Ecology and Environment ›› 2023, Vol. 32 ›› Issue (7): 1344-1354.DOI: 10.16258/j.cnki.1674-5906.2023.07.017
• Reviewse • Previous Articles
ZHU Yiwen1,2(), YIN Dan2,3, HU Min4, DU Yanhong2, HONG Zebin2, CHENG Kuan2, YU Huanyun2,*(
)
Received:
2023-03-03
Online:
2023-07-18
Published:
2023-09-27
Contact:
YU Huanyun
朱忆雯1,2(), 尹丹2,3, 胡敏4, 杜衍红2, 洪泽彬2, 程宽2, 于焕云2,*(
)
通讯作者:
于焕云
作者简介:
朱忆雯(1997年生),女,硕士研究生,研究方向为铵态氮耦合砷的机制研究。E-mail: 1730464659@qq.com
基金资助:
CLC Number:
ZHU Yiwen, YIN Dan, HU Min, DU Yanhong, HONG Zebin, CHENG Kuan, YU Huanyun. Research Progress on Coupling of Nitrogen Cycle and Arsenic Speciation Transformation in Paddy Soil[J]. Ecology and Environment, 2023, 32(7): 1344-1354.
朱忆雯, 尹丹, 胡敏, 杜衍红, 洪泽彬, 程宽, 于焕云. 稻田土壤氮循环与砷形态转化耦合的研究进展[J]. 生态环境学报, 2023, 32(7): 1344-1354.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.07.017
[1] |
BEIYUAN J, AWAD Y M, BECKERS F, et al., 2017. Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions[J]. Chemosphere, 178: 110-118.
DOI PMID |
[2] |
BROMAN E, ZILIUS M, SAMUILOVIENE A, et al., 2021. Active DNRA and denitrification in oxic hypereutrophic waters[J]. Water Research, 194: 116954.
DOI URL |
[3] |
BAO X, ZOU J, ZHANG B, et al., 2022. Arbuscular Mycorrhizal Fungi and Microbes Interaction in Rice Mycorrhizosphere[J]. Agronomy, 12(6): 1277.
DOI URL |
[4] |
CHEN C, LI L Y, HUANG K, et al., 2019. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils[J]. The ISME Journal, 13(10): 2523-2535.
DOI |
[5] |
CHEN C, SHEN Y, LI Y H, et al., 2021. Demethylation of the antibiotic methylarsenite is coupled to denitrification in anoxic paddy soil[J]. Environmental Science & Technology, 55(22): 15484-15494.
DOI URL |
[6] |
CHEN C, YANG B Y, GAO A X, et al., 2022. Transformation of arsenic species by diverse endophytic bacteria of rice roots[J]. Environmental Pollution, 309: 119825.
DOI URL |
[7] |
CHEN G N, DU Y H, FANG L P, et al., 2023. Distinct arsenic uptake feature in rice reveals the importance of N fertilization strategies[J]. Science of The Total Environment, 854: 158801.
DOI URL |
[8] | CHEN X P, ZHU Y G, HONG M N, et al., 2008. Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants[J]. Environmental Toxicology and Chemistry: An International Journal, 27(4): 881-887. |
[9] |
CHENG Y, ELRYS A S, MERWAD A-R M, et al., 2022. Global patterns and drivers of soil dissimilatory nitrate reduction to ammonium[J]. Environmental Science & Technology, 56(6): 3791-3800.
DOI URL |
[10] |
CLÉMENT J, SHRESTHA J, EHRENFELD J, et al., 2005. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biology and Biochemistry, 37(12): 2323-2328.
DOI URL |
[11] |
DAI X L, GUO Q K, SONG D L, et al., 2021. Long-term mineral fertilizer substitution by organic fertilizer and the effect on the abundance and community structure of ammonia-oxidizing archaea and bacteria in paddy soil of south China[J]. European Journal of Soil Biology, 103: 103288.
DOI URL |
[12] |
DE BOER W, KOWALCHUK G A, 2001. Nitrification in acid soils: micro-organisms and mechanisms[J]. Soil Biology and Biochemistry, 33(7-8): 853-866.
DOI URL |
[13] |
DEVKOTA K P, MANSCHADI A, LAMERS J P A, et al., 2013. Mineral nitrogen dynamics in irrigated rice-wheat system under different irrigation and establishment methods and residue levels in arid drylands of Central Asia[J]. European Journal of Agronomy, 47: 65-76.
DOI URL |
[14] |
DING B J, LUO W Q, QIN Y B, et al., 2020. Effects of the addition of nitrogen and phosphorus on anaerobic ammonium oxidation coupled with iron reduction (Feammox) in the farmland soils[J]. Science of The Total Environment, 737: 139849.
DOI URL |
[15] |
DING B J, ZHANG H, LUO W Q, et al., 2021. Nitrogen loss through denitrification, anammox and Feammox in a paddy soil[J]. Science of the Total Environment, 773: 145601.
DOI URL |
[16] |
DING L J, AN X L, LI S, et al., 2014. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 48(18): 10641-10647.
DOI URL |
[17] |
DIXIT S, HERING J G, 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility[J]. Environmental Science & Technology, 37(18): 4182-4189.
DOI URL |
[18] |
DOMEIGNOZ-HORTA L A, PHILIPPOT L, PEYRARD C, et al., 2018. Peaks of in situ N2O emissions are influenced by N2O-producing and reducing microbial communities across arable soils[J]. Global Change Biology, 24(1): 360-370.
DOI URL |
[19] |
DUAN R, LONG X E, TANG Y F, et al., 2018. Effects of different fertilizer application methods on the community of nitrifiers and denitrifiers in a paddy soil[J]. Journal of soils and sediments, 18(1): 24-38.
DOI URL |
[20] |
FRANCIS C A, BEMAN J M, KUYPERS M M, 2007. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation[J]. The ISME Journal, 1(1): 19-27.
DOI |
[21] |
GAO Z P, WENG H C, GUO H M, 2021. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches[J]. Journal of Hydrology, 595: 125981.
DOI URL |
[22] |
HAN B, MO L Y, FANG Y T, et al., 2021. Rates and microbial communities of denitrification and anammox across coastal tidal flat lands and inland paddy soils in East China[J]. Applied Soil Ecology, 157: 103768.
DOI URL |
[23] |
HASHMI M Z, KANWAL A, PONGPIACHAN S, et al., 2020. Arsenic distribution and metabolism genes abundance in paddy soils from Punjab and Sindh provinces, Pakistan[J]. Arabian Journal of Geosciences, 13(13): 1-10.
DOI |
[24] |
HAYATSU M, KATSUYAMA C, TAGO K, 2021. Overview of recent researches on nitrifying microorganisms in soil[J]. Soil Science and Plant Nutrition, 67(6): 619-632.
DOI URL |
[25] |
HAYATSU M, TAGO K, SAITO M, 2008. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification[J]. Soil Science and Plant Nutrition, 54(1): 33-45.
DOI URL |
[26] |
HERATH I, VITHANAGE M, BUNDSCHUH J, et al., 2016. Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization[J]. Current Pollution Reports, 2(1): 68-89.
DOI URL |
[27] |
HUANG K, CHEN C, ZHANG J, et al., 2016. Efficient arsenic methylation and volatilization mediated by a novel bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science & Technology, 50(12): 6389-6396.
DOI URL |
[28] |
HUANG S, CHEN C, PENG X C, et al., 2016. Environmental factors affecting the presence of acidimicrobiaceae and ammonium removal under iron-reducing conditions in soil environments[J]. Soil Biology and Biochemistry, 98: 148-158.
DOI URL |
[29] |
HUANG S, JAFFÉ P R, 2015. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions[J]. Biogeosciences, 12(3): 769-779.
DOI URL |
[30] |
HUSSAIN M M, BIBI I, NIAZI N K, et al., 2021. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients[J]. Science of the Total Environment, 773: 145040.
DOI URL |
[31] | HUSSAIN M M, BIBI I, SHAHID M, et al., 2019. Biogeochemical cycling, speciation and transformation pathways of arsenic in aquatic environments with the emphasis on algae[J]. Comprehensive Analytical Chemistry, 85: 15-51. |
[32] |
HUSSAIN Q, LIU Y, JIN Z, et al., 2011. Temporal dynamics of ammonia oxidizer (amoA) and denitrifier (nirK) communities in the rhizosphere of a rice ecosystem from Tai Lake region, China[J]. Applied Soil Ecology, 48(2): 210-218.
DOI URL |
[33] |
ISHII S, IKEDA S, MINAMISAWA K, et al., 2011. Nitrogen cycling in rice paddy environments: past achievements and future challenges[J]. Microbes and Environments, 26(4): 282-92.
PMID |
[34] |
ISHII S, YAMAMOTO M, KIKUCHI M, et al., 2009. Microbial Populations Responsive to Denitrification-Inducing Conditions in Rice Paddy Soil, as Revealed by Comparative 16S rRNA Gene Analysis[J]. Applied and Environmental Microbiology, 75(22): 7070-7078.
DOI PMID |
[35] |
ISLAM S, RAHMAN M M, ISLAM M R, et al., 2017. Effect of irrigation and genotypes towards reduction in arsenic load in rice[J]. Science of the Total Environment, 609: 311-318.
DOI URL |
[36] |
JIA Z, CONRAD R, 2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 11(7): 1658-71.
DOI PMID |
[37] |
JIANG Z, SHEN X, SHI B, et al., 2022. Arsenic Mobilization and Transformation by Ammonium-Generating Bacteria Isolated from High Arsenic Groundwater in Hetao Plain, China[J]. International Journal of Environmental Research and Public Health, 19(15): 9606.
DOI URL |
[38] |
JONES C M, STRES B, ROSENQUIST M, et al., 2008. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification[J]. Molecular Biology and Evolution, 25(9): 1955-66.
DOI PMID |
[39] |
KO M S, LEE S, KIM K W, 2019. Reductive dissolution and sequestration of arsenic by microbial iron and thiosulfate reduction[J]. Environmental Geochemistry and Health, 41(1): 461-467.
DOI |
[40] |
KUMARATHILAKA P, SENEWEERA S, MEHARG A, et al., 2018. Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors[J]. Science of the Total Environment, 642: 485-496.
DOI URL |
[41] |
LI H, SU J Q, YANG X R, et al., 2019. RNA stable isotope probing of potential Feammox population in paddy soil[J]. Environmental Science & Technology, 53(9): 4841-4849.
DOI URL |
[42] |
LI X M, QIAO J T, LI S, et al., 2019. Bacterial communities and functional genes stimulated during anaerobic arsenite oxidation and nitrate reduction in a paddy soil[J]. Environmental Science & Technology, 54(4): 2172-2181.
DOI URL |
[43] |
LI Y L, ZHANG Y L, HU J, et al., 2006. Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars to N nutrition[J]. Biology and Fertility of Soils, 43(4): 417-425.
DOI URL |
[44] |
LI Y Y, CHAPMAN S J, NICOL G W, et al., 2018. Nitrification and nitrifiers in acidic soils[J]. Soil Biology and Biochemistry, 116: 290-301.
DOI URL |
[45] |
LIANG Y Q, WU C F, WEI X M, et al., 2021. Characterization of nirS-and nirK-containing communities and potential denitrification activity in paddy soil from eastern China[J]. Agriculture, Ecosystems & Environment, 319: 107561.
DOI URL |
[46] |
LIN Z J, WANG X, WU X, et al., 2018. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system[J]. Environmental Pollution, 243: 1015-1025.
DOI PMID |
[47] |
LIU L, SHEN R L, ZHAO Z Q, et al., 2022. How different nitrogen fertilizers affect arsenic mobility in paddy soil after straw incorporation?[J]. Journal of Hazardous Materials, 436: 129135.
DOI URL |
[48] | LIU T X, CHEN D D, LI X M, et al., 2019. Microbially mediated coupling of nitrate reduction and Fe (II) oxidation under anoxic conditions[J]. FEMS Microbiology Ecology, 95(4): fiz030. |
[49] |
MA Y H, ZHENG X Y, FANG Y Q, et al., 2020. Autotrophic denitrification in constructed wetlands: Achievements and challenges[J]. Bioresource Technology, 318: 123778.
DOI URL |
[50] |
MATEOS L M, VILLADANGOS A F, ALFONSO G, et al., 2017. The arsenic detoxification system in corynebacteria: basis and application for bioremediation and redox control[J]. Advances in Applied Microbiology, 99: 103-137.
DOI PMID |
[51] |
MESTROT A, FELDMANN J, KRUPP E M, et al., 2011. Field fluxes and speciation of arsines emanating from soils[J]. Environmental Science & Technology, 45(5): 1798-1804.
DOI URL |
[52] |
MIRALLES ROBLEDILLO J M, BERNABEU E, GIANI M, et al., 2021. Distribution of denitrification among haloarchaea: A comprehensive study[J]. Microorganisms, 9(8): 1669.
DOI URL |
[53] |
MORIMOTO S, HAYATSU M, TAKADA HOSHINO Y, et al., 2011. Quantitative analyses of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in fields with different soil types[J]. Microbes and Environments, 26(3): 248-53.
PMID |
[54] |
MULDER A, GRAAF A A, ROBERTSON L A, et al., 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 16(3): 177-184.
DOI URL |
[55] |
MULLER D, LIEVREMONT D, SIMEONOVA D D, et al., 2003. Arsenite oxidase aox genes from a metal-resistant β-proteobacterium[J]. Journal of Bacteriology, 185(1): 135-141.
DOI URL |
[56] |
NAHAR K, ALI M M, KHANOM A, et al., 2020. Levels of heavy metal concentrations and their effect on net nitrification rates and nitrifying archaea/bacteria in paddy soils of Bangladesh[J]. Applied Soil Ecology, 156: 103697.
DOI URL |
[57] | NOJIRI Y, KANEKO Y, AZEGAMI Y, et al., 2020. Dissimilatory nitrate reduction to ammonium and responsible microbes in japanese rice paddy soil[J]. Microbes and Environments, 35(4): ME20069. |
[58] |
OREMLAND R S, HOEFT S E, SANTINI J M, et al., 2002. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1[J]. Applied and environmental microbiology, 68(10): 4795-4802.
DOI PMID |
[59] |
OREMLAND R S, STOLZ J F, 2005. Arsenic, microbes and contaminated aquifers[J]. Trends Microbiol, 13(2): 45-9.
PMID |
[60] | PANDEY A, SUTER H, HE J Z, et al., 2018. Nitrogen addition decreases dissimilatory nitrate reduction to ammonium in rice paddies[J]. Applied and Environmental Microbiology, 84(17): e00870-18. |
[61] |
PANDEY C B, KUMAR U, KAVIRAJ M, et al., 2020. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems[J]. Science of the Total Environment, 738: 139710.
DOI URL |
[62] |
QIAO J T, LI X M, HU M, et al., 2018. Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil[J]. Environmental Science & Technology, 52(1): 61-70.
DOI URL |
[63] |
REN X H, WANG Y, WAN J Q, et al., 2022. The Nitrogen Removal Performance and Functional Bacteria in Heterotrophic Denitrification and Mixotrophic Denitrification Process[J]. Water, 14(22): 3603.
DOI URL |
[64] |
RHINE E D, PHELPS C D, YOUNG L, 2006. Anaerobic arsenite oxidation by novel denitrifying isolates[J]. Environmental Microbiology, 8(5): 899-908.
PMID |
[65] |
ROBERTSON E K, ROBERTS K L, BURDORF L D W, et al., 2016. Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary[J]. Limnology and Oceanography, 61(1): 365-381.
DOI URL |
[66] |
ROKONUZZAMAN M D, YE Z, WU C, et al., 2022. Arsenic accumulation in rice: Alternative irrigation regimes produce rice safe from arsenic contamination[J]. Environmental Pollution, 310: 119829.
DOI URL |
[67] |
ROSEN B P, 2002. Biochemistry of arsenic detoxification[J]. FEBS Lett, 529(1): 86-92.
DOI PMID |
[68] |
SAITO T, ISHII S, OTSUKA S, et al., 2008. Identification of novel Betaproteobacteria in a succinate-assimilating population in denitrifying rice paddy soil by using stable isotope probing[J]. Microbes and Environments, 23(3): 192-200.
PMID |
[69] |
SAWAYAMA S, 2006. Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering, 101(1): 70-2.
PMID |
[70] |
SENKO J M, HUANG S, JAFFé P R, 2018. Isolation and characterization of an ammonium-oxidizing iron reducer: Acidimicrobiaceae sp. A6[J]. Plos One, 13(4): e0194007.
DOI URL |
[71] |
SENN D B, HEMOND H F, 2002. Nitrate controls on iron and arsenic in an urban lake[J]. Science, 296(5577): 2373-2376.
PMID |
[72] |
SHAHID M, NIAZI N K, DUMAT C, et al., 2018. A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan[J]. Environmental pollution, 242(Part A): 307-319.
DOI PMID |
[73] |
SHAN J, YANG P P, SHANG X X, et al., 2018. Anaerobic ammonium oxidation and denitrification in a paddy soil as affected by temperature, pH, organic carbon, and substrates[J]. Biology and Fertility of Soils, 54(3): 341-348.
DOI |
[74] |
SHARMA S, KAUR I, NAGPAL A K, 2021. Contamination of rice crop with potentially toxic elements and associated human health risks-a review[J]. Environmental Science and Pollution Research, 28: 12282-12299.
DOI |
[75] |
SHEN L D, LIU X, WU H S, et al., 2020. Effect of different fertilization regimes on the vertical distribution of anaerobic ammonium oxidation in paddy soils[J]. European Journal of Soil Biology, 99: 103206.
DOI URL |
[76] |
SHUAI W, JAFFE P R, 2019. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms[J]. Science of the Total Environment, 648: 984-992.
DOI URL |
[77] | SLYEMI D, BONNEFOY V, 2012. How prokaryotes deal with arsenic[J]. Environmental Microbiology Reports, 4(6): 571-586. |
[78] |
SMITH R L, KENT D B, REPERT D A, et al., 2017. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer[J]. Geochimica et Cosmochimica Acta, 196: 102-120.
DOI URL |
[79] |
SODA S O, YAMAMURA S, ZHOU H, et al., 2006. Reduction kinetics of As (V) to As (III) by a dissimilatory arsenate-reducing bacterium, Bacillus sp. SF-1[J]. Biotechnology and Bioengineering, 93(4): 812-815.
PMID |
[80] |
TAGO K, ISHII S, NISHIZAWA T, et al., 2011. PPhylogenetic and functional diversity of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields[J]. Microbes and Environments, 26(1): 30-5.
PMID |
[81] |
UPADHYAY M K, YADAV P, SHUKLA A, et al., 2018. Utilizing the Potential of Microorganisms for Managing Arsenic Contamination: A Feasible and Sustainable Approach[J]. Frontiers in Environmental Science, 6: 24.
DOI URL |
[82] |
VERHOEVEN E, DECOCK C, BARTHEL M, et al., 2018. Nitrification and coupled nitrification-denitrification at shallow depths are responsible for early season N2O emissions under alternate wetting and drying management in an Italian rice paddy system[J]. Soil Biology and Biochemistry, 120: 58-69.
DOI URL |
[83] |
WANG M, TANG Z, CHEN X P, et al., 2019. Water management impacts the soil microbial communities and total arsenic and methylated arsenicals in rice grains[J]. Environmental Pollution, 247: 736-744.
DOI PMID |
[84] |
WANG P P, BAO P, SUN G X, 2015. Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp. BXM[J]. FEMS Microbiol Lett, 362(1): 1-8.
DOI PMID |
[85] |
WANG Y H, LI P, JIANG Z, et al., 2018. Diversity and abundance of arsenic methylating microorganisms in high arsenic groundwater from Hetao Plain of Inner Mongolia, China[J]. Ecotoxicology, 27: 1047-1057.
DOI PMID |
[86] |
WANG Y, LIU X H, SI Y B, et al., 2016. Release and transformation of arsenic from As-bearing iron minerals by Fe-reducing bacteria[J]. Chemical Engineering Journal, 295: 29-38.
DOI URL |
[87] |
WENG T N, LIU C W, KAO Y H, et al., 2017. Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater[J]. Science of the Total Environment, 578: 167-185.
DOI URL |
[88] |
WOODS D D, 1938. The reduction of nitrate to ammonia by Clostridium welchii[J]. Biochemical Journal, 32(11): 2000-2012.
PMID |
[89] |
WU Y F, CHAI C W, LI Y N, et al., 2021. Anaerobic As (III) oxidation coupled with nitrate reduction and attenuation of dissolved Arsenic by Noviherbaspirillum Species[J]. ACS Earth and Space Chemistry, 5(8): 2115-2123.
DOI URL |
[90] |
XUE S G, JIANG X X, WU C, et al., 2020. Microbial driven iron reduction affects arsenic transformation and transportation in soil-rice system[J]. Environmental Pollution, 260: 114010.
DOI URL |
[91] |
YAMAGUCHI N, NAKAMURA T, DONG D, et al., 2011. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution[J]. Chemosphere, 83(7): 925-932.
DOI PMID |
[92] |
YANG S, ZHAI W W, TANG X J, et al., 2022. The Effect of Manure Application on Arsenic Mobilization and Methylation in Different Paddy Soils[J]. Bulletin of environmental contamination and toxicology, 108(1): 158-166.
DOI |
[93] |
YANG W H, WEBER K A, SILVER W L, 2012. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 5(8): 538-541.
DOI |
[94] |
YANG X R, LI H, NIE S A, et al., 2015. Potential contribution of anammox to nitrogen loss from paddy soils in Southern China[J]. Applied and Environmental Microbiology, 81(3): 938-47.
DOI URL |
[95] |
YANG X, SHAHEEN S M, WANG J, et al., 2022. Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques[J]. Journal of Hazardous Materials, 422: 126808.
DOI URL |
[96] |
YI B, WANG H H, ZHANG Q C, et al., 2019. Alteration of gaseous nitrogen losses via anaerobic ammonium oxidation coupled with ferric reduction from paddy soils in Southern China[J]. Science of the Total Environment, 652: 1139-1147.
DOI URL |
[97] |
YOSHINAGA M, CAI Y, ROSEN B P, 2011. Demethylation of methylarsonic acid by a microbial community[J]. Environmental Microbiology, 13(5): 1205-1215.
DOI PMID |
[98] |
ZHANG J, ZHAO S C, XU Y, et al., 2017. Nitrate stimulates anaerobic microbial arsenite oxidation in paddy soils[J]. Environmental Science & Technology, 51(8): 4377-4386.
DOI URL |
[99] |
ZHANG J, ZHOU W X, LIU B B, et al., 2015. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil[J]. Environmental Science & Technology, 49(10): 5956-5964.
DOI URL |
[100] |
ZHANG L X, GUAN Y T, JIANG S C, 2021. Investigations of soil autotrophic ammonia oxidizers in farmlands through genetics and big data analysis[J]. Science of The Total Environment, 777: 146091.
DOI URL |
[101] |
ZHANG M M, KOLTON M, HäGGBLOM M M, et al., 2022. Anaerobic ammonium oxidation coupled to arsenate reduction, a novel biogeochemical process observed in arsenic-contaminated paddy soil[J]. Geochimica et Cosmochimica Acta, 335: 11-22.
DOI URL |
[102] |
ZHANG Q, LI Y, HE Y, et al., 2019. Nitrosospira cluster 3-like bacterial ammonia oxidizers and Nitrospira-like nitrite oxidizers dominate nitrification activity in acidic terrace paddy soils[J]. Soil Biology and Biochemistry, 131: 229-237.
DOI URL |
[103] |
ZHANG S Y, ZHAO F J, SUN G X, et al., 2015. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China[J]. Environmental Science & Technology, 49(7): 4138-4146.
DOI URL |
[104] |
ZHANG X, YANG Y Q, FU Q L, et al., 2021. Comparing effects of ammonium and nitrate nitrogen on arsenic accumulation in brown rice and its dynamics in soil-plant system[J]. Journal of Soils and Sediments, 21(7): 2650-2658.
DOI |
[105] |
ZHAO F J, HARRIS E, YAN J, et al., 2013. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and As speciation in rice[J]. Environmental Science & Technology, 47(13): 7147-7154.
DOI URL |
[106] |
ZHAO Y Y, LI Q X, CUI Q J, et al., 2022. Nitrogen recovery through fermentative dissimilatory nitrate reduction to ammonium (DNRA): Carbon source comparison and metabolic pathway[J]. Chemical Engineering Journal, 441: 135938.
DOI URL |
[107] |
ZHU G B, WANG S Y, WANG Y, et al., 2011. Anaerobic ammonia oxidation in a fertilized paddy soil[J]. The ISME Journal, 5(12): 1905-12.
DOI |
[108] |
ZHU Y G, XUE X M, KAPPLER A, et al., 2017. Linking genes to microbial biogeochemical cycling: Lessons from arsenic[J]. Environmental Science & Technology, 51(13): 7326-7339.
DOI URL |
[109] | 程宽, 李涵, 杜衍红, 等, 2022. 微生物介导铁还原耦合氨氧化过程的研究进展[J]. 微生物学报, 62(6): 2249-2264. |
CHENG K, LI H, DU Y H, et al., 2022. Microbes-mediated coupling of Fe(Ⅲ) reduction and ammonium oxidation[J]. Acta Microbiologica Sinica, 62(6): 2249-2264. | |
[110] |
刘同旭, 程宽, 陈丹丹, 等, 2019. 微生物介导的硝酸盐还原耦合亚铁氧化成矿研究进展[J]. 生态环境学报, 28(3): 620-628.
DOI |
LIU T X, CHENG K, CHEN D D, et al., 2019. Formation of Fe(Ⅲ)-minerals by microbially mediated coupling of nitrate reduction and Fe(Ⅱ) oxidation: A review[J]. Ecology and Environment Sciences, 28(3): 620-628.
DOI |
|
[111] | 钟松雄, 何宏飞, 陈志良, 等, 2018. 水淹条件下水稻土中砷的生物化学行为研究进展[J]. 土壤学报, 55(1): 1-17. |
ZHONG S X, HE H F, CHEN Z L, et al., 2018. Advancement in study on biochemical behavior of arsenic in flooded paddy soil[J]. Acta Pedologica Sinica, 55(1): 1-17. | |
[112] | 周利, 宋以萍, 周杰民, 等, 2020. 稻田硝酸盐异化还原成铵细菌群落结构的垂向分布特性[J]. 环境科学学报, 40(3): 1029-1039. |
ZHOU L, SONG Y P, ZHOU J M, et al., 2020. Vertical distribution of community composition of dissimilatory nitrate reduction to ammonium bacteria in paddy soils[J]. Acta Scientiae Circumstantiae, 40(3): 1029-1039. | |
[113] | 朱兆良, 2008. 中国土壤氮素研究[J]. 土壤学报, 45(5): 778-783. |
ZHU Z L, 2008. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 45(5): 778-783. |
[1] | WANG Xinyu, GAO Dengzhou, LIU Bolin, WANG Bin, ZHENG Yanling, LI Xiaofei, HOU Lijun. The Tidal-cycle Variation and Influencing Factors of Dark Carbon Fixation Process in the Yangtze Estuary [J]. Ecology and Environment, 2023, 32(4): 733-743. |
[2] | TANG Haiming, SHI Lihong, WEN Li, CHENG Kaikai, LI Chao, LONG Zedong, XIAO Zhiwu, LI Weiyan, GUO Yong. Effects of Different Long-term Fertilizer Managements on Rhizosphere Soil Nitrogen in the Double-cropping Rice Field [J]. Ecology and Environment, 2023, 32(3): 492-499. |
[3] | WANG Lixiao, LIU Jinxian, CHAI Baofeng. Response of Soil Bacterial Community and Nitrogen Cycle during the Natural Recovery of Abandoned Farmland in Subalpine of the North China [J]. Ecology and Environment, 2022, 31(8): 1537-1546. |
[4] | HUA Li, CHENG Taozhi, LIANG Zhiyong. Remediation Effect of Petroleum-Contaminated Soil by Immobilized Mixed Bacteria in Northern Shaanxi Province of China [J]. Ecology and Environment, 2022, 31(8): 1610-1615. |
[5] | LI Jiayi, SUN Weimin, SUN Xiaoxu, KONG Tianle, LI Baoqin, LIU Zhenhong, GAO pin. Isolation, Identification and Functional Verification of Sulfur-oxidizing Microorganisms in Mine Tailing [J]. Ecology and Environment, 2022, 31(4): 785-792. |
[6] | SHENG Jifeng, LI Yao, YU MeiJia, HAN Yanying, YE Yanhui. Effects of Nitrogen and Phosphorus An Addition on Soil Nutrients and Activity of Related Enzymes in Alpine Grassland [J]. Ecology and Environment, 2022, 31(12): 2302-2309. |
[7] | ZHU Mengyuan, SONG Yanyu, GAO Siqi, GONG Chao, LIU Zhendi, MA Xiuyan, YUAN Jiabao, YANG Xu. Diversity Characteristics of Soil Microbial Carbon Source Metabolism in Wetlands with Different Vegetation Types in the Sanjiang Plain [J]. Ecology and Environment, 2022, 31(12): 2310-2319. |
[8] | WANG Yushu, SHENG Haiyan, LUO Shasha, HU Yueming, YU Lingling. Characteristics of Prokaryotic Microbial Community Structure and Molecular Ecological Network in Four Habitat Soils around Lake Qinghai [J]. Ecology and Environment, 2021, 30(7): 1393-1403. |
[9] | DANG Huihui, LIU Chao, WU Zhurong, WANG Yuanyuan, HU Zhenghua, LI Qi, CHEN Shutao. Methane Emission and Comprehensive Benefits of Japonica Rice Paddy Field with Different Sowing Dates [J]. Ecology and Environment, 2021, 30(7): 1436-1446. |
[10] | ZHANG Taiping, XIAO Jiahui, HU Fengjie. Research Progress in the Removal of Contaminants from Water by Immobilized Microorganisms Combined with Biochar [J]. Ecology and Environment, 2021, 30(5): 1084-1093. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn