Ecology and Environment ›› 2024, Vol. 33 ›› Issue (2): 212-221.DOI: 10.16258/j.cnki.1674-5906.2024.02.005
• Research Article [Ecology] • Previous Articles Next Articles
CAO Xiaoai1(), ZHANG Rui1, WEN Yunhao1, WANG Jian1, XU Zhichao1, TIAN Yating4, WANG Lixin1,2,3, LIU Huamin1,2,3,*(
)
Received:
2023-10-19
Online:
2024-02-18
Published:
2024-04-03
曹晓霭1(), 张睿1, 温云浩1, 王建1, 徐智超1, 田雅婷4, 王立新1,2,3, 刘华民1,2,3,*(
)
通讯作者:
刘华民。E-mail: 作者简介:
曹晓霭(1993年生),博士研究生,研究方向为环境生态学。E-mail: 1062695375@qq.com
基金资助:
CLC Number:
CAO Xiaoai, ZHANG Rui, WEN Yunhao, WANG Jian, XU Zhichao, TIAN Yating, WANG Lixin, LIU Huamin. Effect of Spring Freeze-thaw Process on Soil Enzyme Activities in Riparian Wetland[J]. Ecology and Environment, 2024, 33(2): 212-221.
曹晓霭, 张睿, 温云浩, 王建, 徐智超, 田雅婷, 王立新, 刘华民. 春季冻融过程对河滨带湿地土壤酶活性的影响[J]. 生态环境学报, 2024, 33(2): 212-221.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2024.02.005
Figure 3 Change of soil total carbon, total nitrogen, ammonia nitrogen and nitrate nitrogen contents in different freeze-thaw periods of riparian wetlands
酶类型 | 芦苇群落 | 灰脉苔草群落 |
---|---|---|
脲酶 | 0.374±0.025a | 0.451±0.037a |
蔗糖酶 | 23.466±0.903a | 19.497±0.909b |
过氧化氢酶 | 1.162±0.012a | 0.945±0.021b |
Table 1 Soil enzyme activities in different plant communities during the sampling period
酶类型 | 芦苇群落 | 灰脉苔草群落 |
---|---|---|
脲酶 | 0.374±0.025a | 0.451±0.037a |
蔗糖酶 | 23.466±0.903a | 19.497±0.909b |
过氧化氢酶 | 1.162±0.012a | 0.945±0.021b |
因子 | 土壤酶类型 | df | F | P |
---|---|---|---|---|
植被 | 脲酶 | 1 | 3.936 | 0.050 |
蔗糖酶 | 1 | 14.967 | 0.000 | |
过氧化氢酶 | 1 | 87.611 | 0.000 | |
时期 | 脲酶 | 6 | 8.007 | 0.000 |
蔗糖酶 | 6 | 5.439 | 0.000 | |
过氧化氢酶 | 6 | 3.354 | 0.004 | |
深度 | 脲酶 | 1 | 8.328 | 0.005 |
蔗糖酶 | 1 | 8.336 | 0.005 | |
过氧化氢酶 | 1 | 8.437 | 0.004 | |
植被*时期 | 脲酶 | 6 | 0.479 | 0.823 |
蔗糖酶 | 6 | 1.532 | 0.174 | |
过氧化氢酶 | 6 | 0.928 | 0.478 | |
植被*深度 | 脲酶 | 1 | 0.899 | 0.345 |
蔗糖酶 | 1 | 5.462 | 0.021 | |
过氧化氢酶 | 1 | 0.132 | 0.717 | |
时期*深度 | 脲酶 | 6 | 0.663 | 0.679 |
蔗糖酶 | 6 | 2.936 | 0.011 | |
过氧化氢酶 | 6 | 1.292 | 0.267 | |
植被*时期*深度 | 脲酶 | 6 | 0.313 | 0.929 |
蔗糖酶 | 6 | 4.961 | 0.000 | |
过氧化氢酶 | 6 | 1.022 | 0.415 |
Table 2 Multivariate variance analysis of soil enzyme activity under the interaction of vegetation type, freeze-thaw period and soil depth
因子 | 土壤酶类型 | df | F | P |
---|---|---|---|---|
植被 | 脲酶 | 1 | 3.936 | 0.050 |
蔗糖酶 | 1 | 14.967 | 0.000 | |
过氧化氢酶 | 1 | 87.611 | 0.000 | |
时期 | 脲酶 | 6 | 8.007 | 0.000 |
蔗糖酶 | 6 | 5.439 | 0.000 | |
过氧化氢酶 | 6 | 3.354 | 0.004 | |
深度 | 脲酶 | 1 | 8.328 | 0.005 |
蔗糖酶 | 1 | 8.336 | 0.005 | |
过氧化氢酶 | 1 | 8.437 | 0.004 | |
植被*时期 | 脲酶 | 6 | 0.479 | 0.823 |
蔗糖酶 | 6 | 1.532 | 0.174 | |
过氧化氢酶 | 6 | 0.928 | 0.478 | |
植被*深度 | 脲酶 | 1 | 0.899 | 0.345 |
蔗糖酶 | 1 | 5.462 | 0.021 | |
过氧化氢酶 | 1 | 0.132 | 0.717 | |
时期*深度 | 脲酶 | 6 | 0.663 | 0.679 |
蔗糖酶 | 6 | 2.936 | 0.011 | |
过氧化氢酶 | 6 | 1.292 | 0.267 | |
植被*时期*深度 | 脲酶 | 6 | 0.313 | 0.929 |
蔗糖酶 | 6 | 4.961 | 0.000 | |
过氧化氢酶 | 6 | 1.022 | 0.415 |
因变量 | 自变量 | r | 温度X1 | pH X2 | 含水量X3 | 总碳X4 | 总氮X5 | 氨态氮X6 | 硝态氮X7 | 间接通径系数和IPC Sum |
---|---|---|---|---|---|---|---|---|---|---|
脲酶 | X1 | 0.268**1) | 0.253 | 0.003 | 0.089 | −0.066 | −0.004 | −0.013 | 0.005 | 0.015 |
X2 | 0.123 | 0.014 | 0.060 | 0.153 | −0.094 | −0.007 | −0.005 | 0.003 | 0.063 | |
X3 | −0.101 | −0.072 | −0.029 | −0.314 | 0.293 | 0.019 | 0.012 | −0.010 | 0.214 | |
X4 | 0.193* 2) | −0.038 | −0.013 | −0.212 | 0.434 | 0.026 | 0.012 | −0.016 | −0.241 | |
X5 | 0.168* | −0.036 | −0.016 | −0.213 | 0.406 | 0.028 | 0.013 | −0.014 | 0.141 | |
X6 | −0.032 | −0.097 | −0.009 | −0.116 | 0.163 | 0.011 | 0.033 | −0.017 | −0.065 | |
X7 | 0.041 | −0.033 | −0.005 | −0.081 | 0.173 | 0.010 | 0.015 | −0.039 | 0.080 | |
蔗糖酶 | X1 | 0.142 | 0.088 | 0.005 | −0.014 | 0.016 | 0.273 | 0.007 | −0.002 | 0.285 |
X2 | 0.086 | 0.005 | 0.092 | 0.087 | −0.007 | −0.096 | 0.061 | 0.004 | 0.054 | |
X3 | 0.047 | −0.025 | −0.045 | −0.308 | −0.010 | −0.176 | 0.023 | 0.003 | −0.229 | |
X4 | 0.367** | −0.013 | −0.020 | −0.208 | 0.044 | 0.462 | −0.059 | −0.009 | 0.153 | |
X5 | 0.402** | −0.012 | −0.024 | −0.209 | 0.041 | 0.681 | −0.060 | −0.014 | −0.277 | |
X6 | −0.045 | −0.034 | −0.014 | −0.114 | 0.017 | 0.273 | −0.159 | −0.012 | 0.116 | |
X7 | 0.063 | −0.011 | −0.007 | −0.080 | 0.018 | 0.247 | −0.071 | −0.034 | 0.096 | |
过氧化氢酶 | X1 | −0.163 | −0.068 | −0.005 | −0.076 | −0.015 | −0.042 | 0.050 | −0.007 | −0.095 |
X2 | −0.306** | −0.004 | −0.088 | −0.130 | −0.022 | −0.077 | 0.019 | −0.004 | −0.218 | |
X3 | 0.565** | 0.019 | 0.043 | 0.267 | 0.068 | 0.203 | −0.048 | 0.014 | 0.298 | |
X4 | 0.562** | 0.010 | 0.019 | 0.181 | 0.100 | 0.280 | −0.049 | 0.022 | 0.462 | |
X5 | 0.573** | 0.010 | 0.023 | 0.181 | 0.094 | 0.299 | −0.052 | 0.020 | 0.275 | |
X6 | 0.189* | 0.026 | 0.013 | 0.099 | 0.038 | 0.120 | −0.130 | 0.024 | 0.319 | |
X7 | 0.229* | 0.009 | 0.007 | 0.069 | 0.040 | 0.109 | −0.058 | 0.054 | 0.175 |
Table 3 Correlation analysis and path analysis of soil enzyme activity and soil physical and chemical properties
因变量 | 自变量 | r | 温度X1 | pH X2 | 含水量X3 | 总碳X4 | 总氮X5 | 氨态氮X6 | 硝态氮X7 | 间接通径系数和IPC Sum |
---|---|---|---|---|---|---|---|---|---|---|
脲酶 | X1 | 0.268**1) | 0.253 | 0.003 | 0.089 | −0.066 | −0.004 | −0.013 | 0.005 | 0.015 |
X2 | 0.123 | 0.014 | 0.060 | 0.153 | −0.094 | −0.007 | −0.005 | 0.003 | 0.063 | |
X3 | −0.101 | −0.072 | −0.029 | −0.314 | 0.293 | 0.019 | 0.012 | −0.010 | 0.214 | |
X4 | 0.193* 2) | −0.038 | −0.013 | −0.212 | 0.434 | 0.026 | 0.012 | −0.016 | −0.241 | |
X5 | 0.168* | −0.036 | −0.016 | −0.213 | 0.406 | 0.028 | 0.013 | −0.014 | 0.141 | |
X6 | −0.032 | −0.097 | −0.009 | −0.116 | 0.163 | 0.011 | 0.033 | −0.017 | −0.065 | |
X7 | 0.041 | −0.033 | −0.005 | −0.081 | 0.173 | 0.010 | 0.015 | −0.039 | 0.080 | |
蔗糖酶 | X1 | 0.142 | 0.088 | 0.005 | −0.014 | 0.016 | 0.273 | 0.007 | −0.002 | 0.285 |
X2 | 0.086 | 0.005 | 0.092 | 0.087 | −0.007 | −0.096 | 0.061 | 0.004 | 0.054 | |
X3 | 0.047 | −0.025 | −0.045 | −0.308 | −0.010 | −0.176 | 0.023 | 0.003 | −0.229 | |
X4 | 0.367** | −0.013 | −0.020 | −0.208 | 0.044 | 0.462 | −0.059 | −0.009 | 0.153 | |
X5 | 0.402** | −0.012 | −0.024 | −0.209 | 0.041 | 0.681 | −0.060 | −0.014 | −0.277 | |
X6 | −0.045 | −0.034 | −0.014 | −0.114 | 0.017 | 0.273 | −0.159 | −0.012 | 0.116 | |
X7 | 0.063 | −0.011 | −0.007 | −0.080 | 0.018 | 0.247 | −0.071 | −0.034 | 0.096 | |
过氧化氢酶 | X1 | −0.163 | −0.068 | −0.005 | −0.076 | −0.015 | −0.042 | 0.050 | −0.007 | −0.095 |
X2 | −0.306** | −0.004 | −0.088 | −0.130 | −0.022 | −0.077 | 0.019 | −0.004 | −0.218 | |
X3 | 0.565** | 0.019 | 0.043 | 0.267 | 0.068 | 0.203 | −0.048 | 0.014 | 0.298 | |
X4 | 0.562** | 0.010 | 0.019 | 0.181 | 0.100 | 0.280 | −0.049 | 0.022 | 0.462 | |
X5 | 0.573** | 0.010 | 0.023 | 0.181 | 0.094 | 0.299 | −0.052 | 0.020 | 0.275 | |
X6 | 0.189* | 0.026 | 0.013 | 0.099 | 0.038 | 0.120 | −0.130 | 0.024 | 0.319 | |
X7 | 0.229* | 0.009 | 0.007 | 0.069 | 0.040 | 0.109 | −0.058 | 0.054 | 0.175 |
[1] |
ALLISON S D, TRESEDER K K, 2010. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils[J]. Global Change Biology, 14(12): 2898-2909.
DOI URL |
[2] |
BAI E, LI S L, XU W H, et al., 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics[J]. New Phytologist, 199(2): 441-451.
DOI URL |
[3] |
HAO F, LAI X, OUYANG W, et al., 2012. Effects of Land Use Changes on the Ecosystem Service Values of a Reclamation Farm in Northeast China[J]. Environmental Management, 50(5): 888-899.
DOI PMID |
[4] |
HENRY H A L, 2012. Soil extracellular enzyme dynamics in a changing climate[J]. Soil Biology & Biochemistry, 47: 53-59.
DOI URL |
[5] | HENTSCHEL K, BORKEN W, MATZNER E, 2008. Repeated freeze-thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil[J]. Journal of Plant Nutrition & Soil Science, 171(5): 699-706. |
[6] |
KIVLIN S N, HAWKES C V, 2020. Spatial and temporal turnover of soil microbial communities is not linked to function in a primary tropical forest[J]. Ecology, 101: e02985.
DOI URL |
[7] |
LEI H, GAO X, LIU M, et al., 2012. Correlation among soil microorganisms, soil enzyme activities, and removal rates of pollutants in three constructed wetlands purifying micro-polluted river water[J]. Ecological Engineering, 46(3): 98-106.
DOI URL |
[8] |
LI W B, WU J B, BAI E, et al., 2016. Response of terrestrial nitrogen dynamics to snow cover change: A meta-analysis of experimental manipulation[J]. Soil Biology & Biochemistry, 100: 51-58.
DOI URL |
[9] |
LU M, ZHOU X H, YANG Q, et al., 2013. Responses of ecosystem carbon cycle to experimental warming: A meta-analysis[J]. Ecology, 94(3): 726-738.
PMID |
[10] | LU R, 1999. Soil and agro-chemical analytical methods[M]. Beijing: China Agricultural Science and Technology Press:146- 195. |
[11] |
MIKAN C J, SCHIMEL J P, DOYLE A P, 2002. Temperature controls of microbial respiration in arctic tundra soils above and below freezing[J]. Soil Biology & Biochemistry, 34(11): 1785-1795.
DOI URL |
[12] |
SCHINNER F, MERSI W V, 1990. Xylanase-, CM-cellulase- and invertase activity in soil: An improved method[J]. Soil Biology & Biochemistry, 22(4): 511-515.
DOI URL |
[13] | LEI T Z, SI G C, WANG J, et al., 2017. Microbial communities and associated enzyme activities in alpine wetlands with increasing altitude on the Tibetan Plateau[J]. Wetlands the Journal of the Society of Wetland Scientists, 37(3): 401-412. |
[14] |
THERIOT J M, CONKLE J L, REZA PEZESHKI S, et al., 2013. Will hydrologic restoration of Mississippi River riparian wetlands improve their critical biogeochemical functions[J]. Ecological Engineering, 60: 192-198.
DOI URL |
[15] |
VIKLANDER P, 2016. Permeability and volume changes in till due to cyclic freeze/thaw[J]. Revue Canadienne De Géotechnique, 35(3): 471-477.
DOI URL |
[16] |
WALLENSTEIN M D, MCMAHON S K, SCHIMEL J P, 2009. Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils[J]. Global Change Biology, 15(7): 1631-1639.
DOI URL |
[17] |
WATANABE T, TATENO R, IMADA S, FUKUZAWA K, et al., 2019. The effect of a freezethaw cycle on dissolved nitrogen dynamics and its relation to dissolved organic matter and soil microbial biomass in the soil of a northern hardwood forest[J]. Biogeochemistry, 142(3): 319-338.
DOI |
[18] |
YANG Z P, GAO J X, YANG M, et al., 2016. Effects of freezing intensity on soil solution nitrogen and microbial biomass nitrogen in an alpine grassland ecosystem on the Tibetan Plateau, China[J]. Journal of Arid Land, 8(5): 749-759.
DOI |
[19] | ZHANG X R, BAI W, GILLIAM F S, et al., 2011. Effects of in situ freezing on soil net nitrogen mineralization and net nitrification in fertilized grassland of northern China[J]. Grass & Forage Science, 66(3): 391-401. |
[20] |
ZHAO H T, ZHANG X L, XU S T, et al., 2010. Effect of freezing on soil nitrogen mineralization under different plant communities in a semiarid area during a non-growing season[J]. Applied Soil Ecology, 45(3): 187-192.
DOI URL |
[21] |
边雪廉, 赵文磊, 岳中辉, 等, 2016. 土壤酶在农业生态系统碳、氮循环中的作用研究进展[J]. 中国农学通报, 32(4): 171-178.
DOI |
BIAN X L, ZHAO W L, YUE Z H, et al., 2016. Research process of soil enzymes effect on carbon and nitrogen cycle in agricultural ecosystem[J]. Chinese Agricultural Science Bulletin, 32(4): 171-178.
DOI |
|
[22] | 曹晓霭, 2019. 草原区河流河滨带湿地融冻期温室气体排放通量研究[D]. 呼和浩特: 内蒙古大学. |
CAO X A, 2019. Study on greenhouse gas emission fluxes during thawing and freezing period of riverfront wetland in grassland area[D]. Hohhot: Inner Mongolia University. | |
[23] | 陈鸽, 王璐, 宫雨薇, 等, 2019. 季节性冻融期长白山森林溪流中凋落叶N、P的释放动态[J]. 生态与环境学报, 28(12): 2341-2348. |
CHEN G, WANG L, GONG YW, et al., 2019. Release dynamics of nitrogen and phosphorus of leaf litter in a forest stream of the Changbai Mountains during seasonal freezing-thawing period[J]. Ecology and Environmental Sciences, 28(12): 2341-2348. | |
[24] | 陈子豪, 张晓蓉, 谭波, 等, 2020. 冻融循环对川西亚高山森林土壤酶活性的影响[J]. 生态学报, 40(8): 161-168. |
CHEN Z H, ZHANG X R, TAN B, et al., 2020. Effects of freeze-thaw cycle on soil enzyme activity in subalpine forest in western Sichuan[J]. Acta Ecologica Sinica, 40(8): 161-168. | |
[25] | 樊子豪, 张瑞香, 冯雪琦, 等, 2023. 河滨湿地不同植物群落根系分布特征与土壤理化性状的关系——以黄河中游荥阳段为例[J]. 生态学报, 43(1): 4772-4781. |
FAN Z H, ZHANG R X, FENG X Q, et al., 2023. Characteristics of root distribution and soil physical and chemical properties of different vegetation communities in tidal flat wetland: A case study of Xingyang section of Zhengzhou in the middle reaches of the Yellow River[J]. Acta Ecologica Sinica, 43(11):4772-4781. | |
[26] | 范昊明, 黄东浩, 周丽丽, 等, 2014. 季节性冻融作用对黑土坡面磷素流失的影响[J]. 水土保持学报, 28(1): 152-155. |
FAN H M, HUANG D H, ZHOU L L, et al., 2014. Effects of seasonal freeze-thaw action on phosphorus loss on black soil slope[J]. Journal of Soil and Water Conservation, 28(1): 152-155. | |
[27] | 高珊, 辛贵民, 赵清竹, 等, 2020. 循环冻融过程对6种温带森林土壤酶活性的影响[J]. 土壤通报, 51(3): 668-676. |
GAO S, XIN G M, ZHAO Q Z, et al., 2020. Effects of cyclic freeze-thaw processes on soil enzyme activities of six temperate forest species[J]. Chinese Journal of Soil Science, 51(3): 668-676. | |
[28] | 缑倩倩, 屈建军, 王国华, 等, 2015. 中国干旱半干旱地区湿地研究进展[J]. 干旱区研究, 32(2):213-220. |
GOU Q Q, QU J G, WANG G H, et al, 2015. Progress of wetland researches in arid and semi-arid regions in China[J]. Arid Zone Research, 32(2):213-220. | |
[29] | 关松荫, 1986. 土壤酶及其研究法[M]. 北京: 农业出版社. |
GUAN S Y, 1986. Soil enzymes and their research methods[M]. Beijing: Agriculture Press. | |
[30] |
郭冬楠, 臧淑英, 赵光影, 2017. 冻融交替对不同年代排水造林湿地土壤微生物活性及有机碳密度的影响[J]. 冰川冻土, 39(1): 175-184.
DOI |
GUO D N, ZANG S Y, ZHAO G Y, 2017. Effects of freeze-thaw alternations on soil microbial activity and organic carbon density in different years of drainage afforestation wetland[J]. Journal of Glaciology and Geocryology, 39(1): 175-184. | |
[31] | 郭彤, 孙嘉鸿, 徐志伟, 等, 2022. 冻融作用对金川泥炭沼泽土壤酶活性的影响[J]. 生态学报, 2(12): 5348-5359. |
GUO T, SUN J H, XU Z W, et al., 2022. Effects of freezing and thawing on soil enzyme activities in Jinchuan peatlands[J]. Acta Ecologica Sinica, 42(13): 5348-5359. | |
[32] | 韩冰雪, 赵光影, 臧淑英, 等, 2018. 大兴安岭多年冻土区森林湿地土壤碳氮含量及酶活性研究[J]. 安徽农业科学, 46(13): 136-140. |
HAN B X, ZHAO G Y, ZANG S Y, et al., 2018. Soil carbon and nitrogen content and enzyme activity in forest wetland in the permafrost region of the Greater Khingan Mountains[J]. Anhui Agricultural Sciences, 46(13): 136-140. | |
[33] | 和文祥, 朱铭莪, 张一平, 2000. 土壤酶与重金属关系的研究现状[J]. 土壤与环境, 9(2): 139-142. |
HE W X, ZHU M E, ZHANG Y P, 2000. Research status of the relationship between soil enzymes and heavy metals[J]. Soil and Environmental Sciences, 9(2): 139-142. | |
[34] | 华璐, 于晓菲, 王啟光, 等, 2020. 冻融作用对植物生理生态的影响[J]. 土壤与作物, 9(1): 13-21. |
HUA L, YU X F, WANG Q G, et al., 2020. Effects of soil freezing thawing on plant ecophysiological characteristics[J]. Soils and Crops, 9(1): 13-21. | |
[35] | 李凤霞, 王学琴, 郭永忠, 等, 2013. 宁夏引黄灌区不同盐化程度土壤酶活性及微生物多样性研究[J]. 水土保持研究, 20(1): 61-65. |
LI F X, WANG X Q, GUO Y Z, et al., 2013. Study on soil enzyme activity and microbial diversity with different salinity levels in the Yellow River irrigation area of Ningxia[J]. Research of Soil and Water Conservation, 20(1): 61-65. | |
[36] | 李富, 臧淑英, 刘赢男, 等, 2019. 冻融作用对三江平原湿地土壤活性有机碳及酶活性的影响[J]. 生态学报, 39(21): 149-160. |
LI F, ZANG S Y, LIU Y N, et al., 2019. Effects of freeze-thaw effects on soil active organic carbon and enzyme activities in Sanjiang Plain wetland[J]. Acta Ecologica Sinica, 39(21): 149-160. | |
[37] |
李红琴, 徐海燕, 马小亮, 等, 2017. 马衔山多年冻土与季节冻土区土壤微生物量及酶活性的季节动态[J]. 冰川冻土, 39(2): 421-428.
DOI |
LI H Q, XU H Y, MA X L, et al., 2017. Seasonal dynamics of soil microbial biomass and enzyme activities in permafrost and seasonal frozen soil in Maxian Mountain[J]. Journal of Glaciology and Geocryology, 39(2): 421-428. | |
[38] | 李龙, 尹航, 黄世臣, 等, 2018. 春季解冻期3种温带森林土壤酶活性动态变化[J]. 土壤通报, 49(3): 609-615. |
LI L, YIN H, HUANG S C, et al., 2018. Dynamic Changes of Soil Enzyme Activities in ThreeTypes of Temperate Forest during Spring Thawing Period[J]. Chinese Journal of Soil Science, 49(3): 609-615. | |
[39] | 刘帅, 于贵瑞, 浅沼顺, 等, 2009. 蒙古高原中部草地土壤冻融过程及土壤含水量分布[J]. 土壤学报, 46(1): 48-53. |
LIU S, YU G R, QIAN Z S, et al., 2009. Soil freeze-thaw process and soil water content distribution in grassland in central Mongolia Plateau[J]. Journal of Soil Science, 46(1): 48-53. | |
[40] | 刘心宇, 2023. 内蒙古锡林河河滨带湿地碳排放和碳储藏影响机制研究[D]. 呼和浩特: 内蒙古大学. |
LIU X Y, 2023. Study on the mechanism of carbon emission and carbonstorage in the Xilin River riparian wetlands in Inner Mongolia[D]. Hohhot: Inner Mongolia University. | |
[41] | 马晓飞, 楚新正, 马倩, 2015. 艾比湖地区冻融作用对梭梭群落土壤酶活性及微生物数量的影响[J]. 干旱区地理, 38(6): 1190-1201. |
MA X F, CHU X Z, MA Q, 2015. Effects of freeze-thaw action on soil enzyme activity and microbial population of Haloxel community in Ebi Lake area[J]. Arid Land Geography, 38(6): 1190-1201. | |
[42] | 彭振阳, 黄介生, 曾文治, 等, 2011. 季节性冻融土壤水分运动规律[J]. 武汉大学学报(工学版), 44(6): 696-700. |
PENG Z Y, HUANG J S, ZENG W Z, et al., 2011. Seasonal freeze-thaw soil water movement[J]. Journal of Wuhan University (Engineering and Technology Edition), 44(6): 696-700. | |
[43] | 宋阳, 于晓菲, 邹元春, 等, 2016. 冻融作用对土壤碳、氮、磷循环的影响[J]. 土壤与作物, 5(2): 78-90. |
SONG Y, YU X F, ZOU Y C, et al., 2016. Effects of freeze-thaw on soil carbon, nitrogen and phosphorus cycles[J]. Soil and Crops, 5(2): 78-90. | |
[44] | 田雅婷, 2021. 放牧对锡林河河滨带湿地甲烷生成-氧化潜力及甲烷氧化菌的影响研究[D]. 呼和浩特: 内蒙古大学. |
TIAN Y T, 2021. Study on the effects of grazing on methang production and oxidation protential and methanotrophs of XiLin River riparian wetland[D]. Hohhot: Inner Mongolia University. | |
[45] |
万红云, 陈林, 庞丹波, 等, 2021. 贺兰山不同海拔土壤酶活性及其化学计量特征[J]. 应用生态学报, 32(9): 3045-3052.
DOI |
WAN H Y, CHEN L, PANG D B, et al., 2021. Soil enzyme activities and their stoichiometry at different altitudes in Helan Mountains Northwest China[J]. Chinese Journal of Applied Ecology, 32(9): 3045-3052. | |
[46] | 王娇月, 2014. 冻融作用对大兴安岭多年冻土区泥炭地土壤有机碳的影响研究[D]. 长春: 中国科学院研究生院(东北地理与农业生态研究所). |
WANG J Y, 2014. Effect of freeze-thaw on soil organic carbon in peatland in permafrost region of Greater Khingan Mountains[D]. Changchun: Northeast Institute of Geography and AgroEcology, Graduate School of Chinese Academy of Sciences. | |
[47] | 王立新, 2012. 内蒙古草原区河流河滨带湿地植被分布格局、过程与功能研究[D]. 呼和浩特: 内蒙古大学. |
WANG L X, 2012. The spatial distribution of wetland vegetation and its ecological process and function on riparian zone of riverscape in Inner Mongolia grassland[D]. Hohhot: Inner Mongolia University. | |
[48] | 王振芬, 2019. 三江平原湿地不同土地利用方式对土壤养分及酶活性的影响[J]. 水土保持研究, 26(2): 43-48. |
WANG Z F, 2019. Effects of different land uses on soil nutrients and enzyme activities in Sanjiang Plain wetland[J]. Research of Soil and Water Conservation, 26(2): 43-48. | |
[49] | 杨小林, 李义玲, 朱波, 等, 2013. 紫色土小流域不同土地利用类型的土壤氮素时空分异特征[J]. 环境科学学报, 33(10): 2807-2813. |
YANG X L, LI Y L, ZHU B, et al., 2013. Spatial and temporal differences of soil nitrogen in different land use types in purple soil small watershed[J]. Journal of Environmental Sciences, 33(10): 2807-2813. | |
[50] | 袁霞, 何斌, 2004. 八角林地土壤酶活性和养分的分布特点及其相关分析[J]. 经济林研究, 22(2): 13-16. |
YUAN X, HE B, 2004. Distribution characteristics of soil enzyme activities and nutrients in anise forest and their correlation analysis[J]. Economic Forest Research, 22(2): 13-16. | |
[51] | 苑鹏云, 2019. 内蒙古草原区河流河滨带湿地植物性状对不同环境梯度的响应[D]. 呼和浩特: 内蒙古大学. |
YAUN P Y, 2019. Response of wetland plant traits to different environmental gradients in the riverside zone of the Inner Mongolia grassland[D]. Hohhot: Inner Mongolia University. | |
[52] | 张少良, 沈庆松, 王曜, 等, 2016. 不同冻结强度下容重和含水量对黑土剖面水分变化特征影响[J]. 东北农业大学学报, 47(12): 48-55. |
ZHANG S L, SHEN Q S, WANG Y, et al., 2016. Effects of bulk density and water content on water change characteristics of black soil profiles under different freezing intensities[J]. Journal of Northeast Agricultural University, 47(12): 48-55. | |
[53] | 周丽丽, 马世伟, 米彩红, 等, 2017. 冻融条件下土壤水分和速效磷垂直迁移规律[J]. 水土保持研究, 24(3): 70-74. |
ZHOU L L, MA S W, MI C H, et al., 2017. Vertical migration of soil moisture and available phosphorus under freeze-thaw conditions[J]. Research of Soil and Water Conservation, 24(3): 70-74. |
[1] | SHENG Meijun, LI Shengjun, YANG Xinyue, WANG Rui, LI Jie, LI Gang, XIU Weiming. Changes of Soil Enzyme Activities in Cropland with Different Land Use Intensities in Fluvo-aquic Soil Area, North China [J]. Ecology and Environment, 2023, 32(2): 299-308. |
[2] | ZHOU Shiqiang, Vanessa HULL, ZHANG Jindong, LIU Dian, XIE Hao, HUANG Jinyan, ZHANG Hemin. Comparison of Habitat Use Patterns between Wild Giant Pandas and Grazing Livestock [J]. Ecology and Environment, 2023, 32(2): 309-319. |
[3] | YUAN Jiabao, SONG Yanyu, LIU Zhendi, ZHU Mengyuan, CHENG Xiaofeng, MA Xiuyan, CHEN Ning, LI Xiaoyu. Profile Distribution Characteristics of Soil Enzyme Activity and Its Indicative Function of Microbial Nutrient Restriction in Reed Wetlands of Songnen Plain [J]. Ecology and Environment, 2023, 32(12): 2141-2153. |
[4] | LI Ping, BAI Xiaoming, CHEN Xin, LI Juanxia, RAN Fu, CHEN Hui, YANG Xiaoni, KANG Ruiqing. Effects of Trifolium repens Invasion on Soil Properties and Plant Communities of Gramineous Turfgrass [J]. Ecology and Environment, 2023, 32(1): 70-79. |
[5] | JIANG Tiantian, YANG Chun, LIAO Wei, HU Li, LIU Huanyao, REN Bo, LI Xiaoma. Path Analysis of the Urban Greenspace Landscape Pattern Impacts on Land Surface Temperature: A Case Study in Changsha [J]. Ecology and Environment, 2023, 32(1): 18-25. |
[6] | SUN Jianbo, CHANG Wenjun, LI Wenbin, ZHANG Shiqing, LI Chunqiang, PENG Ming. Dynamics of Soil Microbial Biomass and Enzyme Activities in Rhizosphere Soil at Different Growing Stages of Banana [J]. Ecology and Environment, 2022, 31(6): 1169-1174. |
[7] | WANG Zhanyong, CHEN Xin, HU Xisheng, HE Hongdi, CAI Ming, PENG Zhongren. Mechanism and Research Methods of Roadside Green Barriers Affecting the Distribution of Atmospheric Particulate Matter: A Review [J]. Ecology and Environment, 2022, 31(5): 1047-1058. |
[8] | DUAN Wenjun, LI Da, LI Chong. Comparison and Determinant Factors Analysis of Understory Plant Diversity of 5 different Ages Eucalyptus urophylla×E. grandis Plantation [J]. Ecology and Environment, 2022, 31(5): 857-864. |
[9] | ZHOU Chunfu, YU Rui, WANG Xiang, CHUANG Shaochuang, YANG Hongxing, XIE Yue. Effects of Antibiotics on Soil Enzyme Activities in Different Soils [J]. Ecology and Environment, 2022, 31(11): 2234-2241. |
[10] | LI Chunhuan, WANG Pan, HAN Cui, XU Yixin, HUANG Juying. Variation Characteristics of Soil Properties Around A Northwest Desert Coal-mining Region under Sulphur and Nitrogen Deposition [J]. Ecology and Environment, 2022, 31(1): 170-180. |
[11] | WANG Rui, SONG Xiangyun, LIU Xinwei. Seasonal Characteristics of Soil Enzymes in Different Vegetations in the Yellow River Delta [J]. Ecology and Environment, 2022, 31(1): 62-69. |
[12] | LI Xin, CHEN Xiaohua, GU Hairong, QIAN Xiaoyong, SHEN Genxiang, ZHAO Qingjie, BAI Yujie. Distribution Characteristics and Influencing Factors of Enzyme Activities in Typical Farmland Soils [J]. Ecology and Environment, 2021, 30(8): 1634-1641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn