Ecology and Environment ›› 2024, Vol. 33 ›› Issue (2): 202-211.DOI: 10.16258/j.cnki.1674-5906.2024.02.004
• Research Article [Ecology] • Previous Articles Next Articles
DING Hao1(), LI Changxin1, DING Jing1,2,*(
), LAN Hao1
Received:
2023-10-31
Online:
2024-02-18
Published:
2024-04-03
通讯作者:
丁静。E-mail: 作者简介:
丁昊(1999年生),男,硕士研究生,主要从事环境微生物研究。E-mail: ttdd199@outlook.com
基金资助:
CLC Number:
DING Hao, LI Changxin, DING Jing, LAN Hao. Genetic and Functional Diversity of N-damo Bacteria in Different Environments[J]. Ecology and Environment, 2024, 33(2): 202-211.
丁昊, 李长鑫, 丁静, 兰昊. n-damo细菌在不同生态环境中的遗传多样性和潜在功能研究[J]. 生态环境学报, 2024, 33(2): 202-211.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.02.004
环境分类 | 取样点 | 基因序列号 | 基因下载链接 |
---|---|---|---|
淡水 | 钱塘江, 中国 | KC503558−KC503613 | https://www.ncbi.nlm.nih.gov/nuccore/KC503558 |
黄河河口, 中国 | KP296952−KP297013 | https://www.ncbi.nlm.nih.gov/nuccore/KP296952 | |
东平湖和东昌湖, 中国 | KX827637−KX827722 | https://www.ncbi.nlm.nih.gov/nuccore/KX827637 | |
三峡水库, 中国 | KT355451−KT355465 | https://www.ncbi.nlm.nih.gov/nuccore/KT355481 | |
三峡水库, 中国 | KP708851−KP708984 | https://www.ncbi.nlm.nih.gov/nuccore/KP708851 | |
京北运河, 中国 | KX422868−KX423093 | https://www.ncbi.nlm.nih.gov/nuccore/KX422868 | |
密云水库, 中国 | KX138657−KX138999 | https://www.ncbi.nlm.nih.gov/nuccore/KX138657 | |
杭州西湖, 中国 | JX531998−JX532016 | https://www.ncbi.nlm.nih.gov/nuccore/JX531998 | |
密云水库, 中国 | KU213424−KU213471, KU238923−KU239099 | https://www.ncbi.nlm.nih.gov/nuccore/KU213424 | |
咸水 | 椒江口, 中国 | KC512249−KC512301 | https://www.ncbi.nlm.nih.gov/nuccore/KC512249 |
小干岛, 中国 | KM888217−KM888243 | https://www.ncbi.nlm.nih.gov/nuccore/KM888217 | |
巴丹吉林沙漠湖泊, 中国 | KX088716−KX088777 | https://www.ncbi.nlm.nih.gov/nuccore/KX088716 | |
长江入海口, 中国 | KX260358−KX260611 | https://www.ncbi.nlm.nih.gov/nuccore/KX260358 | |
漳江口, 中国 | KX511990−KX512001, KX512004, KX512006, KX523271 | https://www.ncbi.nlm.nih.gov/nuccore/KX511990 | |
富集 | 长期施肥的稻田, 中国 | KC935359−KC935361 | https://www.ncbi.nlm.nih.gov/nuccore/KC935359 |
济南市污水处理厂, 中国 | KY078436−KY078444 | https://www.ncbi.nlm.nih.gov/nuccore/KY078436 | |
小干岛, 中国 | KM888188−KM888216 | https://www.ncbi.nlm.nih.gov/nuccore/KM888188 | |
莱茵河, 荷兰 | FJ621548−FJ621550, FJ621557−FJ621562 | https://www.ncbi.nlm.nih.gov/nuccore/FJ621548 | |
湿地 | 下渚湖和西溪湿地, 中国 | KC905814−KC905856 | https://www.ncbi.nlm.nih.gov/nuccore/KC905814 |
下渚湖和西溪湿地, 中国 | KF769237−KF769268 | https://www.ncbi.nlm.nih.gov/nuccore/KF769237 | |
下渚湖湿地, 中国 | KF358721−KF358757 | https://www.ncbi.nlm.nih.gov/nuccore/KF358721 | |
珠江口, 中国 | KR348530−KR348718 | https://www.ncbi.nlm.nih.gov/nuccore/KR348530 | |
洱海湿地, 中国 | KY313904−KY314112 | https://www.ncbi.nlm.nih.gov/nuccore/KY313904 | |
人工湿地, 中国 | KP726359−KP726376 | https://www.ncbi.nlm.nih.gov/nuccore/KP726359 | |
长期施肥的水田, 中国 | JN704416−JN704466, KM403456−KM403485 | https://www.ncbi.nlm.nih.gov/nuccore/JN704416 |
Table 1 The information of downloaded 16S rRNA gene sequences
环境分类 | 取样点 | 基因序列号 | 基因下载链接 |
---|---|---|---|
淡水 | 钱塘江, 中国 | KC503558−KC503613 | https://www.ncbi.nlm.nih.gov/nuccore/KC503558 |
黄河河口, 中国 | KP296952−KP297013 | https://www.ncbi.nlm.nih.gov/nuccore/KP296952 | |
东平湖和东昌湖, 中国 | KX827637−KX827722 | https://www.ncbi.nlm.nih.gov/nuccore/KX827637 | |
三峡水库, 中国 | KT355451−KT355465 | https://www.ncbi.nlm.nih.gov/nuccore/KT355481 | |
三峡水库, 中国 | KP708851−KP708984 | https://www.ncbi.nlm.nih.gov/nuccore/KP708851 | |
京北运河, 中国 | KX422868−KX423093 | https://www.ncbi.nlm.nih.gov/nuccore/KX422868 | |
密云水库, 中国 | KX138657−KX138999 | https://www.ncbi.nlm.nih.gov/nuccore/KX138657 | |
杭州西湖, 中国 | JX531998−JX532016 | https://www.ncbi.nlm.nih.gov/nuccore/JX531998 | |
密云水库, 中国 | KU213424−KU213471, KU238923−KU239099 | https://www.ncbi.nlm.nih.gov/nuccore/KU213424 | |
咸水 | 椒江口, 中国 | KC512249−KC512301 | https://www.ncbi.nlm.nih.gov/nuccore/KC512249 |
小干岛, 中国 | KM888217−KM888243 | https://www.ncbi.nlm.nih.gov/nuccore/KM888217 | |
巴丹吉林沙漠湖泊, 中国 | KX088716−KX088777 | https://www.ncbi.nlm.nih.gov/nuccore/KX088716 | |
长江入海口, 中国 | KX260358−KX260611 | https://www.ncbi.nlm.nih.gov/nuccore/KX260358 | |
漳江口, 中国 | KX511990−KX512001, KX512004, KX512006, KX523271 | https://www.ncbi.nlm.nih.gov/nuccore/KX511990 | |
富集 | 长期施肥的稻田, 中国 | KC935359−KC935361 | https://www.ncbi.nlm.nih.gov/nuccore/KC935359 |
济南市污水处理厂, 中国 | KY078436−KY078444 | https://www.ncbi.nlm.nih.gov/nuccore/KY078436 | |
小干岛, 中国 | KM888188−KM888216 | https://www.ncbi.nlm.nih.gov/nuccore/KM888188 | |
莱茵河, 荷兰 | FJ621548−FJ621550, FJ621557−FJ621562 | https://www.ncbi.nlm.nih.gov/nuccore/FJ621548 | |
湿地 | 下渚湖和西溪湿地, 中国 | KC905814−KC905856 | https://www.ncbi.nlm.nih.gov/nuccore/KC905814 |
下渚湖和西溪湿地, 中国 | KF769237−KF769268 | https://www.ncbi.nlm.nih.gov/nuccore/KF769237 | |
下渚湖湿地, 中国 | KF358721−KF358757 | https://www.ncbi.nlm.nih.gov/nuccore/KF358721 | |
珠江口, 中国 | KR348530−KR348718 | https://www.ncbi.nlm.nih.gov/nuccore/KR348530 | |
洱海湿地, 中国 | KY313904−KY314112 | https://www.ncbi.nlm.nih.gov/nuccore/KY313904 | |
人工湿地, 中国 | KP726359−KP726376 | https://www.ncbi.nlm.nih.gov/nuccore/KP726359 | |
长期施肥的水田, 中国 | JN704416−JN704466, KM403456−KM403485 | https://www.ncbi.nlm.nih.gov/nuccore/JN704416 |
环境分类 | 取样点 | 基因序列号 | 基因下载链接 |
---|---|---|---|
淡水 | 琵琶湖, 日本 | AB661605−AB661625 | https://www.ncbi.nlm.nih.gov/nuccore/AB661605 |
三峡水库, 中国 | KT355466−KT355470 | https://www.ncbi.nlm.nih.gov/nuccore/KT355466 | |
三峡水库, 中国 | KP743748, KP743761−KP743802 | https://www.ncbi.nlm.nih.gov/nuccore/KP743748 | |
京北运河, 中国 | KX423094, KX423110, KX423121, KX423128, KX423138 KX423345, KX423347, KX423354, KX423357, KX423363, KX423366, KX423370-KX423372 | https://www.ncbi.nlm.nih.gov/nuccore/KX423094 | |
贝加尔湖, 俄罗斯 | MN603447−MN603470 | https://www.ncbi.nlm.nih.gov/nuccore/MN603447 | |
东江, 中国 | KX000960−KX001202, KX001578−KX001760 | https://www.ncbi.nlm.nih.gov/nuccore/KX000960 | |
密云水库, 中国 | KX083099—KX083138 | https://www.ncbi.nlm.nih.gov/nuccore/KX083099 | |
密云水库, 中国 | KX423253−KX423258, KX423261−KX423262, KX423267−KX423268, KX423271−KX423274, KX423277−KX423278, KX423283−KX423284, KX423287−KX423294, KX423299−KX423314, KX423322−KX423339 | https://www.ncbi.nlm.nih.gov/nuccore/KX423253 | |
东江, 中国 | KU301341−KU301381, KU301383, KU301385, KU301387, KU301390, KU301393, KU301395−KU301397, KU301399, KU301401, KU301403−KU301406, KU301408−KU301619, KU301621, KU301624, KU301628, KU301632, KU301636−KU301637, KU301640, KU301643, KU301646, KU301651−KU301654 | https://www.ncbi.nlm.nih.gov/nuccore/KU301341 | |
东江, 中国 | KT944916−KT944955, KT944959, KT944962− KT944963, KT944968, KT944970, KT944972, KT944974, KT944976, KT944983−KT944984, KT944990−KT944991, KT944994, KT944996 | https://www.ncbi.nlm.nih.gov/nuccore/KT944916 | |
东江, 中国 | KU052404, KU052413, KU052416−KU052427 | https://www.ncbi.nlm.nih.gov/nuccore/KU052404 | |
咸水 | 青海-西藏盐湖, 中国 | JQ429431−JQ429432 | https://www.ncbi.nlm.nih.gov/nuccore/JQ429431 |
椒江口, 中国 | KC512302−KC512381 | https://www.ncbi.nlm.nih.gov/nuccore/KC512302 | |
小干岛, 中国 | KM979290−KM979340 | https://www.ncbi.nlm.nih.gov/nuccore/KM979290 | |
长江河口, 中国 | KX268870−KX269065 | https://www.ncbi.nlm.nih.gov/nuccore/KX268870 | |
富集 | 稻田土壤, 日本 | AB767281−AB767293 | https://www.ncbi.nlm.nih.gov/nuccore/AB767281 |
稻田土壤, 中国 | KC935362−KC935371 | https://www.ncbi.nlm.nih.gov/nuccore/KC935362 | |
小干岛, 中国 | KM979290−KM979341 | https://www.ncbi.nlm.nih.gov/nuccore/KM979290 | |
济南市污水处理厂, 中国 | KY078446−KY078449 | https://www.ncbi.nlm.nih.gov/nuccore/KY078446 | |
稻田土壤, 中国 | MG397071−MG397099 | https://www.ncbi.nlm.nih.gov/nuccore/MG397071 | |
稻田土壤, 日本 | LC168160−LC168162 | https://www.ncbi.nlm.nih.gov/nuccore/LC168160 | |
湿地 | 布伦斯萨默海德泥炭地, 荷兰 | JX262153−JX262155 | https://www.ncbi.nlm.nih.gov/nuccore/JX262153 |
下渚湖和西溪湿地, 中国 | KC905884−KC905908 | https://www.ncbi.nlm.nih.gov/nuccore/KC905884 | |
米埔湿地, 中国 | KJ718849−KJ718873 | https://www.ncbi.nlm.nih.gov/nuccore/KJ718849 | |
下渚湖湿地, 中国 | KF358758−KF358771 | https://www.ncbi.nlm.nih.gov/nuccore/KF358758 | |
洱海湿地, 中国 | MF419820−MF420340 | https://www.ncbi.nlm.nih.gov/nuccore/MF419820 | |
长江下游稻田土壤, 中国 | KF546848−KF547007 | https://www.ncbi.nlm.nih.gov/nuccore/KF546848 | |
长期施肥的水田, 中国 | JN704402−JN704415 | https://www.ncbi.nlm.nih.gov/nuccore/JN704402 | |
下渚湖和西溪湿地, 中国 | KC905853−KC905883 | https://www.ncbi.nlm.nih.gov/nuccore/KC905853 | |
南岭国家自然保护区, 中国 | KU894736−KU894777 | https://www.ncbi.nlm.nih.gov/nuccore/KU894736 | |
水稻田和玉米田, 中国 | KX153202−KX153210 | https://www.ncbi.nlm.nih.gov/nuccore/KX153202 |
Table 2 The information of downloaded pmoA gene sequences
环境分类 | 取样点 | 基因序列号 | 基因下载链接 |
---|---|---|---|
淡水 | 琵琶湖, 日本 | AB661605−AB661625 | https://www.ncbi.nlm.nih.gov/nuccore/AB661605 |
三峡水库, 中国 | KT355466−KT355470 | https://www.ncbi.nlm.nih.gov/nuccore/KT355466 | |
三峡水库, 中国 | KP743748, KP743761−KP743802 | https://www.ncbi.nlm.nih.gov/nuccore/KP743748 | |
京北运河, 中国 | KX423094, KX423110, KX423121, KX423128, KX423138 KX423345, KX423347, KX423354, KX423357, KX423363, KX423366, KX423370-KX423372 | https://www.ncbi.nlm.nih.gov/nuccore/KX423094 | |
贝加尔湖, 俄罗斯 | MN603447−MN603470 | https://www.ncbi.nlm.nih.gov/nuccore/MN603447 | |
东江, 中国 | KX000960−KX001202, KX001578−KX001760 | https://www.ncbi.nlm.nih.gov/nuccore/KX000960 | |
密云水库, 中国 | KX083099—KX083138 | https://www.ncbi.nlm.nih.gov/nuccore/KX083099 | |
密云水库, 中国 | KX423253−KX423258, KX423261−KX423262, KX423267−KX423268, KX423271−KX423274, KX423277−KX423278, KX423283−KX423284, KX423287−KX423294, KX423299−KX423314, KX423322−KX423339 | https://www.ncbi.nlm.nih.gov/nuccore/KX423253 | |
东江, 中国 | KU301341−KU301381, KU301383, KU301385, KU301387, KU301390, KU301393, KU301395−KU301397, KU301399, KU301401, KU301403−KU301406, KU301408−KU301619, KU301621, KU301624, KU301628, KU301632, KU301636−KU301637, KU301640, KU301643, KU301646, KU301651−KU301654 | https://www.ncbi.nlm.nih.gov/nuccore/KU301341 | |
东江, 中国 | KT944916−KT944955, KT944959, KT944962− KT944963, KT944968, KT944970, KT944972, KT944974, KT944976, KT944983−KT944984, KT944990−KT944991, KT944994, KT944996 | https://www.ncbi.nlm.nih.gov/nuccore/KT944916 | |
东江, 中国 | KU052404, KU052413, KU052416−KU052427 | https://www.ncbi.nlm.nih.gov/nuccore/KU052404 | |
咸水 | 青海-西藏盐湖, 中国 | JQ429431−JQ429432 | https://www.ncbi.nlm.nih.gov/nuccore/JQ429431 |
椒江口, 中国 | KC512302−KC512381 | https://www.ncbi.nlm.nih.gov/nuccore/KC512302 | |
小干岛, 中国 | KM979290−KM979340 | https://www.ncbi.nlm.nih.gov/nuccore/KM979290 | |
长江河口, 中国 | KX268870−KX269065 | https://www.ncbi.nlm.nih.gov/nuccore/KX268870 | |
富集 | 稻田土壤, 日本 | AB767281−AB767293 | https://www.ncbi.nlm.nih.gov/nuccore/AB767281 |
稻田土壤, 中国 | KC935362−KC935371 | https://www.ncbi.nlm.nih.gov/nuccore/KC935362 | |
小干岛, 中国 | KM979290−KM979341 | https://www.ncbi.nlm.nih.gov/nuccore/KM979290 | |
济南市污水处理厂, 中国 | KY078446−KY078449 | https://www.ncbi.nlm.nih.gov/nuccore/KY078446 | |
稻田土壤, 中国 | MG397071−MG397099 | https://www.ncbi.nlm.nih.gov/nuccore/MG397071 | |
稻田土壤, 日本 | LC168160−LC168162 | https://www.ncbi.nlm.nih.gov/nuccore/LC168160 | |
湿地 | 布伦斯萨默海德泥炭地, 荷兰 | JX262153−JX262155 | https://www.ncbi.nlm.nih.gov/nuccore/JX262153 |
下渚湖和西溪湿地, 中国 | KC905884−KC905908 | https://www.ncbi.nlm.nih.gov/nuccore/KC905884 | |
米埔湿地, 中国 | KJ718849−KJ718873 | https://www.ncbi.nlm.nih.gov/nuccore/KJ718849 | |
下渚湖湿地, 中国 | KF358758−KF358771 | https://www.ncbi.nlm.nih.gov/nuccore/KF358758 | |
洱海湿地, 中国 | MF419820−MF420340 | https://www.ncbi.nlm.nih.gov/nuccore/MF419820 | |
长江下游稻田土壤, 中国 | KF546848−KF547007 | https://www.ncbi.nlm.nih.gov/nuccore/KF546848 | |
长期施肥的水田, 中国 | JN704402−JN704415 | https://www.ncbi.nlm.nih.gov/nuccore/JN704402 | |
下渚湖和西溪湿地, 中国 | KC905853−KC905883 | https://www.ncbi.nlm.nih.gov/nuccore/KC905853 | |
南岭国家自然保护区, 中国 | KU894736−KU894777 | https://www.ncbi.nlm.nih.gov/nuccore/KU894736 | |
水稻田和玉米田, 中国 | KX153202−KX153210 | https://www.ncbi.nlm.nih.gov/nuccore/KX153202 |
环境分类 | 序列数 | OTUs数 | Chao1指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
淡水 | 1165 | 59 | 134.6 | 2.11 | 0.74 |
咸水 | 441 | 48 | 123.6 | 2.42 | 0.83 |
湿地 | 552 | 71 | 212.4 | 2.94 | 0.88 |
富集 | 50 | 9 | 101 | 1.93 | 0.67 |
Table 3 Diversity indices of n-damo bacterial 16S rRNA gene
环境分类 | 序列数 | OTUs数 | Chao1指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
淡水 | 1165 | 59 | 134.6 | 2.11 | 0.74 |
咸水 | 441 | 48 | 123.6 | 2.42 | 0.83 |
湿地 | 552 | 71 | 212.4 | 2.94 | 0.88 |
富集 | 50 | 9 | 101 | 1.93 | 0.67 |
环境分类 | 序列数 | OTUs数 | Chao1指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
淡水 | 950 | 205 | 396 | 4.55 | 0.98 |
咸水 | 319 | 45 | 51 | 3.24 | 0.94 |
湿地 | 857 | 129 | 242.9 | 3.42 | 0.91 |
富集 | 111 | 17 | 24 | 2.03 | 0.78 |
Table 4 Diversity indices of n-damo bacterial pmoAgene
环境分类 | 序列数 | OTUs数 | Chao1指数 | Shannon指数 | Simpson指数 |
---|---|---|---|---|---|
淡水 | 950 | 205 | 396 | 4.55 | 0.98 |
咸水 | 319 | 45 | 51 | 3.24 | 0.94 |
湿地 | 857 | 129 | 242.9 | 3.42 | 0.91 |
富集 | 111 | 17 | 24 | 2.03 | 0.78 |
[1] |
BHATTACHARJEE A S, MOTLAGH A M, JETTEN M S M, et al., 2016. Methane dependent denitrification- from ecosystem to laboratory-scale enrichment for engineering applications[J]. Water Research, 99: 244-252.
DOI PMID |
[2] | CHAO A, 1984. Non-parametric estimation of the classes in a population[J]. Scandinavian Journal of Statistics, 11(4): 265-270. |
[3] |
CHEN J, JIANG X W, GU J D, 2015b. Existence of novel phylotypes of nitrite-dependent anaerobic methane-oxidizing bacteria in surface and subsurface sediments of the South China Sea[J]. Geomicrobiology Journal, 32(1): 1-9.
DOI URL |
[4] |
CHEN J, ZHOU Z C, GU J D, 2014. Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes[J]. Applied Microbiology and Biotechnology, 98(12): 5685-5696.
DOI PMID |
[5] |
CHEN J, ZHOU Z C, GU J D, 2015a. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes[J]. Applied Microbiology and Biotechnology, 99(3): 1463-1473.
DOI URL |
[6] | CHEN J, ZHOU Z C, GU J D, 2022. Seasonal variations of n-damo bacterial community in the subtropical Mai Po mangrove wetland of Hong Kong[J]. International Biodeterioration & Biodegradation, 175: 105503. |
[7] |
DEUTZMANN J S, SCHINK B, 2011. Anaerobic Oxidation of Methane in Sediments of Lake Constance, an Oligotrophic Freshwater Lake[J]. Applied and Environmental Microbiology, 77(13): 4429-4436.
DOI PMID |
[8] |
DEUTZMANN J S, STIEF P, BRANDES J, et al., 2014. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(51): 18273-18278.
DOI PMID |
[9] |
DING J, FU L, DING Z W, et al., 2016b. Environmental evaluation of coexistence of denitrifying anaerobic methane oxidizing archaea and bacteria in a paddyfield[J]. Applied Microbiology and Biotechnology, 100(1): 439-446.
DOI URL |
[10] |
DING J, FU L, DING Z W, et al., 2016a. Experimental evaluation of the metabolic reversibility of ANME-2d between anaerobic methane oxidation and methanogenesis[J]. Applied Microbiology and Biotechnology, 100(14): 6481-6490.
DOI URL |
[11] |
EDGAR R C, 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity[J]. BMC Bioinformatics, 5(1): 113.
DOI |
[12] |
ETTWIG K F, SHIMA S, VAN DE PAS-SCHOONEN K T, et al., 2008. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea[J]. Environmental Microbiology, 10(11): 3164-3173.
DOI PMID |
[13] |
ETTWIG K F, VAN ALEN T, VAN DE PAS-SCHOONEN K T, et al., 2009. Enrichment and Molecular Detection of Denitrifying Methanotrophic Bacteria of the NC10 Phylum[J]. Applied and Environmental Microbiology, 75(11): 3656-3662.
DOI PMID |
[14] |
FAN L C, SCHNEIDER D, DIPPOLD M A, et al., 2021. Active metabolic pathways of anaerobic methane oxidation in paddy soils[J]. Soil Biology & Biochemistry, 156: 108215.
DOI URL |
[15] |
GAIL M H, WAN Y, SHI J, 2021. Power of microbiome beta-diversity analyses based on standard reference samples[J]. Am J Epidemiol, 190(3): 439-447.
DOI PMID |
[16] |
GANZERT L, LIPSKI A, HUBBERTEN H-W, et al., 2011. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica[J]. FEMS Microbiology Ecology, 76(3): 476-491.
DOI PMID |
[17] | HAROON M F, HU S H, SHI Y, et al., 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. Nature, 501(7468): 567-570. |
[18] |
HE Z F, CAI C, SHEN L D, et al., 2015. Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria[J]. Applied Microbiology and Biotechnology, 99(2): 939-946.
DOI PMID |
[19] |
HE Z F, WANG J Q, HU J J, et al., 2019. Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers[J]. Environmental Pollution, 244: 228-237.
DOI PMID |
[20] |
HO A, MO Y L, LEE H J, et al., 2018. Effect of salt stress on aerobic methane oxidation and associated methanotrophs; A microcosm study of a natural community from a non-saline environment[J]. Soil Biology & Biochemistry, 125: 210-214.
DOI URL |
[21] |
HOLM P E, NIELSEN P H, ALBRECHTSEN H J, et al., 1992. Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer[J]. Applied and Environmental Microbiology, 58(9): 3020-3026.
DOI PMID |
[22] | HU B L, SHEN L D, LIAN X, et al., 2014. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands[J]. Proceedings of the National Academy of Sciences of the United States of America, 111(12): 4495-4500. |
[23] | IHARA Y, TAKESHITA T, KAGEYAMA S, et al., 2019. Identification of initial colonizing bacteria in dental plaques from young adults using full-length 16S rRNA gene sequencing[J]. mSystems, 4(5): e00360-19. |
[24] |
JOHNSON J S, SPAKOWICZ D J, HONG B-Y, et al., 2019. Evaluation of 16S rRNA gene sequencing for species and strain level microbiome analysis[J]. Nature Communications, 10(1): 5029.
DOI |
[25] |
KNITTEL K, BOETIUS A, 2009. Anaerobic oxidation of methane: Progress with an unknown process[J]. Annual Review of Microbiology, 63(1): 311-334.
DOI URL |
[26] |
KOJIMA H, TSUTSUMI M, ISHIKAWA K, et al., 2012. Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa[J]. Systematic and Applied Microbiology, 35(4): 233-238.
DOI PMID |
[27] |
LOZUPONE C, KNIGHT R, 2005. UniFrac: A new phylogenetic method for comparing microbial communities[J]. Applied and Environmental Microbiology, 71(12): 8228-35.
DOI PMID |
[28] |
LUESKEN F A, VAN ALEN T A, VAN DER BIEZEN E, et al., 2011. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge[J]. Applied Microbiology and Biotechnology, 92(4): 845-854.
DOI PMID |
[29] |
MENG H, WANG Y F, CHAN H W, et al., 2016. Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils[J]. Applied Microbiology and Biotechnology, 100(17): 7727-7739.
DOI PMID |
[30] |
NIU Y H, ZHENG Y L, HOU L J, et al., 2022. Microbial dynamics and activity of denitrifying anaerobic methane oxidizers in China's estuarine and coastal wetlands[J]. Science of the Total Environment, 806(Part 1): 150425.
DOI URL |
[31] |
NORDI K A, THAMDRUP B, 2014. Nitrate-dependent anaerobic methane oxidation in a freshwater sediment[J]. Geochimica Et Cosmochimica Acta, 132: 141-150.
DOI URL |
[32] |
RAGHOEBARSING A A, POL A, VAN DE PAS-SCHOONEN K T, et al., 2006. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 440(7086): 918-921.
DOI |
[33] |
RAJAN R S, SHANTRINAL A A, KUMAR K J, et al., 2021. Biochemical and phylogenetic networks-II: X-trees and phylogenetic trees[J]. Journal of Mathematical Chemistry, 59(3): 699-718.
DOI |
[34] |
SCHLOSS P D, WESTCOTT S L, RYABIN T, et al., 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 75(23): 7537-41.
DOI PMID |
[35] |
SHANNON C E, 1948. A mathematical theory of communication[J]. Bell System Technical Journal, 27(3): 379-423.
DOI URL |
[36] |
SHEN L D, HU B L, LIU S, et al., 2016a. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments[J]. Applied Microbiology and Biotechnology, 100(16): 7171-7180.
DOI URL |
[37] |
SHEN, L D, LIU S, HUANG Q, et al., 2014b. Evidence for the cooccurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field[J]. Applied and Environmental Microbiology, 80(24): 7611-7619.
DOI URL |
[38] |
SHEN L D, LIU S, ZHU Q, et al., 2014a. Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River[J]. Microbial Ecology, 67(2): 341-349.
DOI URL |
[39] | SHEN L D, TIAN M H, CHENG H X, et al., 2020. Different responses of nitrite- and nitrate-dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir[J]. Environmental Pollution, 263(Part A): 114623. |
[40] |
SHEN L D, WU H S, GAO Z Q, et al., 2016b. Comparison of community structures of Candidatus methylomirabilis oxyfera-like bacteria of NC10 phylum in different freshwater habitats[J]. Scientific reports, 6: 25647.
DOI |
[41] |
SHEN L D, WU H S, LIU X, et al., 2017. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments[J]. Water Research, 123: 162-172.
DOI URL |
[42] |
SIMPSON E H, 1949. Measurement of diversity[J]. Nature, 163(4148): 688-688.
DOI |
[43] |
SONTHIPHAND P, HALL M W, NEUFELD J D, 2014. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria[J]. Frontiers in Microbiology, 5: 399.
DOI PMID |
[44] |
VAKSMAA A, GUERRERO-CRUZ S, VAN ALEN T A, et al., 2017. Enrichment of anaerobic nitrate-dependent methanotrophic ‘Candidatus Methanoperedensnitroreducens’ archaea from an Italian paddy field soil[J]. Applied Microbiology and Biotechnology, 101(18): 7075-7084.
DOI URL |
[45] |
WANG H H, CHU H L, DOU Q, et al., 2018. Phosphorus and nitrogen drive the seasonal dynamics of bacterial communities in Pinus Forest rhizospheric soil of the Qinling Mountains[J]. Frontiers in Microbiology, 9: 1930.
DOI URL |
[46] |
WANG J Q, CAI C Y, LI Y F, et al., 2019. Denitrifying anaerobic methane oxidation: A previously overlooked methane sink in intertidal zone[J]. Environmental Science & Technology, 53(1): 203-212.
DOI URL |
[47] | ZHANG X W, LIU Y, GU J D, 2018. A global analysis on the distribution pattern of the bacteria coupling simultaneous methane oxidation to nitrite reduction[J]. International Biodeterioration & Biodegradation, 129: 123-132. |
[48] |
ZHOU G, ZHANG J, CHEN L, et al., 2016. Temperature and straw quality regulate the microbial phospholipid fatty acid composition associated with straw decomposition[J]. Pedosphere, 26(3): 386-398.
DOI URL |
[49] |
ZHOU L L, WANG Y, LONG X E, et al., 2014. High abundance and diversity of nitrite-dependent anaerobic methane oxidizing bacteria in a paddy field profile[J]. Fems Microbiology Letters, 360(1): 33-41.
DOI URL |
[50] |
ZHU B L, VAN DIJK G, FRITZ C, et al., 2012. Anaerobic oxidization of methane in a minerotrophic peatland: Enrichment of nitrite-dependent methane-oxidizing bacteria[J]. Applied and Environmental Microbiology, 78(24): 8657-8665.
DOI PMID |
[51] |
ZHU G B, WANG M Z, LI Y X, et al., 2018. Denitrifying anaerobic methane oxidizing in global upland soil: Sporadic and non-continuous distribution with low influence[J]. Soil Biology & Biochemistry, 119: 90-100.
DOI URL |
[52] |
ZHU G B, ZHOU L L, WANG Y, et al., 2015. Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems[J]. Environmental Microbiology Reports, 7(1): 128-138.
DOI PMID |
[1] | LI Jiahui, TONG Hui, CHEN Manjia, LIU Chengshuai, JIANG Qi, YI Xiu. Formation of Fe(Ⅲ) Minerals by Microaerophilic Fe(Ⅱ)-oxidizing Bacteria and Its Effect on Immobilization of Heavy Metals: A Review [J]. Ecology and Environment, 2024, 33(2): 310-320. |
[2] | LAN Jun, CHEN Guanhong, ZHANG Juntao, HEMMAT-JOU Mohammad Hossein, SHU Xiaohua, FANG Liping, LI Fangbai. Microbial Mechanism of Electron Shuttle-mediated Antimony Reduction and Mineralization by Soil Microorganism [J]. Ecology and Environment, 2024, 33(2): 272-281. |
[3] | MA Yuan, TIAN Lulu, LÜ Jie, LIU Pei, ZHANG Xu, LI Eryang, ZHANG Qinghang. Soil Microbial Communities and Influencing Factors of Picea schrenkiana Forest on the Northern Slope of Tianshan Mountains [J]. Ecology and Environment, 2024, 33(1): 1-11. |
[4] | YANG Zhengqiao, ZOU Qi, WEI Hang, ZHOU Kai, CHEN Zhiliang. Research Progress on the Adaptation and Regulation Mechanism of Micro-organisms in Metal Tailings [J]. Ecology and Environment, 2024, 33(1): 156-166. |
[5] | YUAN Jiabao, SONG Yanyu, LIU Zhendi, ZHU Mengyuan, CHENG Xiaofeng, MA Xiuyan, CHEN Ning, LI Xiaoyu. Profile Distribution Characteristics of Soil Enzyme Activity and Its Indicative Function of Microbial Nutrient Restriction in Reed Wetlands of Songnen Plain [J]. Ecology and Environment, 2023, 32(12): 2141-2153. |
[6] | LI Chengtao, WU Wanqing, CHEN Chen, ZHANG Yong, ZHANG Kai. Effects of Biodegradable PBAT Microplastics on Soil Physical and Chemical Properties and Physiological Indicators of Brassica chinensis [J]. Ecology and Environment, 2023, 32(11): 1964-1977. |
[7] | LI Xuan, QIAN Xiuwen, HUANG Juan, WANG Mingyu, XIAO Jun. Responses of Operating Performance and Microbial Community in Constructed Wetlands to NiO NPs Exposure [J]. Ecology and Environment, 2023, 32(10): 1833-1841. |
[8] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environment, 2023, 32(10): 1802-1810. |
[9] | TANG Zhiwei, WENG Ying, ZHU Xiatong, CAI Hongmei, DAI Wenci, WANG Pengna, ZHENG Baoqiang, LI Jincai, CHEN Xiang. Meta-analysis of Soil Microbial Mass Carbon and Its Influencing Factors in Farmland in China under Straw Return [J]. Ecology and Environment, 2023, 32(9): 1552-1562. |
[10] | LIANG Chuan, YANG Yanfang, YU Shanshan, ZHOU Li, ZHANG Jingwei, ZHANG Xiujuan. Differences of Microbial Biomass and Community Structure Characteristics in Sediments under Net-pen and Pond Fish Farming [J]. Ecology and Environment, 2023, 32(8): 1487-1495. |
[11] | JIANG Yishan, SUN Yingtao, ZHANG Gan, LUO Chunling. Pattern and Influencing Factors of Forest Soil Microbial Communities in Different Climate Types in China [J]. Ecology and Environment, 2023, 32(8): 1355-1364. |
[12] | ZHU Yiwen, YIN Dan, HU Min, DU Yanhong, HONG Zebin, CHENG Kuan, YU Huanyun. Research Progress on Coupling of Nitrogen Cycle and Arsenic Speciation Transformation in Paddy Soil [J]. Ecology and Environment, 2023, 32(7): 1344-1354. |
[13] | CHEN Dongdong, HUO Lili, ZHAO Liang, CHEN Xin, SHU Min, HE Fuquan, ZHANG Yukun, ZHANG Li, LI Qi. Contribution of Water and Heat Factors to Spatial Variability of Soil Microbial Biomass Carbon and Nitrogen in Qinghai Alpine Grassland: Based on Enhanced Regression Tree Model [J]. Ecology and Environment, 2023, 32(7): 1207-1217. |
[14] | LI Guiying, LIU Jianying, AN Taicheng. The Formation and Resuscitation Mechanisms of Viable But Nonculturable Bacteria during Water Disinfection Processes [J]. Ecology and Environment, 2023, 32(7): 1333-1343. |
[15] | KOU Zhu, QING Chun, YUAN Changguo, LI Ping. Diversity and Distribution of Sulfur Oxidizing Bacteria in Hot Springs of Northeast Tibet, China [J]. Ecology and Environment, 2023, 32(5): 989-1000. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn