 kg∙hm−2 晚稻: 尿素390 kg∙hm−2, 过磷酸钙375 kg∙hm−2, 氯化钾240 kg∙hm−2 | 早稻: 翻压紫云英 (22500 kg∙hm−2), 化肥同F处理 晚稻: 同F处理 |
FC | 早稻: 尿素330 kg∙hm−2, 过磷酸钙470 kg∙hm−2, 氯化钾190 kg∙hm−2 晚稻: 尿素390 kg∙hm−2, 过磷酸钙470 kg∙hm−2, 氯化钾240 kg∙hm−2 | 早稻: 翻压紫云英 (22500 kg∙hm−2), 化肥减为F处理的60% 晚稻: 同F处理 |
Table 1 Application of fertilizer in different treatments at each experimental site
试验点 | F处理 | F+M处理 |
---|---|---|
YJ | 早稻: 尿素330 kg∙hm−2, 过磷酸钙470 kg∙hm−2, 氯化钾190 kg∙hm−2 晚稻: 尿素390 kg∙hm−2, 过磷酸钙470 kg∙hm−2, 氯化钾240 kg∙hm−2 | 早稻: 翻压紫云英 (22500 kg∙hm−2), 化肥减为F处理的60% 晚稻: 同F处理 |
NC | 早稻: 尿素330 kg∙hm−2, 过磷酸钙375 kg∙hm−2, 氯化钾240 kg∙hm−2 晚稻: 尿素390 kg∙hm−2, 过磷酸钙375 kg∙hm−2, 氯化钾240 kg∙hm−2 | 早稻: 翻压紫云英 (22500 kg∙hm−2), 化肥同F处理 晚稻: 同F处理 |
FC | 早稻: 尿素330 kg∙hm−2, 过磷酸钙470 kg∙hm−2, 氯化钾190 kg∙hm−2 晚稻: 尿素390 kg∙hm−2, 过磷酸钙470 kg∙hm−2, 氯化钾240 kg∙hm−2 | 早稻: 翻压紫云英 (22500 kg∙hm−2), 化肥减为F处理的60% 晚稻: 同F处理 |
试验点 | 处理 | w(OM)/(g∙kg−1) | w(DOC)/(mg∙kg−1) | |||||
---|---|---|---|---|---|---|---|---|
0‒20 cm | 20‒40 cm | 40‒60 cm | 0‒20 cm | 20‒40 cm | 40‒60 cm | |||
YJ | F | 28.4±1.19c | 12.8±2.88c | 5.31±1.15b | 310.1±10.8d | 121.1±17.6c | 75.3±13.5d | |
F+M | 30.8±2.15c | 15.9±2.58bc | 5.72±0.63b | 362.9±16.6c | 173.1±24.0ab | 77.7±9.0d | ||
NC | F | 36.9±1.69b | 17.1±2.40ab | 9.06±0.86a | 259.7±18.5e | 151.3±16.2bc | 108.8±11.2ab | |
F+M | 43.1±3.03a | 21.0±2.47a | 10.6±1.65a | 410.8±11.7b | 206.9±17.8a | 118.8±15.6a | ||
FC | F | 34.4±4.30c | 7.62±1.10d | 6.00±0.66b | 436.3±22.2b | 121.3±16.9c | 88.3±8.0bc | |
F+M | 38.0±2.59b | 7.80±1.85d | 6.93±1.50b | 583.4±39.7a | 134.9±33.5bc | 95.2±6.2bc |
Table 2 Organic matter and DOC content in different soil layers between different treatments
试验点 | 处理 | w(OM)/(g∙kg−1) | w(DOC)/(mg∙kg−1) | |||||
---|---|---|---|---|---|---|---|---|
0‒20 cm | 20‒40 cm | 40‒60 cm | 0‒20 cm | 20‒40 cm | 40‒60 cm | |||
YJ | F | 28.4±1.19c | 12.8±2.88c | 5.31±1.15b | 310.1±10.8d | 121.1±17.6c | 75.3±13.5d | |
F+M | 30.8±2.15c | 15.9±2.58bc | 5.72±0.63b | 362.9±16.6c | 173.1±24.0ab | 77.7±9.0d | ||
NC | F | 36.9±1.69b | 17.1±2.40ab | 9.06±0.86a | 259.7±18.5e | 151.3±16.2bc | 108.8±11.2ab | |
F+M | 43.1±3.03a | 21.0±2.47a | 10.6±1.65a | 410.8±11.7b | 206.9±17.8a | 118.8±15.6a | ||
FC | F | 34.4±4.30c | 7.62±1.10d | 6.00±0.66b | 436.3±22.2b | 121.3±16.9c | 88.3±8.0bc | |
F+M | 38.0±2.59b | 7.80±1.85d | 6.93±1.50b | 583.4±39.7a | 134.9±33.5bc | 95.2±6.2bc |
试验点 | 处理 | 类蛋白质组分 | 类腐殖质组分 | |||||
---|---|---|---|---|---|---|---|---|
0‒20 cm | 20‒40 cm | 40‒60 cm | 0‒20 cm | 20‒40 cm | 40‒60 cm | |||
YJ | F | 7.76±1.37ab | 16.6±3.04a | 23.8±2.00a | 92.2±1.37cd | 83.4±3.04c | 76.2±2.00b | |
F+M | 6.99±1.24abc | 13.6±5.73ab | 22.9±3.77a | 93.0±1.24bcd | 86.4±5.73bc | 77.1±3.77b | ||
NC | F | 8.32±0.37a | 19.2±3.40a | 26.5±3.65a | 91.7±0.37d | 80.8±3.40c | 73.5±3.65b | |
F+M | 6.50±1.19bc | 7.47±3.98b | 12.2±1.21b | 93.5±1.19bc | 92.5±3.98ab | 87.8±1.21a | ||
FC | F | 5.94±0.05c | 14.4±4.25ab | 21.4±4.40a | 94.1±0.05b | 85.6±4.25bc | 78.6±4.40b | |
F+M | 3.97±0.24d | 5.05±1.61c | 11.4±3.95b | 96.0±0.24a | 94.9±1.61a | 88.6±3.95a |
Table 3 The proportion of protein-like and humic-like substances in different experiment sites and soil layers %
试验点 | 处理 | 类蛋白质组分 | 类腐殖质组分 | |||||
---|---|---|---|---|---|---|---|---|
0‒20 cm | 20‒40 cm | 40‒60 cm | 0‒20 cm | 20‒40 cm | 40‒60 cm | |||
YJ | F | 7.76±1.37ab | 16.6±3.04a | 23.8±2.00a | 92.2±1.37cd | 83.4±3.04c | 76.2±2.00b | |
F+M | 6.99±1.24abc | 13.6±5.73ab | 22.9±3.77a | 93.0±1.24bcd | 86.4±5.73bc | 77.1±3.77b | ||
NC | F | 8.32±0.37a | 19.2±3.40a | 26.5±3.65a | 91.7±0.37d | 80.8±3.40c | 73.5±3.65b | |
F+M | 6.50±1.19bc | 7.47±3.98b | 12.2±1.21b | 93.5±1.19bc | 92.5±3.98ab | 87.8±1.21a | ||
FC | F | 5.94±0.05c | 14.4±4.25ab | 21.4±4.40a | 94.1±0.05b | 85.6±4.25bc | 78.6±4.40b | |
F+M | 3.97±0.24d | 5.05±1.61c | 11.4±3.95b | 96.0±0.24a | 94.9±1.61a | 88.6±3.95a |
组分 | 试验点 | 处理 | 土层 | ||
---|---|---|---|---|---|
0‒20 cm | 20‒40 cm | 40‒60 cm | |||
类酪氨酸组分 | YJ | F | 14.7±3.24aAB | 4.66±1.25bAB | 2.08±0.15cC |
F+M | 16.3±3.21aAB | 7.54±3.38bA | 2.52±0.14bBC | ||
NC | F | 12.7±0.85aAB | 5.36±0.80bAB | 3.49±0.45cABC | |
F+M | 14.8±4.30aAB | 6.19±2.90bAB | 4.77±0.98cA | ||
FC | F | 17.6±1.41aA | 6.84±1.51bAB | 4.42±1.28bA | |
F+M | 11.2±0.44aB | 2.87±1.65 bB | 3.75±0.79bAB | ||
类色氨酸组分 | YJ | F | 28.2±4.29aAB | 24.1±5.71 aAB | 20.3±3.15aB |
F+M | 30.3±5.09aAB | 26.5±6.01abAB | 19.4±4.09bB | ||
NC | F | 24.3±2.79aB | 31.1±2.49aA | 30.2±4.53aA | |
F+M | 34.0±5.16aA | 19.4±7.35bB | 17.6±1.35bBC | ||
FC | F | 31.1±0.81aAB | 19.6±5.73bB | 20.8±2.52bB | |
F+M | 34.7±1.96aA | 20.0±5.14bB | 13.0±3.51bC | ||
类富里酸组分 | YJ | F | 171±7.76aE | 73.7±7.50bC | 45.8±8.87cC |
F+M | 202±10.7aD | 108±17.1bB | 47.1±4.31cC | ||
NC | F | 145±15.9aE | 95.2±15.6bBC | 64.5±8.47cAB | |
F+M | 249±11.3aC | 136±11.8bA | 75.4±6.30cA | ||
FC | F | 281±18.7aB | 70.5±6.43bC | 52.3±6.46cBC | |
F+M | 355±20.2aA | 85.4±11.1bBC | 58.6±5.31cBC | ||
类胡敏酸组分 | YJ | F | 95.7±2.99aC | 18.7±4.52bB | 7.12±2.11cB |
F+M | 114.2±4.42aB | 31.0±3.37bB | 8.69±1.93cB | ||
NC | F | 77.4±3.64aD | 19.7±4.39bB | 10.7±1.49cB | |
F+M | 113±5.80aB | 50.4±1.39bA | 21.0±8.03cA | ||
FC | F | 106±1.59aBC | 24.4±6.49bB | 10.8±0.87cB | |
F+M | 183±18.1aA | 36.6±5.97bB | 19.9±4.93cA |
Table 4 The mass fraction of DOM substances in different soil layer between experimental sites and treatments mg?kg?1
组分 | 试验点 | 处理 | 土层 | ||
---|---|---|---|---|---|
0‒20 cm | 20‒40 cm | 40‒60 cm | |||
类酪氨酸组分 | YJ | F | 14.7±3.24aAB | 4.66±1.25bAB | 2.08±0.15cC |
F+M | 16.3±3.21aAB | 7.54±3.38bA | 2.52±0.14bBC | ||
NC | F | 12.7±0.85aAB | 5.36±0.80bAB | 3.49±0.45cABC | |
F+M | 14.8±4.30aAB | 6.19±2.90bAB | 4.77±0.98cA | ||
FC | F | 17.6±1.41aA | 6.84±1.51bAB | 4.42±1.28bA | |
F+M | 11.2±0.44aB | 2.87±1.65 bB | 3.75±0.79bAB | ||
类色氨酸组分 | YJ | F | 28.2±4.29aAB | 24.1±5.71 aAB | 20.3±3.15aB |
F+M | 30.3±5.09aAB | 26.5±6.01abAB | 19.4±4.09bB | ||
NC | F | 24.3±2.79aB | 31.1±2.49aA | 30.2±4.53aA | |
F+M | 34.0±5.16aA | 19.4±7.35bB | 17.6±1.35bBC | ||
FC | F | 31.1±0.81aAB | 19.6±5.73bB | 20.8±2.52bB | |
F+M | 34.7±1.96aA | 20.0±5.14bB | 13.0±3.51bC | ||
类富里酸组分 | YJ | F | 171±7.76aE | 73.7±7.50bC | 45.8±8.87cC |
F+M | 202±10.7aD | 108±17.1bB | 47.1±4.31cC | ||
NC | F | 145±15.9aE | 95.2±15.6bBC | 64.5±8.47cAB | |
F+M | 249±11.3aC | 136±11.8bA | 75.4±6.30cA | ||
FC | F | 281±18.7aB | 70.5±6.43bC | 52.3±6.46cBC | |
F+M | 355±20.2aA | 85.4±11.1bBC | 58.6±5.31cBC | ||
类胡敏酸组分 | YJ | F | 95.7±2.99aC | 18.7±4.52bB | 7.12±2.11cB |
F+M | 114.2±4.42aB | 31.0±3.37bB | 8.69±1.93cB | ||
NC | F | 77.4±3.64aD | 19.7±4.39bB | 10.7±1.49cB | |
F+M | 113±5.80aB | 50.4±1.39bA | 21.0±8.03cA | ||
FC | F | 106±1.59aBC | 24.4±6.49bB | 10.8±0.87cB | |
F+M | 183±18.1aA | 36.6±5.97bB | 19.9±4.93cA |
Figure 4 Correlation between individual and cumulative proportion of Cd forms and content of DOM components,soil organic matter, and DOC in different soil layers
模型 | 未标准化系数 | 标准化系数 | t | 显著性 | 共线性统计 | r | 调整后r2 | 德宾-沃森值 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 标准错误 | Beta | 容差 | VIF | ||||||||
1 | 常量 | 77.2 | 4.22 | 18.3 | 0.000 | 0.593 | 0.339 | |||||
OM | −1.01 | 0.190 | −0.593 | −5.31 | 0.000 | 1.00 | 1.00 | |||||
2 | 常量 | 73.8 | 3.62 | 20.3 | 0.000 | 0.743 | 0.534 | |||||
OM | −2.38 | 0.330 | −1.41 | −7.23 | 0.000 | 0.233 | 4.30 | |||||
FU | 0.225 | 0.047 | 0.927 | 4.77 | 0.000 | 0.233 | 4.30 | |||||
3 | 常量 | 86.1 | 6.42 | 13.4 | 0.000 | 0.772 | 0.571 | 1.85 | ||||
OM | −2.17 | 0.330 | −1.28 | −6.58 | 0.000 | 0.214 | 4.66 | |||||
FU | 0.239 | 0.046 | 0.985 | 5.24 | 0.000 | 0.229 | 4.37 | |||||
TR | −0.760 | 0.326 | −0.276 | −2.33 | 0.024 | 0.575 | 1.74 |
Table 5 Summarization of the regression equation model of biologically active Cd forms proportion and soil organic matter factors
模型 | 未标准化系数 | 标准化系数 | t | 显著性 | 共线性统计 | r | 调整后r2 | 德宾-沃森值 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | 标准错误 | Beta | 容差 | VIF | ||||||||
1 | 常量 | 77.2 | 4.22 | 18.3 | 0.000 | 0.593 | 0.339 | |||||
OM | −1.01 | 0.190 | −0.593 | −5.31 | 0.000 | 1.00 | 1.00 | |||||
2 | 常量 | 73.8 | 3.62 | 20.3 | 0.000 | 0.743 | 0.534 | |||||
OM | −2.38 | 0.330 | −1.41 | −7.23 | 0.000 | 0.233 | 4.30 | |||||
FU | 0.225 | 0.047 | 0.927 | 4.77 | 0.000 | 0.233 | 4.30 | |||||
3 | 常量 | 86.1 | 6.42 | 13.4 | 0.000 | 0.772 | 0.571 | 1.85 | ||||
OM | −2.17 | 0.330 | −1.28 | −6.58 | 0.000 | 0.214 | 4.66 | |||||
FU | 0.239 | 0.046 | 0.985 | 5.24 | 0.000 | 0.229 | 4.37 | |||||
TR | −0.760 | 0.326 | −0.276 | −2.33 | 0.024 | 0.575 | 1.74 |
[1] |
ALESSANDRO P, RICCARDO S, ANTONIO D M, et al., 2019. Soil washing with solutions of humic substances from manure compost removes heavy metal contaminants as a function of humic molecular composition[J]. Chemosphere, 225: 150-156.
DOI PMID |
[2] | CERDÁN M, SÁNCHEZ-SÁNCHEZ A, JORDÁ J D, et al., 2016. Characterization of water dissolved organic matter under woody vegetation patches in semi-arid Mediterranean soils[J]. Science of The Total Environment, 553: 340-348. |
[3] | CHEN W, WESTERHOFF P, LEENHEER J A, et al., 2003. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 37(24): 5701-5710. |
[4] | CHOTPANTARAT S, CHUNHACHERDCHAI L, WIKINIYADHANEE R, et al., 2015. Effects of humic acid amendment on the mobility of heavy metals (Co, Cu, Cr, Mn, Ni, Pb, and Zn) in gold mine tailings in Thailand[J]. Arabian Journal of Geosciences, 8(9): 7589-7600. |
[5] | COBLE P G, 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 51(4): 325-346. |
[6] | FELLMAN J B, HOOD E, SPENCER R G M, 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review[J]. Limnology and Oceanography, 55(6): 2452-2462. |
[7] | GUSIATIN Z M, KULIKOWSKA D, KLIK B, 2020. New-generation washing agents in remediation of metal-polluted soils and methods for washing effluent treatment: A review[J]. International Journal of Environmental Research and Public Health, 17(17): 6220. |
[8] |
KALBITZ K, WENNRICH R, 1998. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter[J]. Science of The Total Environment, 209(1): 27-39.
PMID |
[9] | KLIK B, GUSIATIN Z M, KULIKOWSKA D, 2021. Quality of heavy metal-contaminated soil before and after column flushing with washing agents derived from municipal sewage sludge[J]. Scientific Reports, 11(1): 15773. |
[10] | OHNO T, FERNANDEZ I J, HIRADATE S, et al., 2007. Effects of soil acidification and forest type on water soluble soil organic matter properties[J]. Geoderma, 140(1): 176-187. |
[11] | RASHID I, MURTAZA G, DAR A A, et al., 2020. The influence of humic and fulvic acids on Cd bioavailability to wheat cultivars grown on sewage irrigated Cd-contaminated soils[J]. Ecotoxicology and Environmental Safety, 205: 111347. |
[12] | TESSIER A, CAMPBELL P G C, BISSON M, 1979. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 51(7): 844-851. |
[13] | WANG K, LIU Y H, SONG Z G, et al., 2019. Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils[J]. Ecotoxicology and Environmental Safety, 182: 109399. |
[14] | XIE J, DONG A Q, LIU J, et al., 2019. Relevance of dissolved organic matter generated from green manuring of Chinese milk vetch in relation to water-soluble cadmium[J]. Environmental Science and Pollution Research, 26(16): 16409-16421. |
[15] | 曹卫东, 包兴国, 徐昌旭, 等, 2017. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报, 23(6): 1450-1461. |
CAO W D, BAO X G, XU C X, et al., 2017. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizer, 23(6): 1450-1461. | |
[16] | 陈丽瑶, 连泽阳, 宋卫锋, 等, 2024. 不同外源Cd(II)对Pseudomonas aeruginosa EPS的胁迫效应——产量、组分、吸附特性变化及其机制[J]. 中国环境科学, 44(1): 537-547. |
CHEN L Y, LIAN Z Y, SONG W F, et al., 2024. Coercive effects of different exogenous Cd(II) on Pseudomonas aeruginosa EPS: Changes in yield, composition, adsorption characteristics and their mechanisms[J]. China Environmental Science, 44(1): 537-547. | |
[17] | 邓朝阳, 朱霞萍, 郭兵, 等, 2012. 不同性质土壤中镉的形态特征及其影响因素[J]. 南昌大学学报(工科版), 34(4): 341-346. |
DENG C Y, ZHU X P, GUO B, et al., 2012. Distribution and influence factors of Cd speciation on the soil with different properties[J]. Journal of Nanchang University (Engineering & Technology), 34(4): 341-346. | |
[18] | 丁昌璞, MARIA DE NOBILI, CECCANTI B, 1989. 绿肥分解产物中水溶性有机物质的伏安行为及其影响因素[J]. 土壤学报, 26(3): 331-336. |
DING C P, MARIA D N, CECCANTI B, 1989. Voltammetric behavior of water-soluble organic substances in decomposition products of green manures and its effecting factors[J]. Acta Pedologica Sinica, 26(3): 331-336. | |
[19] |
董爱琴, 陈院华, 杨涛, 等, 2024. 紫云英和石灰配施对水稻镉吸收的影响[J]. 浙江农业学报, 36(3): 600-612.
DOI |
DONG A Q, CHEN Y H, YANG T, et al., 2024. Effect of application of lime with Chinese milk vetch on the cadmium uptake in rice[J]. Acta Agriculturae Zhejiangensis, 36(3): 600-612.
DOI |
|
[20] | 高洁, 江韬, 李璐璐, 等, 2015. 三峡库区消落带土壤中溶解性有机质 (DOM) 吸收及荧光光谱特征[J]. 环境科学, 36(1): 151-162. |
GAO J, JIANG T, LI L L, et al., 2015. Ultraviolet-visible (UV-Vis) and fluorescence spectral characteristics of dissolved organic matter (DOM) in soils of water-level fluctuation zones of the three gorges reservoir region[J]. Environmental Science, 36(1): 151-162. | |
[21] | 国家环境保护局, 国家技术监督局,, 1997. 土壤质量铅、镉的测定石墨炉原子吸收分光光度法: GB/T 17141—1997[S]. 北京: 中国标准出版社. |
State Bureau of Environment Protection, National Bureau of Technical Supervision, 1997. Soil quality-determination of lead, cadmium-Graphite furnace atomic absorption spectrophotometry: GB/T 17141—1997[S]. Beijing: Standards press of China. | |
[22] | 胡梦淩, 曾和平, 2021. 不同来源腐殖质淋洗去除土壤中Cd、Pb的研究[J]. 环境污染与防治, 43(1): 14-19. |
HU M L, ZENG H P, 2021. The performance of different sources of humic substances for leaching removal of Cd and Pb from soils[J]. Environmental Pollution & Control, 43(1): 14-19. | |
[23] | 季蒙蒙, 王星星, 马欢欢, 等, 2021. 磷酸氨基酸盐对Cd污染土壤的淋洗效果[J]. 农业环境科学学报, 40(2): 329-337 |
JI M M, WANG X X, MA H H, et al., 2021. Removal of Cd from contaminated soil using amino acid salt[J]. Journal of Agro-Environment Science, 40(2): 329-337. | |
[24] | 江智敏, 郑宏斌, 张仲文, 等, 2016. 绿肥在湘西烟田中的腐解和养分释放动态研究[J]. 烟草科技, 48(6): 13-18. |
JIANG Z M, ZHENG H B, ZHANG Z W, et al., 2016. Dynamics of decomposition and nutrient release of green manures in tobacco fields in Xiangxi[J]. Tobacco Science & Technology, 48(6): 13-18. | |
[25] | 李廷强, 杨肖娥, 2004. 土壤中水溶性有机质及其对重金属化学与生物行为的影响[J]. 应用生态学报, 15(6): 1083-1087. |
LI T Q, YANG X E, 2004. Soil dissolved organic matter and its effect on chemical and biological behaviors of soil heavy metals[J]. Chinese Journal of Applied Ecology, 15(6): 1083-1087. | |
[26] | 刘彩玲, 何春梅, 王飞, 等, 2024. 紫云英压青结合稻秸还田对水稻的节肥增效作用[J]. 植物营养与肥料学报, 30(2): 279-288. |
LIU C L, HE C M, WANG F, et al., 2024. Co-incorporation of rice stubble and Chinese milk vetch saves fertilizer input and increases production efficiency of rice[J]. Journal of Plant Nutrition and Fertilizers, 30(2): 279-288. | |
[27] | 柳夏艳, 曹浩轩, 缪闯和, 等, 2023. 长期施用堆肥处理下潮土剖面水溶性有机物的三维荧光光谱研究[J]. 光谱学与光谱分析, 43(3): 674-684. |
LIU X Y, CAO H X, MIU C H, et al., 2023. Three-dimensional fluorescence spectra of dissolved organic matter in fluvo-aquic soil profile under long-term composting treatment[J]. Spectroscopy and Spectral Analysis, 43(3): 674-684. | |
[28] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 106-107. |
LU R K, 2000. Methods for agrochemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press: 106-107. | |
[29] | 宋莉, 韩上, 鲁剑巍, 等, 2015. 油菜秸秆、紫云英绿肥及其不同比例配施还田的腐解及养分释放规律研究[J]. 中国土壤与肥料 (3): 100-104. |
SONG L, HAN S, LU J W, et al., 2015. Study on characteristics of decomposing and nutrients releasing of different proportional mixture of rape straw and Chinese milk vetch in rice field[J]. Soil and Fertilizer Sciences in China (3): 100-104. | |
[30] | 王艮梅, 周立祥, 占新华, 等, 2004. 水田土壤中水溶性有机物的产生动态及对土壤中重金属活性的影响: 田间微区试验[J]. 环境科学学报, 24(5): 858-864. |
WANG G M, ZHOU L X, ZHAN X H, et al., 2004. Dynamics of dissolved organic matter and its effect on metal availability in paddy soil: Field micro-plot trials[J]. Acta Scientiae Circumstantiae, 24(5): 858-864. | |
[31] | 王浩, 章明奎, 2009. 有机质积累和酸化对污染土壤重金属释放潜力的影响[J]. 土壤通报, 40(3): 538-541. |
WANG H, ZHANG M K, 2009. Effects of Organic matter accumulation and acidification on release potential of heavy metals from polluted soils[J]. Chinese Journal of Soil Science, 40(3): 538-541. | |
[32] | 王齐磊, 江韬, 赵铮, 等, 2016. 三峡库区典型农业小流域水体中溶解性有机质的光谱特征[J]. 环境科学, 37(6): 2082-2092. |
WANG Q L, JIANG T, ZHAO Z, et al., 2016. Spectral characteristics of dissolved organic matter (DOM) in waters of typical agricultural watershed of three gorges reservoir areas[J]. Environmental Science, 37(6): 2082-2092. | |
[33] | 王胜, 季蒙蒙, 阮文权, 等, 2023. 沼渣腐殖质对Cd污染土壤的淋洗效果及性质影响[J]. 江苏农业学报, 39(5): 1169-1178. |
WANG S, JI M M, RUAN W Q, et al., 2023. Effects of biogas residue humus on the leaching efficiency and properties of Cd contaminated soil[J]. Jiangsu Journal of Agricultural Sciences, 39(5): 1169-1178. | |
[34] |
吴浩杰, 周兴, 鲁艳红, 等, 2017. 紫云英翻压对稻田土壤镉有效性及水稻镉积累的影响[J]. 中国农学通报, 33(16): 105-111.
DOI |
WU H J, ZHOU X, LU Y H, et al., 2017. Effects of Astragalus smicus on cadmium effectiveness in paddy soil and cadmium accumulation in rice plant[J]. Chinese Agricultural Science Bulletin, 33(16): 105-111. | |
[35] | 夏海林, 康丽春, 王飞, 等, 2018. 江西绿肥紫云英的研究[J]. 草业科学, 35(11): 2711-2721. |
XIA H L, KANG L C, WANG F, et al., 2018. The research status and prospect of Astragalus smicus as green manure in Jiangxi[J]. Pratacultural Science, 35(11): 2711-2721. | |
[36] |
谢杰, 董爱琴, 徐昌旭, 等, 2019. 紫云英长期还田对稻田土壤Cd含量与形态的影响[J]. 浙江农业学报, 31(12): 2084-2094.
DOI |
XIE J, DONG A Q, XU C X, et al., 2019. Impact of long-term returning of Astragalus sinicus L. on content and forms of Cd in different depths of paddy soils[J]. Acta Agriculturae Zhengjiangensis, 31(12): 2084-2094. | |
[37] | 颜志雷, 方宇, 陈济琛, 等, 2014. 连年翻压紫云英对稻田土壤养分和微生物学特性的影响[J]. 植物营养与肥料学报, 20(5): 1151-1160. |
YAN Z L, FANG Y, CHEN J C, et al., 2014. Effect of turning over Chinese milk vetch (Astragalus sinicus L.) on soil nutrients and microbial properties in paddy fields[J]. Journal of Plant Nutrition and Fertilizer, 20(5): 1151-1160. | |
[38] | 杨佳波, 曾希柏, 2007. 水溶性有机物在土壤中的化学行为及其对环境的影响[J]. 中国生态农业学报, 15(5): 206-211. |
YANG J B, ZENG X B, 2007. Behavior and environmental impact of soil dissolved organic matter[J]. Chinese Journal of Eco-Agriculture, 15(5): 206-211. | |
[39] | 杨志斌, 杨忠芳, 冯海艳, 等, 2008. 四川成都经济区土壤腐殖质重金属元素含量特征研究[J]. 土壤通报, 39(5): 1135-1139. |
YANG Z B, YANG Z F, FENG H Y, et al., 2008. Content characteristic of heavy metal in soil humus of Chengdu economic area in Sichuan[J]. Chinese Journal of Soil Science, 39(5): 1135-1139. | |
[40] | 姚瑶, 张世熔, 王怡君, 等, 2018. 3种环保型淋洗剂对重金属污染土壤的淋洗效果[J]. 环境工程学报, 12(7): 2039-2046. |
YAO Y, ZHANG S R, WANG Y J, et al., 2018. Effects of different environmentally friendly washing agents on removal of soil heavy metals[J]. Chinese Journal of Environmental Engineering, 12(7): 2039-2046. | |
[41] |
钟晓兰, 周生路, 黄明丽, 等, 2009. 土壤重金属的形态分布特征及其影响因素[J]. 生态环境学报, 18(4): 1266-1273.
DOI |
ZHONG X L, ZHOU S L, HUANG M L, et al., 2009. Chemical form distribution characteristic of soil heavy metals and its influencing factors[J]. Ecology and Environmental Sciences, 18(4): 1266-1273. |
[1] | SHI Hanzhi, LIU Fan, HUANG Yongdong, WU Zhichao, LI Furong, XU Shoujun, DENG Tenghaobo, WEN Dian, WANG Xu, WANG Fuhua, JIANG Qi, DU Ruiying. Effects of Dynamic Change of Dissolved Organic Matter in Soil on Water-Soluble Copper [J]. Ecology and Environment, 2021, 30(9): 1896-1902. |
[2] | GAO Feng, CHEN Xiaoling, YANG Wenfu, SHI Lijiang, WANG Wenwen. Study on the Absorption Characteristics of Different Types of Water Particles and CDOM in Summer in Taiyuan [J]. Ecology and Environment, 2021, 30(7): 1455-1469. |
[3] | HOU Suxia, LEI Xuyang, ZHANG Hui, DING Shujie, CUI Guangyu. Analysis of the Effect of Temperature on Vermicomposting of Municipal Sludge Based on EEM and PCR-DGGE [J]. Ecology and Environment, 2021, 30(5): 1060-1068. |
[4] | HUANG Cheng, WU Yueying, JI Hengkuan, CHEN Liming, LI Beiying, FU Chuanliang, LI Jianhong, WU Weidong, WU Zhipeng. Response of Iron Reduction Characteristics to DOM Molecular Properties under Anaerobic Conditions in Typical Paddy Soils of Hainan Island [J]. Ecology and Environment, 2021, 30(5): 957-967. |
[5] | MA Feiyang, FAN Tuantuan, SUN Xiaoping, MING Junde, WANG Shitong, ZHANG Yinghao, YAO Xin. DOM Fluorescence Characteristics and Sources in Different Regions of Dongting Lake [J]. Ecology and Environment, 2021, 30(12): 2370-2379. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn