Ecology and Environment ›› 2023, Vol. 32 ›› Issue (5): 956-968.DOI: 10.16258/j.cnki.1674-5906.2023.05.013
• Research Articles • Previous Articles Next Articles
XU Xiaoyun1(), RAO Zhihan2, JIANG Hongbin3, ZHANG Wei2, CHEN Chao4, YANG Yongan5,*(
), HU Yanli5, WEI Haichuan3
Received:
2022-08-28
Online:
2023-05-18
Published:
2023-08-09
Contact:
YANG Yongan
许肖云1(), 饶芝菡2, 蒋红斌3, 张巍2, 陈超4, 杨永安5,*(
), 胡艳丽5, 魏海川3
通讯作者:
杨永安
作者简介:
许肖云(1981年生),女,高级工程师,研究方向为环境监测与污染防治。E-mail: xyya369@163.com
基金资助:
CLC Number:
XU Xiaoyun, RAO Zhihan, JIANG Hongbin, ZHANG Wei, CHEN Chao, YANG Yongan, HU Yanli, WEI Haichuan. Pollution Characteristics and Formation Potential for O3 and SOA of Ambient VOCs in Suining Industrial Zone in Summer[J]. Ecology and Environment, 2023, 32(5): 956-968.
许肖云, 饶芝菡, 蒋红斌, 张巍, 陈超, 杨永安, 胡艳丽, 魏海川. 遂宁工业园区夏季VOCs污染特征及其对O3、SOA生成潜势研究[J]. 生态环境学报, 2023, 32(5): 956-968.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.jeesci.com/EN/10.16258/j.cnki.1674-5906.2023.05.013
组分 | 序号 | 物种名称 | 相关系数(r2) | 方法检出限/(μg·m-3) | 精密度/% | MIR | FAC |
---|---|---|---|---|---|---|---|
烷烃 | 1 | 乙烷 | 0.9998 | 0.021 | 1.48 | 0.28 | - |
2 | 丙烷 | 0.9999 | 0.061 | 2.58 | 0.49 | - | |
3 | 异丁烷 | 0.9999 | 0.052 | 1.86 | 1.23 | - | |
4 | 正丁烷 | 0.9998 | 0.052 | 1.80 | 1.15 | - | |
5 | 环戊烷 | 1.0000 | 0.028 | 0.91 | 2.39 | - | |
6 | 异戊烷 | 0.9999 | 0.016 | 0.52 | 1.45 | - | |
7 | 正戊烷 | 1.0000 | 0.016 | 0.53 | 1.31 | - | |
8 | 2, 2-二甲基丁烷 | 0.9985 | 0.019 | 0.79 | 1.17 | - | |
9 | 2, 3-二甲基丁烷 | 0.9986 | 0.050 | 2.12 | 0.97 | - | |
10 | 2-甲基戊烷 | 0.9991 | 0.154 | 5.37 | 1.50 | - | |
11 | 3-甲基戊烷 | 0.9990 | 0.027 | 0.98 | 1.80 | - | |
12 | 正己烷 | 0.9995 | 0.062 | 2.25 | 1.24 | - | |
13 | 2, 4-二甲基戊烷 | 0.9996 | 0.031 | 1.18 | 1.55 | - | |
14 | 甲基环戊烷 | 0.9958 | 0.057 | 2.05 | 2.19 | 0.17 | |
15 | 2-甲基己烷 | 0.9995 | 0.049 | 1.58 | 1.19 | - | |
16 | 环己烷 | 0.9990 | 0.075 | 2.34 | 1.25 | 0.17 | |
17 | 2, 3-二甲基戊烷 | 0.9992 | 0.031 | 0.83 | 1.34 | - | |
18 | 3-甲基己烷 | 0.9991 | 0.072 | 2.14 | 1.61 | - | |
19 | 2, 2, 4-三甲基戊烷 | 0.9989 | 0.076 | 1.95 | 1.26 | - | |
20 | 正庚烷 | 0.9996 | 0.040 | 1.52 | 1.07 | 0.06 | |
21 | 甲基环己烷 | 0.9980 | 0.049 | 1.50 | 1.70 | 2.70 | |
22 | 2, 3, 4-三甲基戊烷 | 0.9979 | 0.046 | 1.52 | 1.03 | - | |
23 | 2-甲基庚烷 | 0.9979 | 0.082 | 2.57 | 1.07 | 0.50 | |
24 | 3-甲基庚烷 | 0.9977 | 0.066 | 1.84 | 1.24 | 0.50 | |
25 | 正辛烷 | 0.9981 | 0.082 | 2.73 | 0.90 | 0.06 | |
26 | 正壬烷 | 0.9993 | 0.126 | 2.73 | 0.78 | 1.50 | |
27 | 正癸烷 | 0.9991 | 0.241 | 4.67 | 0.68 | 2.00 | |
28 | 十一烷 | 0.9974 | 0.230 | 5.63 | 0.61 | 2.50 | |
29 | 十二烷 | 0.9964 | 0.380 | 5.63 | 0.55 | 3.00 | |
烯烃 | 30 | 乙烯 | 0.9996 | 0.033 | 2.22 | 9.00 | - |
31 | 丙烯 | 0.9998 | 0.038 | 1.77 | 11.66 | - | |
32 | 反-2-丁烯 | 0.9997 | 0.055 | 2.00 | 15.16 | - | |
33 | 1-丁烯 | 1.0000 | 0.028 | 1.03 | 9.73 | - | |
34 | 顺-2-丁烯 | 0.9997 | 0.028 | 1.02 | 14.24 | - | |
35 | 1, 3-丁二烯 | 0.9999 | 0.022 | 0.81 | 12.61 | - | |
36 | 1-戊烯 | 0.9996 | 0.116 | 5.26 | 7.21 | - | |
37 | 反-2-戊烯 | 0.9983 | 0.028 | 1.25 | 10.56 | - | |
38 | 异戊二烯 | 0.9982 | 0.012 | 1.25 | 10.61 | - | |
39 | 顺-2-戊烯 | 0.9975 | 0.063 | 0.47 | 10.38 | - | |
40 | 1-己烯 | 0.9987 | 0.060 | 2.50 | 5.49 | - | |
炔烃 | 41 | 乙炔 | 0.9994 | 0.013 | 1.94 | 0.50 | - |
芳香烃 | 42 | 苯 | 0.9988 | 0.063 | 2.00 | 0.72 | 2.00 |
43 | 甲苯 | 0.9983 | 0.045 | 1.40 | 4.00 | 5.40 | |
44 | 乙苯 | 0.9993 | 0.043 | 1.32 | 3.04 | 5.40 | |
45 | 间/对二甲苯 | 0.9983 | 0.104 | 1.56 | 7.79 | 4.70 | |
46 | 邻二甲苯 | 0.9991 | 0.071 | 2.22 | 7.64 | 5.00 | |
47 | 苯乙烯 | 0.9961 | 0.084 | 2.70 | 1.73 | - | |
48 | 异丙基苯 | 0.9995 | 0.070 | 1.94 | 2.32 | 4.00 | |
49 | 正丙苯 | 0.9989 | 0.140 | 4.12 | 2.20 | 1.60 | |
50 | 间乙基甲苯 | 0.9992 | 0.204 | 5.38 | 9.37 | 6.30 | |
51 | 对乙基甲苯 | 0.9981 | 0.145 | 3.19 | 3.75 | 2.50 | |
52 | 1, 3, 5-三甲基苯 | 0.9994 | 0.038 | 1.25 | 11.22 | 2.90 | |
53 | 邻乙基甲苯 | 0.9993 | 0.118 | 3.24 | 5.59 | 5.60 | |
54 | 1, 2, 4-三甲基苯 | 0.9988 | 0.038 | 1.60 | 8.87 | 2.00 | |
55 | 1, 2, 3-三甲基苯 | 0.9988 | 0.188 | 6.13 | 11.97 | 3.60 | |
56 | 间二乙基苯 | 0.9971 | 0.240 | 6.67 | 7.10 | 6.30 | |
57 | 对二乙基苯 | 0.9952 | 0.240 | 5.95 | 4.43 | 6.30 | |
58 | 萘 | 0.9967 | 0.126 | 8.57 | 3.34 | 4.00 | |
卤代烃 | 59 | 氟利昂-12 | 0.9990 | 0.011 | 2.03 | - | - |
60 | 氟利昂-114 | 0.9972 | 0.053 | 8.33 | - | - | |
61 | 氯甲烷 | 0.9955 | 0.095 | 5.90 | 0.038 | - | |
62 | 氯乙烯 | 0.9993 | 0.067 | 2.45 | 2.83 | - | |
63 | 溴甲烷 | 0.9981 | 0.131 | 3.40 | 0.019 | - | |
64 | 氯乙烷 | 0.9980 | 0.132 | 2.72 | 0.29 | - | |
65 | 氟利昂-11 | 0.9990 | 0.190 | 2.12 | - | - | |
66 | 1, 1-二氯乙烯 | 0.9998 | 0.117 | 5.37 | 1.79 | - | |
67 | 氟利昂-113 | 0.9990 | 0.310 | 2.74 | - | - | |
68 | 二氯甲烷 | 0.9984 | 0.118 | 2.98 | 0.041 | - | |
69 | 1, 1-二氯乙烷 | 0.9983 | 0.088 | 2.16 | 0.069 | - | |
70 | 顺-1, 2-二氯乙烯 | 0.9987 | 0.104 | 2.36 | 1.70 | - | |
71 | 反-1, 2-二氯乙烯 | 0.9987 | 0.104 | 2.36 | 1.70 | - | |
72 | 三氯甲烷 | 0.9974 | 0.155 | 2.58 | 0.022 | - | |
73 | 1, 1, 1-三氯乙烷 | 0.9983 | 0.161 | 2.68 | 0.049 | - | |
74 | 四氯化碳 | 0.9977 | 0.165 | 2.13 | 0.00 | - | |
75 | 1, 2-二氯乙烷 | 0.9963 | 0.119 | 2.54 | 0.21 | - | |
76 | 三氯乙烯 | 0.9986 | 0.117 | 1.93 | 0.64 | - | |
77 | 1, 2-二氯丙烷 | 0.9983 | 0.091 | 1.85 | 0.29 | - | |
78 | 二氯溴甲烷 | 0.9973 | 0.176 | 2.13 | - | - | |
79 | 反-1, 3-二氯丙烯 | 0.9976 | 0.089 | 2.63 | 5.03 | - | |
80 | 顺-1, 3-二氯丙烯 | 0.9974 | 0.035 | 1.08 | 3.70 | - | |
81 | 1, 1, 2-三氯乙烷 | 0.9975 | 0.155 | 2.22 | 0.086 | - | |
82 | 四氯乙烯 | 0.9986 | 0.192 | 2.41 | 0.031 | - | |
83 | 二溴一氯甲烷 | 0.9978 | 0.139 | 1.18 | - | - | |
84 | 1, 2-二溴乙烷 | 0.9976 | 0.151 | 1.85 | 0.102 | - | |
85 | 氯苯 | 0.9975 | 0.055 | 1.36 | 0.32 | - | |
86 | 溴仿 | 0.9958 | 0.093 | 1.52 | - | - | |
87 | 1, 1, 2, 2-四氯乙烷 | 0.9962 | 0.135 | 1.67 | - | - | |
88 | 1, 3-二氯苯 | 0.9994 | 0.105 | 2.09 | 0.178 | - | |
89 | 1, 4-二氯苯 | 0.9995 | 0.158 | 3.25 | 0.178 | - | |
90 | 苄基氯 | 0.9949 | 0.073 | 2.50 | - | - | |
91 | 1, 2-二氯苯 | 0.9989 | 0.046 | 0.93 | 0.178 | - | |
92 | 1, 2, 4-三氯苯 | 0.9996 | 0.373 | 8.06 | - | - | |
93 | 六氯-1, 3-丁二烯 | 0.9987 | 0.081 | 0.80 | - | - | |
OVOCs | 94 | 丙烯醛 | 0.9943 | 0.068 | 2.20 | 6.50 | - |
95 | 丙酮 | 0.9980 | 0.086 | 1.94 | 0.56 | - | |
96 | 异丙醇 | 0.9940 | 0.002 | 2.25 | 0.54 | - | |
97 | 甲基叔丁基醚 | 0.9985 | 0.059 | 2.00 | 0.73 | - | |
98 | 乙酸乙烯酯 | 0.9948 | 0.058 | 2.50 | 3.20 | - | |
99 | 2-丁酮 | 0.9978 | 0.042 | 1.49 | 1.18 | - | |
100 | 乙酸乙酯 | 0.9980 | 0.114 | 3.40 | 0.63 | - | |
101 | 四氢呋喃 | 0.9977 | 0.071 | 3.75 | 4.31 | - | |
102 | 甲基丙烯酸甲酯 | 0.9972 | 0.130 | 3.14 | 15.61 | - | |
103 | 1, 4-二氧己环 | 0.9944 | 0.197 | 1.50 | 2.62 | - | |
104 | 甲基异丁基酮 | 0.9976 | 0.192 | 2.00 | 3.14 | - | |
105 | 2-己酮 | 0.9913 | 0.224 | 2.10 | 3.14 | - | |
有机硫 | 106 | 二硫化碳 | 0.9989 | 0.112 | 2.73 | 0.25 | - |
Table 1 The names of observed species and their linear relationship coefficients, detection limits, precision, MIR and FAC
组分 | 序号 | 物种名称 | 相关系数(r2) | 方法检出限/(μg·m-3) | 精密度/% | MIR | FAC |
---|---|---|---|---|---|---|---|
烷烃 | 1 | 乙烷 | 0.9998 | 0.021 | 1.48 | 0.28 | - |
2 | 丙烷 | 0.9999 | 0.061 | 2.58 | 0.49 | - | |
3 | 异丁烷 | 0.9999 | 0.052 | 1.86 | 1.23 | - | |
4 | 正丁烷 | 0.9998 | 0.052 | 1.80 | 1.15 | - | |
5 | 环戊烷 | 1.0000 | 0.028 | 0.91 | 2.39 | - | |
6 | 异戊烷 | 0.9999 | 0.016 | 0.52 | 1.45 | - | |
7 | 正戊烷 | 1.0000 | 0.016 | 0.53 | 1.31 | - | |
8 | 2, 2-二甲基丁烷 | 0.9985 | 0.019 | 0.79 | 1.17 | - | |
9 | 2, 3-二甲基丁烷 | 0.9986 | 0.050 | 2.12 | 0.97 | - | |
10 | 2-甲基戊烷 | 0.9991 | 0.154 | 5.37 | 1.50 | - | |
11 | 3-甲基戊烷 | 0.9990 | 0.027 | 0.98 | 1.80 | - | |
12 | 正己烷 | 0.9995 | 0.062 | 2.25 | 1.24 | - | |
13 | 2, 4-二甲基戊烷 | 0.9996 | 0.031 | 1.18 | 1.55 | - | |
14 | 甲基环戊烷 | 0.9958 | 0.057 | 2.05 | 2.19 | 0.17 | |
15 | 2-甲基己烷 | 0.9995 | 0.049 | 1.58 | 1.19 | - | |
16 | 环己烷 | 0.9990 | 0.075 | 2.34 | 1.25 | 0.17 | |
17 | 2, 3-二甲基戊烷 | 0.9992 | 0.031 | 0.83 | 1.34 | - | |
18 | 3-甲基己烷 | 0.9991 | 0.072 | 2.14 | 1.61 | - | |
19 | 2, 2, 4-三甲基戊烷 | 0.9989 | 0.076 | 1.95 | 1.26 | - | |
20 | 正庚烷 | 0.9996 | 0.040 | 1.52 | 1.07 | 0.06 | |
21 | 甲基环己烷 | 0.9980 | 0.049 | 1.50 | 1.70 | 2.70 | |
22 | 2, 3, 4-三甲基戊烷 | 0.9979 | 0.046 | 1.52 | 1.03 | - | |
23 | 2-甲基庚烷 | 0.9979 | 0.082 | 2.57 | 1.07 | 0.50 | |
24 | 3-甲基庚烷 | 0.9977 | 0.066 | 1.84 | 1.24 | 0.50 | |
25 | 正辛烷 | 0.9981 | 0.082 | 2.73 | 0.90 | 0.06 | |
26 | 正壬烷 | 0.9993 | 0.126 | 2.73 | 0.78 | 1.50 | |
27 | 正癸烷 | 0.9991 | 0.241 | 4.67 | 0.68 | 2.00 | |
28 | 十一烷 | 0.9974 | 0.230 | 5.63 | 0.61 | 2.50 | |
29 | 十二烷 | 0.9964 | 0.380 | 5.63 | 0.55 | 3.00 | |
烯烃 | 30 | 乙烯 | 0.9996 | 0.033 | 2.22 | 9.00 | - |
31 | 丙烯 | 0.9998 | 0.038 | 1.77 | 11.66 | - | |
32 | 反-2-丁烯 | 0.9997 | 0.055 | 2.00 | 15.16 | - | |
33 | 1-丁烯 | 1.0000 | 0.028 | 1.03 | 9.73 | - | |
34 | 顺-2-丁烯 | 0.9997 | 0.028 | 1.02 | 14.24 | - | |
35 | 1, 3-丁二烯 | 0.9999 | 0.022 | 0.81 | 12.61 | - | |
36 | 1-戊烯 | 0.9996 | 0.116 | 5.26 | 7.21 | - | |
37 | 反-2-戊烯 | 0.9983 | 0.028 | 1.25 | 10.56 | - | |
38 | 异戊二烯 | 0.9982 | 0.012 | 1.25 | 10.61 | - | |
39 | 顺-2-戊烯 | 0.9975 | 0.063 | 0.47 | 10.38 | - | |
40 | 1-己烯 | 0.9987 | 0.060 | 2.50 | 5.49 | - | |
炔烃 | 41 | 乙炔 | 0.9994 | 0.013 | 1.94 | 0.50 | - |
芳香烃 | 42 | 苯 | 0.9988 | 0.063 | 2.00 | 0.72 | 2.00 |
43 | 甲苯 | 0.9983 | 0.045 | 1.40 | 4.00 | 5.40 | |
44 | 乙苯 | 0.9993 | 0.043 | 1.32 | 3.04 | 5.40 | |
45 | 间/对二甲苯 | 0.9983 | 0.104 | 1.56 | 7.79 | 4.70 | |
46 | 邻二甲苯 | 0.9991 | 0.071 | 2.22 | 7.64 | 5.00 | |
47 | 苯乙烯 | 0.9961 | 0.084 | 2.70 | 1.73 | - | |
48 | 异丙基苯 | 0.9995 | 0.070 | 1.94 | 2.32 | 4.00 | |
49 | 正丙苯 | 0.9989 | 0.140 | 4.12 | 2.20 | 1.60 | |
50 | 间乙基甲苯 | 0.9992 | 0.204 | 5.38 | 9.37 | 6.30 | |
51 | 对乙基甲苯 | 0.9981 | 0.145 | 3.19 | 3.75 | 2.50 | |
52 | 1, 3, 5-三甲基苯 | 0.9994 | 0.038 | 1.25 | 11.22 | 2.90 | |
53 | 邻乙基甲苯 | 0.9993 | 0.118 | 3.24 | 5.59 | 5.60 | |
54 | 1, 2, 4-三甲基苯 | 0.9988 | 0.038 | 1.60 | 8.87 | 2.00 | |
55 | 1, 2, 3-三甲基苯 | 0.9988 | 0.188 | 6.13 | 11.97 | 3.60 | |
56 | 间二乙基苯 | 0.9971 | 0.240 | 6.67 | 7.10 | 6.30 | |
57 | 对二乙基苯 | 0.9952 | 0.240 | 5.95 | 4.43 | 6.30 | |
58 | 萘 | 0.9967 | 0.126 | 8.57 | 3.34 | 4.00 | |
卤代烃 | 59 | 氟利昂-12 | 0.9990 | 0.011 | 2.03 | - | - |
60 | 氟利昂-114 | 0.9972 | 0.053 | 8.33 | - | - | |
61 | 氯甲烷 | 0.9955 | 0.095 | 5.90 | 0.038 | - | |
62 | 氯乙烯 | 0.9993 | 0.067 | 2.45 | 2.83 | - | |
63 | 溴甲烷 | 0.9981 | 0.131 | 3.40 | 0.019 | - | |
64 | 氯乙烷 | 0.9980 | 0.132 | 2.72 | 0.29 | - | |
65 | 氟利昂-11 | 0.9990 | 0.190 | 2.12 | - | - | |
66 | 1, 1-二氯乙烯 | 0.9998 | 0.117 | 5.37 | 1.79 | - | |
67 | 氟利昂-113 | 0.9990 | 0.310 | 2.74 | - | - | |
68 | 二氯甲烷 | 0.9984 | 0.118 | 2.98 | 0.041 | - | |
69 | 1, 1-二氯乙烷 | 0.9983 | 0.088 | 2.16 | 0.069 | - | |
70 | 顺-1, 2-二氯乙烯 | 0.9987 | 0.104 | 2.36 | 1.70 | - | |
71 | 反-1, 2-二氯乙烯 | 0.9987 | 0.104 | 2.36 | 1.70 | - | |
72 | 三氯甲烷 | 0.9974 | 0.155 | 2.58 | 0.022 | - | |
73 | 1, 1, 1-三氯乙烷 | 0.9983 | 0.161 | 2.68 | 0.049 | - | |
74 | 四氯化碳 | 0.9977 | 0.165 | 2.13 | 0.00 | - | |
75 | 1, 2-二氯乙烷 | 0.9963 | 0.119 | 2.54 | 0.21 | - | |
76 | 三氯乙烯 | 0.9986 | 0.117 | 1.93 | 0.64 | - | |
77 | 1, 2-二氯丙烷 | 0.9983 | 0.091 | 1.85 | 0.29 | - | |
78 | 二氯溴甲烷 | 0.9973 | 0.176 | 2.13 | - | - | |
79 | 反-1, 3-二氯丙烯 | 0.9976 | 0.089 | 2.63 | 5.03 | - | |
80 | 顺-1, 3-二氯丙烯 | 0.9974 | 0.035 | 1.08 | 3.70 | - | |
81 | 1, 1, 2-三氯乙烷 | 0.9975 | 0.155 | 2.22 | 0.086 | - | |
82 | 四氯乙烯 | 0.9986 | 0.192 | 2.41 | 0.031 | - | |
83 | 二溴一氯甲烷 | 0.9978 | 0.139 | 1.18 | - | - | |
84 | 1, 2-二溴乙烷 | 0.9976 | 0.151 | 1.85 | 0.102 | - | |
85 | 氯苯 | 0.9975 | 0.055 | 1.36 | 0.32 | - | |
86 | 溴仿 | 0.9958 | 0.093 | 1.52 | - | - | |
87 | 1, 1, 2, 2-四氯乙烷 | 0.9962 | 0.135 | 1.67 | - | - | |
88 | 1, 3-二氯苯 | 0.9994 | 0.105 | 2.09 | 0.178 | - | |
89 | 1, 4-二氯苯 | 0.9995 | 0.158 | 3.25 | 0.178 | - | |
90 | 苄基氯 | 0.9949 | 0.073 | 2.50 | - | - | |
91 | 1, 2-二氯苯 | 0.9989 | 0.046 | 0.93 | 0.178 | - | |
92 | 1, 2, 4-三氯苯 | 0.9996 | 0.373 | 8.06 | - | - | |
93 | 六氯-1, 3-丁二烯 | 0.9987 | 0.081 | 0.80 | - | - | |
OVOCs | 94 | 丙烯醛 | 0.9943 | 0.068 | 2.20 | 6.50 | - |
95 | 丙酮 | 0.9980 | 0.086 | 1.94 | 0.56 | - | |
96 | 异丙醇 | 0.9940 | 0.002 | 2.25 | 0.54 | - | |
97 | 甲基叔丁基醚 | 0.9985 | 0.059 | 2.00 | 0.73 | - | |
98 | 乙酸乙烯酯 | 0.9948 | 0.058 | 2.50 | 3.20 | - | |
99 | 2-丁酮 | 0.9978 | 0.042 | 1.49 | 1.18 | - | |
100 | 乙酸乙酯 | 0.9980 | 0.114 | 3.40 | 0.63 | - | |
101 | 四氢呋喃 | 0.9977 | 0.071 | 3.75 | 4.31 | - | |
102 | 甲基丙烯酸甲酯 | 0.9972 | 0.130 | 3.14 | 15.61 | - | |
103 | 1, 4-二氧己环 | 0.9944 | 0.197 | 1.50 | 2.62 | - | |
104 | 甲基异丁基酮 | 0.9976 | 0.192 | 2.00 | 3.14 | - | |
105 | 2-己酮 | 0.9913 | 0.224 | 2.10 | 3.14 | - | |
有机硫 | 106 | 二硫化碳 | 0.9989 | 0.112 | 2.73 | 0.25 | - |
时间 | 地名 | 数量 | 组分贡献率/% | 体积分数前10物种 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|
烷烃 | OVOCs | 卤代烃 | 芳香烃 | 烯烃 | 炔烃 | |||||
2019年7月-8月 | 遂宁 | 106 | 32.9 | 46.0 | 5.8 | 4.2 | 4.9 | 4.1 | 1、2、3、4、5、6、7、8、9、10 | 本研究 |
2020年7月-10月 | 西安 | 70 | 15.5 | 77.4 | - | 3.8 | 2.8 | 0.52 | 11、12、1、8、9、5、2、13、14、15 | 郑欢等, |
2016年11月 | 贵阳 | 13 | 6.4 | - | - | 93.6 | - | - | 16、17、18、19、20、21、22、23、24、25 | 练川等, |
2019年8月 | 湛江 | 57 | 38.4 | 33.5 | - | 19.5 | 7.9 | 0.7 | 15、1、26、14、11、27、18、28、29、30 | 李婷婷等, |
2020年9月-10月 | 深圳 | 104 | 40.8 | 20.9 | 16.5 | 15.8 | 3.4 | 2.3 | 9、31、5、12、26、1、30、32、18、2 | 于广河等, |
2018年9月-10月 | 南京 | 82 | 33 | 22 | 22 | 13 | 7 | 2 | 2、33、5、7、34、3、35、1、31、9 | 曹梦瑶等, |
2019年7月 | 兰州 | 102 | 32 | 6.2 | 13.9 | 25.8 | 20.2 | - | 7、18、36、17、5、14、1、9、37、2 | 杨燕萍等, |
2018年8月和10月 | 连云港 | 107 | 35.2 | 33.4 | 14.4 | 7.4 | 6.3 | 3.2 | 4、1、2、5、30、9、7、6、36、8 | 乔月珍等, |
2017年9月-11月 | 杭州 | 55 | 59.7 | - | - | 30.3 | 9.9 | - | 2、26、7、38、18、5、14、16、39、19 | 林旭等, |
2011年1月-12月 | 天津 | 84 | 19.3 | - | 59.9 | 9.7 | 11.1* | 40、41、42、43、44、7、2、5、16、19 | 高璟赟等, |
Table 2 Contribution rates of VOCs components and top 10 concentration species in the some urban industrial zones in China
时间 | 地名 | 数量 | 组分贡献率/% | 体积分数前10物种 | 文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|
烷烃 | OVOCs | 卤代烃 | 芳香烃 | 烯烃 | 炔烃 | |||||
2019年7月-8月 | 遂宁 | 106 | 32.9 | 46.0 | 5.8 | 4.2 | 4.9 | 4.1 | 1、2、3、4、5、6、7、8、9、10 | 本研究 |
2020年7月-10月 | 西安 | 70 | 15.5 | 77.4 | - | 3.8 | 2.8 | 0.52 | 11、12、1、8、9、5、2、13、14、15 | 郑欢等, |
2016年11月 | 贵阳 | 13 | 6.4 | - | - | 93.6 | - | - | 16、17、18、19、20、21、22、23、24、25 | 练川等, |
2019年8月 | 湛江 | 57 | 38.4 | 33.5 | - | 19.5 | 7.9 | 0.7 | 15、1、26、14、11、27、18、28、29、30 | 李婷婷等, |
2020年9月-10月 | 深圳 | 104 | 40.8 | 20.9 | 16.5 | 15.8 | 3.4 | 2.3 | 9、31、5、12、26、1、30、32、18、2 | 于广河等, |
2018年9月-10月 | 南京 | 82 | 33 | 22 | 22 | 13 | 7 | 2 | 2、33、5、7、34、3、35、1、31、9 | 曹梦瑶等, |
2019年7月 | 兰州 | 102 | 32 | 6.2 | 13.9 | 25.8 | 20.2 | - | 7、18、36、17、5、14、1、9、37、2 | 杨燕萍等, |
2018年8月和10月 | 连云港 | 107 | 35.2 | 33.4 | 14.4 | 7.4 | 6.3 | 3.2 | 4、1、2、5、30、9、7、6、36、8 | 乔月珍等, |
2017年9月-11月 | 杭州 | 55 | 59.7 | - | - | 30.3 | 9.9 | - | 2、26、7、38、18、5、14、16、39、19 | 林旭等, |
2011年1月-12月 | 天津 | 84 | 19.3 | - | 59.9 | 9.7 | 11.1* | 40、41、42、43、44、7、2、5、16、19 | 高璟赟等, |
时间 | 地名 | OFP/(μg·m-3) | 组分质量浓度/(μg·m-3) | OFP排名前10物种 | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|
烷烃 | OVOCs | 烯烃 | 芳香烃 | 炔烃 | |||||
2019年7月-8月 | 遂宁 | 243.6 | 65.0 (26.7%) | 57.7 (23.7%) | 56.8 (23.3%) | 58.4 (24.0%) | 2.2 (0.9%) | 1、2、3、4、5、6、7、8、9、10 | 本研究 |
2018年9月-10月 | 南京 | 267.1 | 37.3 (14.0%) | 26.0 (9.7%) | 55.6 (20.8%) | 147.3 (55.1%) | 0.8 (0.3%) | 1、3、11、12、13、14、15、16,17、18 | 曹梦瑶等, |
2016年11月 | 贵阳 | 2161.7 | 34.8 (1.6%) | - | - | 2161.7 (98.4%) | - | 19、3、13、11、12、20、18、21、22、23 | 练川等, |
2020年9月-10月 | 深圳 | 320 | 52.0 (16.2%) | 72.9 (22.8%) | - | 165 (51.6%) | - | 3、12、24、11、25、1、26、27、18、2 | 于广河等, |
2019年8月 | 湛江 | 544.6 | 66.4 (12.2%) | 210.8 (38.7%) | 113.8 (20.9%) | 152.5 (28.0%) | 1.09 (0.2%) | 28、29、3、12、11、10、6、30、27、5 | 李婷婷等, |
2018年4月-9月 | 连云港 | 131.6 | 16.6 (12.6%) | 34.6 (26.3%) | 19.0 (14.4%) | 61.4 (46.6%) | 0.31 (0.2%) | 3、4、31、32、13、1、19、12、11、16 | 王伶瑞等, |
2019年8月和11月 | 沈阳 | 321.7 | 53.5 (16.6%) | - | 131.7 (41.0%) | 117.4 (36.5%) | 18.3 (5.7%) | 12、32、1、11、33、8、2、18、25、10* | 库盈盈等, |
Table 3 OFP and its top 10 species of VOCs in some urban industrial parks in China
时间 | 地名 | OFP/(μg·m-3) | 组分质量浓度/(μg·m-3) | OFP排名前10物种 | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|
烷烃 | OVOCs | 烯烃 | 芳香烃 | 炔烃 | |||||
2019年7月-8月 | 遂宁 | 243.6 | 65.0 (26.7%) | 57.7 (23.7%) | 56.8 (23.3%) | 58.4 (24.0%) | 2.2 (0.9%) | 1、2、3、4、5、6、7、8、9、10 | 本研究 |
2018年9月-10月 | 南京 | 267.1 | 37.3 (14.0%) | 26.0 (9.7%) | 55.6 (20.8%) | 147.3 (55.1%) | 0.8 (0.3%) | 1、3、11、12、13、14、15、16,17、18 | 曹梦瑶等, |
2016年11月 | 贵阳 | 2161.7 | 34.8 (1.6%) | - | - | 2161.7 (98.4%) | - | 19、3、13、11、12、20、18、21、22、23 | 练川等, |
2020年9月-10月 | 深圳 | 320 | 52.0 (16.2%) | 72.9 (22.8%) | - | 165 (51.6%) | - | 3、12、24、11、25、1、26、27、18、2 | 于广河等, |
2019年8月 | 湛江 | 544.6 | 66.4 (12.2%) | 210.8 (38.7%) | 113.8 (20.9%) | 152.5 (28.0%) | 1.09 (0.2%) | 28、29、3、12、11、10、6、30、27、5 | 李婷婷等, |
2018年4月-9月 | 连云港 | 131.6 | 16.6 (12.6%) | 34.6 (26.3%) | 19.0 (14.4%) | 61.4 (46.6%) | 0.31 (0.2%) | 3、4、31、32、13、1、19、12、11、16 | 王伶瑞等, |
2019年8月和11月 | 沈阳 | 321.7 | 53.5 (16.6%) | - | 131.7 (41.0%) | 117.4 (36.5%) | 18.3 (5.7%) | 12、32、1、11、33、8、2、18、25、10* | 库盈盈等, |
[1] |
AN J L, WANG Y S, WU F K, et al., 2012. Characterizations of volatile organic compounds during high ozone episodes in Beijing, China[J]. Environmental Monitoring and Assessment, 184(4): 1879-1889.
DOI URL |
[2] |
AN Z S, HUANG R J, ZHANG R Y, et al., 2019. Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes[J]. Proceedings of the National Academy of Sciences, 116(18): 8657-8666.
DOI URL |
[3] | CHEN Y, XIE S D, 2013. Long-term trends and characteristics of visibility in two megacities in southwest China: Chengdu and Chongqing[J]. Journal of the Air & Waste Management Association, 63(9): 1058-1069. |
[4] |
DENG Y Y, LI J, LI Y Q, et al., 2019. Characteristics of volatile organic compounds, NO2, and effects on ozone formation at a site with high ozone level in Chengdu[J]. Journal of Environmental Sciences, 75: 334-345.
DOI URL |
[5] |
GROSJEAN D, 1992. In situ organic aerosol formation during a smog episode: Estimated production and chemical functionality[J]. Atmospheric Environment Part A. General Topics, 26(6): 953-963.
DOI URL |
[6] | JI X T, XU K, LIAO D, et al., 2022. Spatial-temporal characteristics and source apportionment of ambient VOCs in southeast mountain area of China[J]. Aerosol and Air Quality Research, 22(5): 1-15. |
[7] |
LI L Y, XIE S D, ZENG L M, et al., 2015. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China[J]. Atmospheric Environment, 113: 247-254.
DOI URL |
[8] |
LI J, ZHAI C Z, YU J Y, et al., 2018. Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China[J]. Science of the Total Environment, 627: 1442-1452.
DOI URL |
[9] | LIU Y H, WANG H L, JING S A, et al., 2019. Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: implications of regional transport[J]. Atmospheric Environment, 215(15): 116902. |
[10] | LI Q Q, SU G J, LI C Q, et al., 2020. An investigation into the role of VOCs in SOA and ozone production in Beijing, China[J]. Science of the Total Environment, 720: 137536. |
[11] | MOZAFFAR A, ZHANG Y L, FAN M Y, et al., 2020. Characteristics of summer time ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China[J]. Atmospheric Research, 240: 104923. |
[12] | SONG M D, LI X, YANG S D, et al., 2021. Spatiotemporal variation, sources, and secondary transformation potential of volatile organic compounds in Xi’an, China[J]. Atmospheric Chemistry and Physics, 21(6): 4939-4958. |
[13] | SIMAYI M, SHI Y Q, XI Z Y, et al., 2022. Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives[J]. Science of The Total Environment, 826: 153994. |
[14] | VESTENIUS M, HOPKE P K, LEHTIPALO K, et al., 2021. Assessing volatile organic compound sources in a boreal forest using positive matrix factorization (PMF)[J]. Atmospheric Environment, 259: 118503. |
[15] |
WU R R, XIE S D, 2017. Spatial distribution of ozone formation in China derived from emissions of speciated volatile organic compounds[J]. Environmental Science & Technology, 51(5): 2574-2583.
DOI URL |
[16] |
YANG G F, LIU Y H, LI X N, 2020. Spatiotemporal distribution of ground-level ozone in China at a city level[J]. Scientific Reports, 10: 7229-7240.
DOI PMID |
[17] | ZOU Y, DENG X J, ZHU D, et al., 2015. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China[J]. Atmospheric Chemistry and Physics, 15(12): 6625-6636. |
[18] |
ZHAO W, TANG G Q, YU H, et al., 2019. Evolution of boundary layer ozone in Shijiazhuang, a suburban site on the North China Plain[J]. Journal of Environmental Sciences, 83(9): 152-160.
DOI URL |
[19] | ZHANG Q J, SUN L N, WEI N, et al., 2021. The characteristics and source analysis of VOCs emissions at roadside: assess the impact of ethanol-gasoline implementation[J]. Atmospheric Environment, 263: 118670. |
[20] | 蔡瑜瑄, 张远东, 侯瑞光, 2014. 印制电路板挥发性有机化合物(VOCs)排放与防治对策[J]. 电镀与涂饰, 33(19): 845-848. |
CAI Y X, ZHANG Y D, HOU R G, 2014. Strategies for emission, prevention, and control of volatile organic compounds (VOCs) from PCB industry[J]. Electroplating & Finishing, 33(19): 845-848. | |
[21] | 曹梦瑶, 林煜棋, 章炎麟, 2020. 南京工业区秋季大气挥发性有机物污染特征及来源解析[J]. 环境科学, 41(6): 2565-2576. |
CAO M Y, LIN Y Q, ZHANG Y L, 2020. Characteristics and source apportionment of atmospheric VOCs in the Nanjing industrial area in autumn[J]. Environmental Science, 41(6): 2565-2576. | |
[22] |
陈雪泉, 孔彬, 兰青, 等, 2022. 胶黏剂生产行业VOCs组分特征及臭氧生成潜势分析[J]. 生态环境学报, 31(4): 750-758.
DOI |
CHEN X Q, KONG B, LAN Q, et al., 2022. Emission characteristics and ozone formation potential assessment of volatile organic compounds (VOCs) from adhesive manufacturing industry[J]. Ecology and Environmental Sciences, 31(4): 750-758. | |
[23] |
符传博, 丹利, 徐文帅, 等, 2020. 2014-2019年三亚市臭氧浓度变化特征[J]. 生态环境学报, 29(10): 2028-2033.
DOI |
FU C B, DAN L, XU W S, et al., 2020. Variation of O3 concentration in Sanya city from 2014 to 2019[J]. Ecology and Environmental Sciences, 29(10): 2028-2033. | |
[24] | 高璟赟, 唐邈, 陈魁, 等, 2016. 天津市不同功能区大气挥发性有机物污染特征及来源分析[J]. 环境污染与防治, 38(5): 43-47. |
GAO J Y, TANG M, CHEN K, et al., 2016. Pollution characteristics and source analysis of atmospheric volatile organic compounds in different function areas, Tianjin[J]. Environmental Pollution and Prevention, 38(5): 43-47. | |
[25] | 高占啟, 胡冠九, 王荟, 等, 2018. 典型酿造业厂界无组织排放VOCs污染特征与风险评价[J]. 环境科学, 39(2): 567-575. |
GAO Z Q, HU G J, WANG H, et al., 2018. Pollution characteristics and health risk assessment of VOCs fugitively emitted from typical brewers[J]. Environmental Science, 39(2): 567-575. | |
[26] |
高素莲, 闫学军, 刘光辉, 等, 2020. 济南市夏季臭氧重污染时段VOCs污染特征及来源解析[J]. 生态环境学报, 29(9): 1839-1846.
DOI |
GAO S L, YAN X J, LIU G H, et al., 2020. Characteristics and source apportionment of ambient VOCs in serious ozone pollution period of summer in Ji’nan[J]. Ecology and Environmental Sciences, 29(9): 1839-1846. | |
[27] | 中华人民共和国环境保护部, 2015. 环境空气挥发性有机物的测定罐采样气相色谱-质谱法: HJ 759—2015[S]. 北京: 中国环境科学出版社. |
Ministry of Environmental Protection of People’s Republic of China, 2002. Ambient air determination of volatile organic compounds collected by specially prepared canistersand analyzed by gas chromatography/mass spectrometry: HJ 759—2015[S]. Beijing: China Environmental Science Press. | |
[28] | 郝吉明, 马广大, 王书肖, 2021. 大气污染控制工程[M]. 第4版. 北京: 高等教育出版社. |
HAO J M, MA G D, WANG S X, 2021. Atmosphere Pollution Control Engineering[M]. 4th edition. Beijing: Higher Education Press. | |
[29] | 胡冠九, 高占啟, 陈素兰, 等, 2017. 食品企业周边空气中异味挥发性有机物测定方法[J]. 环境监控与预警, 9(5): 1-4. |
HU G J, GAO Z Q, CHEN S L, et al., 2017. The comparison of detection methods for odorous VOCs in the ambient air around food industry[J]. Environmental Monitoring and Forewarning, 9(5): 1-4. | |
[30] |
洪莹莹, 陈辰, 保鸿燕, 等, 2021. 珠三角西南部春季臭氧来源与敏感性分析[J]. 生态环境学报, 30(5): 984-994.
DOI |
HONG Y Y, CHEN C, BAO H Y, et al., 2021. Sources and sensitivity analysis of ozone in spring over the southwestern part of Pearl River Delta region[J]. Ecology and Environmental Sciences, 30(5): 984-994 | |
[31] | 库盈盈, 任万辉, 苏枞枞, 等, 2021. 沈阳市不同功能区挥发性有机物分布特征及臭氧生成潜势[J]. 环境科学, 42(11): 5201-5209. |
KU Y Y, REN W H, SU C C, et al., 2021. Pollution characteristics and ozone formation potential of ambient VOCs in different functional zones of Shenyang, China[J]. Environmental Science, 42(11): 5201-5209. | |
[32] | 吕子峰, 郝吉明, 段菁春, 等, 2009. 北京市夏季二次有机气溶胶生成潜势的估算[J]. 环境科学, 30(4): 969-975. |
LÜ Z F, HAO J M, DUAN J C, et al., 2009. Estimate of the formation potential of secondary organic aerosol in Beijing Summertime[J]. Environmental Science, 30(4): 969-975.
DOI URL |
|
[33] | 刘芮伶, 翟崇治, 李礼, 等, 2017. 重庆市VOCs浓度特征和关键活性组分[J]. 中国环境监测, 33(4): 118-125. |
LIU R L, ZHAI C Z, LI L, et al., 2017. Concentration characteristics and key reactive species of ambient VOCs in Chongqing[J]. Environmental Monitoring in China, 33(4): 118-125. | |
[34] | 练川, 周江, 陈思琳, 等, 2018. 贵阳市某工业园区环境空气中VOCs的污染特征与健康风险评价[J]. 环境工程, 36(7): 161-164. |
LIAN C, ZHOU J, CHEN S L, et al., 2018. Pollution characteristics and health risk assessment of VOCs in an industrial park of Guiyang[J]. Environmental Engineering, 36(7): 161-164. | |
[35] | 梁小明, 陈来国, 孙西勃, 等, 2019. 基于原料类型及末端治理的典型溶剂使用源VOCs排放系数[J]. 环境科学, 40(10): 4382-4394. |
LIANG X M, CHEN L G, SUN X B, et al., 2019. Raw materials and end treatment-based emission factors for volatile organic compounds (VOCs) from typical solvent use sources[J]. Environmental Science, 40(10): 4382-4394.
DOI URL |
|
[36] | 李婷婷, 梁小明, 卢清, 等, 2020. 泡沫塑料鞋制造区VOCs污染特征及臭氧生成潜势[J]. 中国环境科学, 40(8): 3260-3267. |
LI T T, LIANG X M, LU Q, et al., 2020. Pollution characteristics and ozone formation potential of VOCs in the plastic foam shoe manufacturing centre[J]. China Environmental Science, 40(8): 3260-3267. | |
[37] | 林旭, 陈超, 叶辉, 等, 2020. 杭州秋季大气VOCs变化特征及化学反应活性研究[J]. 中国环境监测, 36(2): 196-204. |
LIN X, CHEN C, YE H, et al., 2020. Variation characteristics and chemical reactivity of VOCs in different functional zones of Hangzhou in autumn[J]. Environmental Monitoring in China, 36(2): 196-204. | |
[38] | 雷熊, 都雯, 李丹毓, 等, 2020. 南充城区秋季VOCs污染特征及来源分析[J]. 四川环境, 39(2): 55-64. |
LEI X, DU W, LI D Y, et al., 2020. Analysis on the characteristics and sources of volatile organic compounds in autumn in the urban of Nanchong City[J]. Sichuan Environment, 39(2): 55-64. | |
[39] | 李陵, 张丹, 胡伟, 等, 2022. 西南地区大型综合工业区和周边区域大气VOCs污染特征及健康风险评估[J]. 环境科学, 43(1): 102-112. |
LI L, ZHANG D, HU W, et al., 2022. Atmospheric VOCs pollution characteristics and health risk assessment of large scale integrated industrial area and surrounding areas in southwest China[J]. Environmental Science, 43(1): 102-112. | |
[40] | 马英歌, 2012. 印刷电路板 (PCB) 厂挥发性有机物 (VOCs) 排放指示物筛选[J]. 环境科学, 33(9): 2967-2972. |
MA Y G, 2012. Composition and characteristics of volatile organic chemicals emission from printed circuit board factories[J]. Environmental Science, 33(9): 2967-2972. | |
[41] | 南淑清, 张霖琳, 张丹, 等, 2014. 郑州市环境空气中VOCs的污染特征及健康风险评价[J]. 生态环境学报, 23(9): 1438-1444. |
NAN S Q, ZHANG L L, ZHANG D, et al., 2014. Pollution condition and health risk assessment of VOCs in ambient air in Zhengzhou[J]. Ecology and Environmental Sciences, 23(9): 1438-1444. | |
[42] | 乔月珍, 陈凤, 王社扣, 等, 2019. 徐州某工业区VOCs的污染特征及来源初步分析[J]. 污染防治技术, 32(4): 34-36. |
QIAO Y Z, CHEN F, WANG S K, et al., 2019. Preliminary analysis on characteristics and source of volatile organic compounds pollutionin an industrial area in Xuzhou[J]. Pollution Control Technology, 32(4): 34-36. | |
[43] | 乔月珍, 陈凤, 李慧鹏, 等, 2020. 连云港不同功能区挥发性有机物污染特征及臭氧生成潜势[J]. 环境科学, 41(2): 630-637. |
QIAO Y Z, CHEN F, LI H P, et al., 2020. Pollution characteristics and ozone formation potential of ambient volatile organic compounds (VOCs) in summer and autumn in different functional zones of Lianyungang, China[J]. Environmental Science, 41(2): 630-637. | |
[44] | 冉雨润, 李金娟, 何振, 等, 2020. 贵州省典型中药制药企业VOCs排放特征与健康风险评估[J]. 贵州大学学报(自然科学版), 37(3): 105-110. |
RAN Y R, LI J J, HE Z, et al., 2020. Emission characteristics and health risk assessment of VOCs in typical pharmaceutical enterprises in Guizhou province[J]. Journal of Guizhou University (Natural Sciences), 37(3): 105-110. | |
[45] | 司雷霆, 王浩, 李洋, 等, 2019. 太原市夏季大气VOCs污染特征及臭氧生成潜势[J]. 中国环境科学, 39(9): 3655-3662. |
SI L T, WANG H, LI Y, et al., 2019. Pollution characteristics and ozone formation potential of ambient VOCs in summer in Taiyuan[J]. China Environmental Science, 39(9): 3655-3662. | |
[46] | 王红丽, 景盛翱, 王倩, 等, 2016. 溶剂使用源有组织排放VOCs监测方法及组成特征[J]. 环境科学研究, 29(10): 1433-1439. |
WANG H L, JING S A, WANG Q, et al., 2016. Measurement and characterization of emissions of volatile organic compounds in solvent use[J]. Research of Environmental Science, 29(10): 1433-1439. | |
[47] | 王银海, 董莉, 刘景洋, 等, 2020. 典型溶剂使用行业O3和SOA生成潜势分析[J]. 现代化工, 40(11): 14-19. |
WANG Y H, DONG L, LIU J Y, et al., 2020. Analysis and research on generation potential of ozone and SOA in typical solvent use industries[J]. Modern Chemical Industry, 40(11): 14-19. | |
[48] | 吴进, 张承龙, 王瑞雪, 等, 2020. 离子液体吸收废印刷线路板热拆解过程中挥发性有机物——基于COSMO-RS模型[J]. 中国环境科学, 40(5): 1946-1952. |
WU J, ZHANG C L, WANG R X, et al., 2020. Absorbing volatile organic compounds discharged during thermal dismantling of waste printed circuit boards using ionic liquids: Based on COSMO-RS model[J]. China Environmental Science, 40(5): 1946-1952. | |
[49] | 王成辉, 陈军辉, 韩丽, 等, 2020. 成都市城区大气VOCs季节污染特征及来源解析[J]. 环境科学, 41(9): 3951-3960. |
WANG C H, CHEN J H, HAN L, et al., 2020. Seasonal pollution characteristics and analysis of the sources of atmospheric VOCs in Chengdu urban area[J]. Environmental Science, 41(9): 951-3960. | |
[50] | 王伶瑞, 李海燕, 陈程, 等, 2020. 长三角北部沿海城市2018年大气VOCs分布特征[J]. 环境科学学报, 40(4): 1385-1400. |
WANG L R, LI H Y, CHEN C, et al., 2020. Distributions of VOCs in a coastal city in the northern Yangtze River Delta during 2018[J]. Acta Scientiae Circumstantiae, 40(4): 1385-1400. | |
[51] | 王玉标, 2020. 典型塑料软包装企业VOCs排放清单及管控策略的研究[D]. 济南: 山东大学. |
WANG Y B, 2020. Research on VOCs emission list and control strategy of typical plastic flexible packaging enterprises[D]. Ji’nan: Shandong University. | |
[52] | 徐晨曦, 陈军辉, 韩丽, 等, 2019. 宜宾市冬季挥发性有机物污染特征及来源[J]. 环境科学研究, 32(6): 1020-1025. |
XU C X, CHEN J H, HAN L, et al., 2021. Pollution characteristics and source apportionments of volatile organic compounds in Yibin city in winter[J]. Research of Environmental Sciences, 41(11): 4366-4376. | |
[53] | 杨燕萍, 王莉娜, 杨丽丽, 等, 2020. 兰州工业区夏季挥发性有机物污染特征研究[J]. 环境与发展, 32(4): 163-165. |
YANG Y P, WANG L N, YANG L L et al., 2020. Summer pollution characteristics of volatile organic compounds in Lanzhou industrial area[J]. Environment and Development, 32(4): 163-165. | |
[54] | 叶露, 邰菁菁, 俞华明, 2021. 汽车工业区大气挥发性有机物 (VOCs) 变化特征及来源解析[J]. 环境科学, 42(2): 624-633. |
YE L, TAI Q Q, YU H M, 2021. Characteristics and source apportionment of volatile organic compounds (VOCs) in the automobile industrial park of Shanghai[J]. Environmental Science, 42(2): 624-633.
DOI URL |
|
[55] |
颜敏, 黄晓波, 陈丹, 等, 2021. 深圳市臭氧污染特征及其与前体物关系分析[J]. 生态环境学报, 30(4): 763-770.
DOI |
YAN M, HUANG X B, CHEN D, et al., 2021. Characteristics of ozone pollution and relationship between ozone and precursors in Shenzhen[J]. Ecology and Environmental Sciences, 30(4): 763-770. | |
[56] | 于广河, 林理量, 夏士勇, 等, 2022. 深圳市典型工业区VOCs污染特征与臭氧生成敏感性[J]. 中国环境科学, 42(5): 1994-2001. |
YU G H, LIN L L, XIA S Y, et al., 2022. The characteristics of VOCs and ozone formation sensitivity in a typical industrial area in Shenzhen[J]. China Environmental Science, 42(5): 1994-2001. | |
[57] | 易宵霄, 李姜豪, 李光华, 等, 2022. 铜川市秋冬季大气VOCs特征及其O3和SOA形成潜势分析[J]. 环境科学, 43(11): 140-149. |
YI X X, LI J H, LI G H, et al., 2022. Characteristics of VOCs and formation potentials of O3 and SOA in autumn and winter in Tongchuan, China[J]. Environmental Science, 43(11): 140-149. | |
[58] | 郑欢, 毛东, 解梦怡, 等, 2021. 西安市某工业园夏季VOCs浓度特征及O3、SOA生成潜势[J]. 中国环境监测, 37(6): 50-61. |
ZHENG H, MAO D, XIE M Y, et al., 2021. Characteristics of VOCs and formation potential of O3 and SOA in an industrial zone in Xi’an in Summer[J]. Environmental Monitoring in China, 37(6): 50-61. | |
[59] | 周静博, 李亚卿, 洪纲, 等, 2015. 石家庄市制药行业VOCs排放特征分析及健康风险评价[J]. 生态毒理学报, 10(4): 177-186. |
ZHOU J B, LI Y Q, HONG G, et al., 2015. Characteristics and health risk assessment of VOCs emitted from pharmaceutical industry of Shijiazhuang City[J]. Asian Journal of Ecotoxicology, 10(4): 177-186. |
[1] | XU Chen, PEI Shunxiang, WU Sha, GUO Hui, MA Shumin, WU Di, ZHANG Yaoxiang, FA Lei. Study on Major Atmospheric BVOCs Composition of Different Forest Types in Jiulong Mountain, Beijing [J]. Ecology and Environment, 2023, 32(2): 245-255. |
[2] | JIANG Ming, ZHANG Ziyang, LI Tingting, LIN Boji, ZHANG Zhengen, LIAO Tong, YUAN Luan, PAN Suhong, LI Jun, ZHANG Gan. Source Apportionment of Ammonium in Atmospheric PM2.5 in the Pearl River Delta Based on Nitrogen Isotope [J]. Ecology and Environment, 2022, 31(9): 1840-1848. |
[3] | WEI Xiaofeng, HAN Hong, YAN Xuejun, WANG Zaifeng, LI Shengzeng, TIAN Yong, LIANG Di, MA Mingliang, ZHANG Guiqin. Source Apportionment of PM2.5 during Heavy Pollution Process in Ji'nan Based on Satellite Remote Sensing and CMB Model [J]. Ecology and Environment, 2022, 31(6): 1175-1183. |
[4] | CHEN Xuequan, KONG Bin, LAN Qing, YU Zhiquan, XIE Yinsi, HUANG Junyi. Emission Characteristics and Ozone Formation Potential Assessment of Volatile Organic Compounds (VOCs) from Adhesive Manufacturing Industry [J]. Ecology and Environment, 2022, 31(4): 750-758. |
[5] | LI Shaoning, TAO Xueying, LI Huimin, ZHAO Na, XU Xiaotian, LU Shaowei. Study on Dynamic Characteristics of BVOCs Released from Platycladus orientalis and Salix babylonica in Growing Season [J]. Ecology and Environment, 2022, 31(2): 257-264. |
[6] | LI Shaoning, TAO Xueying, LI Xiuhong, ZHAO Na, XU Xiaotian, LU Shaowei. Research Progress of Beneficial Biogenic Volatile Organic Compounds Released from Plants [J]. Ecology and Environment, 2022, 31(1): 187-195. |
[7] | WANG Jian, BAO Hai, LI Dayi, LIU Zhiyuan, YANG Na. Emissions of Volatile Organic Compounds from Landscape Trees in Arid and Semi-Arid Region During Summer [J]. Ecology and Environment, 2021, 30(6): 1168-1176. |
[8] | BAI Jianhui. The Relationships between BVOC Emission Fluxes and Their Influencing Factors in A Subtropical Pinus Forest [J]. Ecology and Environment, 2021, 30(5): 889-897. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Editorial Office of ACTA PETROLEI SINICA
Address:No. 6 Liupukang Street, Xicheng District, Beijing, P.R.China, 510650
Tel: 86-010-62067128, 86-010-62067137, 86-010-62067139
Fax: 86-10-62067130
Email: syxb@cnpc.com.cn
Support byBeijing Magtech Co.ltd, E-mail:support@magtech.com.cn