生态环境学报 ›› 2025, Vol. 34 ›› Issue (10): 1579-1587.DOI: 10.16258/j.cnki.1674-5906.2025.10.008
收稿日期:
2025-03-13
出版日期:
2025-10-18
发布日期:
2025-09-26
通讯作者:
作者简介:
张洋洋(1991年生),女,助理研究员,主要从事环境大气科学研究。E-mail: shenhaideyu18@126.com
基金资助:
ZHANG Yangyang1,*(), LIU Xuejun2
Received:
2025-03-13
Online:
2025-10-18
Published:
2025-09-26
摘要:
氨气(NH3)作为大气中唯一已知的高浓度碱性活性氮气体,其与酸性前体物(如SO2、NOx)反应形成的二次无机气溶胶是大气细颗粒物(PM2.5)的主要组成部分,对城市空气质量与人类健康具有重要影响。准确认知大气NH3污染特征与来源,是科学落实NH3减排、推进大气污染防治的重要基础研究。然而,城市地区大气NH3主要来源仍存在争议,特别是对非农业源排放贡献的认知不足。在北京城区设置17个采样点,利用ALPHA被动采样器开展冬季连续5周的大气NH3浓度及其δ15N的多点监测,并结合氮稳定同位素溯源方法开展来源解析,揭示城区大气NH3污染特征与来源。 结果显示,NH3周质量浓度范围为2.1-2.9 μg·m−3,平均质量浓度为(14.3±0.8)μg·m−3,δ15N-NH3监测值为−32.8‰±1.1‰。马路点的NH3浓度与δ15N-NH3普遍高于非马路点。源解析结果表明,非农业源(交通源与废弃物源)对NH3的贡献约为54%±14%,可能范围为32%-74%。在相同的气粒转化系数下,马路点的非农业源贡献比非马路点高了6%-37%,以交通源为主。研究指出人为源NH3排放,尤其是交通排放,对北京城区大气NH3浓度有显著影响,这表明了加强非农业源NH3排放控制,对缓解城市地区大气污染和改善空气质量具有重要现实意义。
中图分类号:
张洋洋, 刘学军. 北京城区冬季大气氨浓度、来源及启示[J]. 生态环境学报, 2025, 34(10): 1579-1587.
ZHANG Yangyang, LIU Xuejun. Atmospheric Ammonia Concentrations, Source Apportionment, and Implications during Winter in the Urban Area of Beijing[J]. Ecology and Environmental Sciences, 2025, 34(10): 1579-1587.
编号 | 经纬度 | 地点 | 采样类型 | NH3排放来源及周边环境(2017年交通流量,标准车/d) |
---|---|---|---|---|
1 | 39°54′47.4408″N, 116°18′16.29″E | 西三环 | 马路点 | 城市交通 (216885) |
2 | 39°51′18.9972″N,116°23′20.9976″E | 南三环 | 马路点 | 城市交通 (197818) |
3 | 39°53′45.9996″N, 116°27′18.9972″E | 东三环 | 马路点 | 城市交通 (239960) |
4 | 39°57′59.9976″N, 116°22′9.9984″E | 北三环 | 马路点 | 城市交通 (214639) |
5 | 39°53′35.9988″N, 116°16′3″E | 西四环 | 马路点 | 城市交通 (293438) |
6 | 39°49′49.998″N, 116°23′57.9984″E | 南四环 | 马路点 | 城市交通 (299525) |
7 | 39°54′21.9996″N, 116°29′1.9968″E | 东四环 | 马路点 | 城市交通 (267345) |
8 | 39°59′7.998″N, 116°20′34.998″E | 北四环 | 马路点 | 城市交通 (270561) |
9 | 39°53′18.9996″N, 116°12′16.9992″E | 西五环 | 马路点 | 城市交通 (211184) |
10 | 39°45′32.9976″N, 116°23′19.9968″E | 南五环 | 马路点 | 城市交通 (183186) |
11 | 39°53′0.9996″N, 116°32′33″E | 东五环 | 马路点 | 城市交通 (295789) |
12 | 40°1′15.9996″N, 116°23′21.9984″E | 北五环 | 马路点 | 城市交通 (200412) |
13 | 40°1′30.9972″N, 116°16′34.9968″E | 农大教学楼楼顶 | 非马路点 | 住宅与交通、 办公与生活区 |
14 | 39°57′36.9972″N, 116°21′36.9972″E | 北师大 校园 | 非马路点 | 住宅与交通、 办公与生活区 |
15 | 40°8′18.9996″, 116°10′45.9984″ | 上庄 试验站 | 非马路点 | 农田(主要农作物为玉米,小麦),住宅,交通 |
16 | 40°0′47.9988″N, 116°22′6.9996″E | 奥森公园 | 非马路点 | 树林 |
17 | 116°15′25.272″N, 40°1′40.908″E | 百望山 森林公园 | 非马路点 | 树林 |
表1 北京地区大气氨样品采集信息
Table 1 Atmospheric ammonia sample collection information in Beijing
编号 | 经纬度 | 地点 | 采样类型 | NH3排放来源及周边环境(2017年交通流量,标准车/d) |
---|---|---|---|---|
1 | 39°54′47.4408″N, 116°18′16.29″E | 西三环 | 马路点 | 城市交通 (216885) |
2 | 39°51′18.9972″N,116°23′20.9976″E | 南三环 | 马路点 | 城市交通 (197818) |
3 | 39°53′45.9996″N, 116°27′18.9972″E | 东三环 | 马路点 | 城市交通 (239960) |
4 | 39°57′59.9976″N, 116°22′9.9984″E | 北三环 | 马路点 | 城市交通 (214639) |
5 | 39°53′35.9988″N, 116°16′3″E | 西四环 | 马路点 | 城市交通 (293438) |
6 | 39°49′49.998″N, 116°23′57.9984″E | 南四环 | 马路点 | 城市交通 (299525) |
7 | 39°54′21.9996″N, 116°29′1.9968″E | 东四环 | 马路点 | 城市交通 (267345) |
8 | 39°59′7.998″N, 116°20′34.998″E | 北四环 | 马路点 | 城市交通 (270561) |
9 | 39°53′18.9996″N, 116°12′16.9992″E | 西五环 | 马路点 | 城市交通 (211184) |
10 | 39°45′32.9976″N, 116°23′19.9968″E | 南五环 | 马路点 | 城市交通 (183186) |
11 | 39°53′0.9996″N, 116°32′33″E | 东五环 | 马路点 | 城市交通 (295789) |
12 | 40°1′15.9996″N, 116°23′21.9984″E | 北五环 | 马路点 | 城市交通 (200412) |
13 | 40°1′30.9972″N, 116°16′34.9968″E | 农大教学楼楼顶 | 非马路点 | 住宅与交通、 办公与生活区 |
14 | 39°57′36.9972″N, 116°21′36.9972″E | 北师大 校园 | 非马路点 | 住宅与交通、 办公与生活区 |
15 | 40°8′18.9996″, 116°10′45.9984″ | 上庄 试验站 | 非马路点 | 农田(主要农作物为玉米,小麦),住宅,交通 |
16 | 40°0′47.9988″N, 116°22′6.9996″E | 奥森公园 | 非马路点 | 树林 |
17 | 116°15′25.272″N, 40°1′40.908″E | 百望山 森林公园 | 非马路点 | 树林 |
图2 观测期间的NH3质量浓度和实测的δ15N-NH3值 图中不同小写字母表示处理间差异显著(p<0.05),误差棒为标准误差
Figure 2 Concentrations of NH3 and δ15N-NH3 measured values during the observation period
[1] | BACKES A M, AULINGER A, BIESER J, et al., 2018. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols[J]. Atmospheric Environment, 126: 153-161. |
[2] | BHATTARAIN, WANG S, PAN Y, et al., 2021. δ15N-stable isotope analysis of NHx: An overview on analytical measurements, source sampling and its source apportionment[J]. Frontiers Of Environmental Science & Engineering, 15(6): 126. |
[3] | CAO H S, HENZE D K, CADY P K, et al., 2021. COVID-19 lockdowns afford the first satellite-based confirmation that vehicles are an under-recognized source of urban NH3 pollution in Los Angeles[J]. Environmental Science & Technology Letters, 9(1): 3-9. |
[4] | CHANG Y H, ZOU Z, ZHANG Y L, et al., 2019. Assessing contributions of agricultural and nonagricultural emissions to atmospheric ammonia in a Chinese megacity[J]. Environmental Science & Technology, 53(4): 1822-1833. |
[5] | CHANG Y H, LIU X J, DENG C R, et al., 2016. Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures[J]. Atmospheric Chemistry and Physics, 16(18): 11635-11647. |
[6] | CHEN Z L, SONG W, HU C C, et al., 2022. Significant contributions of combustion-related sources to ammonia emissions[J]. Nature Communications, 13: 7710. |
[7] | DAMMERS E, MCLINDER C A, GRIFFIN D, et al., 2019. NH3 emissions from large point sources derived from CrIS and IASI satellite observations[J]. Atmospheric Chemistry and Physics, 19(19): 12261-12293. |
[8] | ELLIOTT E M, YU Z J, COLE A S, et al., 2019. Isotopic advances in understanding reactive nitrogen deposition and atmospheric processing[J]. Science of the Total Environment, 662: 393-403. |
[9] | FELIX J D, ELLIOT E M, GISH T J, et al., 2013. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidationbacterial denitrifier approach[J]. Rapid Communications in Mass Spectrometry, 27(20): 2239-2246. |
[10] | FELIX J D, ELLIOT E M, GISH T, et al., 2014. Examining the transport of ammonia emissions across landscapes using nitrogen isotope ratios[J]. Atmospheric Environment, 95: 563-570. |
[11] | FENG S J, XU W, CHENG M M, et al., 2022. Overlooked nonagricultural and wintertime agricultural NH3 emissions in Quzhou County, North China Plain: Evidence from 15N-stable isotopes[J]. Environmental Science & Technology Letters, 9(2): 127-133. |
[12] | FREYER H, 1978. Seasonal trends of NH4+ and NO3- nitrogen isotope composition in rain collected at Jülich, Germany[J]. Tellus, 30(1): 83-92. |
[13] | GU M N, PAN Y P, WALTERS W W, et al., 2022. Vehicular emissions enhanced ammonia concentrations in winter mornings: Insights from diurnal nitrogen isotopic signatures[J]. Environmental Science & Technology, 56(3): 1578-1585. |
[14] |
HEATON T H E, SPIRO B, ROBERTSON S M C, 1997. Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition[J]. Oecologia, 109(4): 600-607.
DOI PMID |
[15] | HEATON T, 1987. 15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa[J]. Atmospheric Environment, 21(4): 843-852. |
[16] |
HRISTOV A N, ZAMAN S, VANDER P M, et al., 2009. Nitrogen losses from dairy manure estimated through nitrogen mass balance and chemical markers[J]. Journal of Environmental Quality, 38(6): 2438-2448.
DOI PMID |
[17] | HUANG S N, ELLIOT E M, FELIX J D, et al., 2019. Seasonal pattern of ammonium 15N natural abundance in precipitation at a rural forested site and implications for NH3 source partitioning[J]. Environmental Pollution, 247: 541-549. |
[18] | HUANG X, SONG Y, LI M M, et al., 2012. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 26(1): GB004161. |
[19] | KANG Y N, LIU M X, SONG Y, et al., 2016. High-resolution ammonia emissions inventories in China from 1980 to 2012[J]. Atmospheric Chemistry and Physics, 16(4): 2043-2058. |
[20] | KAWASHIMA H, OGATA R, GUNJI T, et al., 2021. Laboratory-based validation of a passive sampler for determination of the nitrogen stable isotope ratio of ammonia gas[J]. Atmospheric Environment, 245: 118009. |
[21] | LEE C, HRISTOV A N, CASSIDY T, et al., 2011. Nitrogen isotope fractionation and origin of ammonia nitrogen volatilized from cattle manure in simulated storage[J]. Atmosphere, 2(3): 256-270. |
[22] | LI Q, JIANG J K, CAI S Y, et al., 2016. Gaseous ammonia emissions from coal and biomass combustion in household stoves with different combustion efficiencies[J]. Environmental Science & Technology Letters, 3(3): 98-103. |
[23] | LI Y Z, LIU J, GEORGE C, et al., 2023. Apportioning atmospheric Ammonia sources across spatial and seasonal scales by their isotopic fingerprint[J]. Environmental Science & Technology, 57(43): 16424-16434. |
[24] |
LIU D W, FANG Y T, TU Y, et al., 2014. Chemical method for nitrogen isotopic analysis of ammonium at natural abundance[J]. Analytical Chemistry, 86(8): 3787-3792.
DOI PMID |
[25] | MAO L, LIU R, LIAO W H, et al., 2019. An observation-based perspective of winter haze days in four major polluted regions of China[J]. National Science Review, 6(3): 515-523. |
[26] | OSADA K, SAITO S, TSURUMARU H, et al., 2019. Vehicular exhaust contributions to high NH3 and PM2.5 concentrations during winter in Tokyo, Japan[J]. Atmospheric Environment, 206: 218-224. |
[27] | PAN Y P, GU M N, SONG L L, et al., 2020. Systematic low bias of passive samplers in characterizing nitrogen isotopic composition of atmospheric ammonia[J]. Atmospheric Research, 243: 105018. |
[28] | PAN Y P, TIAN S L, LIU D W, et al., 2016. Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: Evidence from 15N-stable isotope in size-resolved aerosol ammonium[J]. Environmental Science & Technology, 50(15): 8049-8056. |
[29] | PARNELL A C, INGER R, BEARHOP S, et al., 2010. Source partitioning using stable isotopes: Coping with too much variation[J]. PLoS One, 5(3): e9672. |
[30] | PAULOT F, JACOB D J, PINDER RW, et al., 2014. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3)[J]. Journal of Geophysical Research-atmospheres, 119(7): 4343-4364. |
[31] |
PLAUTZ J, 2018. Piercing the haze[J]. Science, 361(6407): 1060-1063.
DOI PMID |
[32] | RECHE C, VIANA M, PANDOLFI M, et al., 2012. Urban NH3 levels and sources in a Mediterranean environment[J]. Atmospheric Environment, 57: 153-164. |
[33] | SHAO P Y, TIAN H Z, SUN Y J, et al., 2018. Characterizing remarkable changes of severe haze events and chemical compositions in multi-size airborne particles (PM1, PM2.5 and PM10) from January 2013 to 2016-2017 winter in Beijing, China[J]. Atmospheric Environment, 189: 133-144. |
[34] | SUAREZ-BERTOA R, ZARDINI A, ASTORGA C, 2014. Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle[J]. Atmospheric Environment, 97: 43-53. |
[35] | SUN K, TAO L, MILLER D J, et al., 2017. Vehicle emissions as an important urban ammonia source in the United States and China[J]. Environmental Science & Technology, 51(4): 2472-2481. |
[36] | SUN Q, GU M N, WU D M, et al., 2023. Concurrent measurements of atmospheric ammonia concentrations in the megacities of Beijing and Shanghai by using cavity ring-down spectroscopy[J]. Atmospheric Environment, 307: 119848. |
[37] | SONG L L, WALTERS W W, PAN Y P, et al., 2021. 15N natural abundance of vehicular exhaust ammonia, quantified by active sampling techniques[J]. Atmospheric Environment, 255: 118430. |
[38] | TANG Y S, CAPE J, SUTTON M, 2001. Development and types of passive samplers for monitoring atmospheric NO2 and NH3concentrations[J]. Scientific World Journal, 1: 513-529. |
[39] | TI C P, MA S T, PENG L Y, et al., 2021. Changes of δ15N values during the volatilization process after applying urea on soil[J]. Environmental Pollution, 270: 116204. |
[40] | WALTERS W W, CHAI J, HASTINGS M G, 2019. Theoretical phase resolved ammonia-ammonium nitrogen equilibrium isotope exchange fractionations: Applications for tracking atmospheric ammonia gas-to- particle conversion[J]. ACS Earth and Space Chemistry, 3(1): 79-89. |
[41] | WALTERS W W, SONG L, CHAI J, et al., 2020. Characterizing the spatiotemporal nitrogen stable isotopic composition of ammonia in vehicle plumes[J]. Atmospheric Chemistry and Physics, 20: 11551-11567. |
[42] | WANG C J, LI X J, ZHANG T L, et al., 2022. Developing nitrogen isotopic source profiles of atmospheric ammonia for source apportionment of ammonia in urban Beijing[J]. Frontiers in Environmental Science, 10: 903013. |
[43] |
WANG S S, NAN J L, SHI C Z, et al., 2015. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China[J]. Scientific Reports, 5: 15842.
DOI PMID |
[44] | WANG Y J, WEN Y F, ZHANG S J, et al., 2023. Vehicular Ammonia emissions significantly contribute to urban PM2.5 pollution in two Chinese megacities[J]. Environmental Science & Technology, 57(7): 2698-2705. |
[45] | WEN Z, XU W, PAN X Y, et al., 2021. Effects of reactive nitrogen gases on the aerosol formation in Beijing from late autumn to early spring[J]. Environmental Research Letters, 16: 025005. |
[46] | WU L B, REN H, WANG P, et al., 2019. Aerosol Ammonium in the Urban Boundary Layer in Beijing: Insights from Nitrogen Isotope Ratios and Simulations in Summer 2015[J]. Environmental Science & Technology Letters, 6(7): 389-395. |
[47] | WU Y Y, GU B J, ERISMAN J W, et al., 2016. PM2.5 pollution is substantially affected by ammonia emissions in China[J]. Environmental Pollution, 218: 86-94. |
[48] | XIANG Y K, DAO X, GAO M, et al., 2022. Nitrogen isotope characteristics and source apportionment of atmospheric ammonium in urban cities during a haze event in northern China Plain[J]. Atmospheric Environment, 269: 118800. |
[49] | XU W, LIU X J, LIU L, et al., 2019. Impact of emission controls on air quality in Beijing during APEC 2014: Implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors[J]. Atmospheric Environment, 210: 241-252. |
[50] | XU W, SONG W, ZHANG Y Y, et al., 2017. Air quality improvement in a megacity: Implications from 2015 Beijing Parade Blue pollution control actions[J]. Atmospheric Chemistry and Physics, 17(1): 31-46. |
[51] |
ZHANG C L, GENG X S, WANG H, et al., 2017. Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China[J]. Environmental Pollution, 220(Part B): 963-970.
DOI PMID |
[52] | ZHANG L, CHEN Y F, ZHAO Y H, et al., 2018b. Agricultural ammonia emissions in China: Reconciling bottom-up and top-down estimates[J]. Atmospheric Chemistry and Physics, 18(1): 1-36. |
[53] | ZHANG Y Y, BENEDICT K B, TANG A H, et al., 2020. Persistent non-agricultural and periodic agricultural emissions dominate sources of ammonia in urban Beijing: Evidence from 15N stable isotope in vertical profiles[J]. Environmental Science & Technology, 54(1): 102-109. |
[54] | ZHANG Y Y, LIU X J, FANG Y T, et al., 2021. Atmospheric ammonia in Beijing during the COVID-19 outbreak: Concentrations, sources, and implications[J]. Environmental Science & Technology Letters, 8(1): 32-38. |
[55] | ZHANG Y Y, MA X, TANG A H, et al., 2023. Source apportionment of atmospheric ammonia at 16 sites in China using a Bayesian isotope mixing model based on δ15N-NHx signatures[J]. Environmental Science & Technology, 57(16): 6599-6608. |
[56] | ZHANG Y Y, TANG A H, WANG D D, et al., 2018a. The vertical variability of ammonia in urban Beijing, China[J]. Atmospheric Chemistry and Physics, 18(22): 16385-16398. |
[57] | ZHANG Z N, LIU L D, MA Y L, et al., 2022. Variation of particles in the exhaust plume of gasoline direct injection vehicles based on a multipoint sampling system: Concentrations, components, and numbers[J]. Acs ES&T Engineering, 2(8): 1435-1444. |
[58] | ZHAO D D, XIN J Y, GONG C S, et al., 2019. The formation mechanism of air pollution episodes in Beijing city: Insights into the measured feedback between aerosol radiative forcing and the atmospheric boundary layer stability[J]. Science of the Total Environment, 692: 371-381. |
[59] | 巨晓棠, 谷保静, 蔡祖聪, 2017. 关于减少农业氨排放以缓解灰霾危害的建议[J]. 科技导报, 35(13): 11-12. |
JU X T, GU B J, CAI Z C, 2017. Suggestions on reducing agricultural ammonia emissions to mitigate the hazards of haze[J]. Science & Technology Review, 35(13): 11-12. | |
[60] | 廖文玲, 刘明旭, 黄昕, 等, 2022. 2013-2018年中国县级氨排放清单估算[J]. 中国科学: 地球科学, 52(7): 1345-1356. |
LIAO W L, LIU M X, HUANG X, et al., 2022. Estimation for ammonia emissions at county level in China from 2013 to 2018[J]. Science China: Earth Sciences, 52(7): 1345-1356. | |
[61] | 刘学军, 沙志鹏, 宋宇, 等, 2021. 我国大气氨的排放特征、减排技术与政策建议[J]. 环境科学研究, 34(1): 149-157. |
LIU X J, SHA Z P, SONG Y, et al., 2021. China’s atmospheric ammonia emission characteristics, mitigation options and policy recommendations[J]. Research of Environmental Sciences, 34(1): 149-157. | |
[62] | 孟德友, 2021. 农业及城市典型挥发源氨排放和氨态氮同位素源谱特征[D]. 南京: 南京信息工程大学. |
MENG D Y, 2021. Ammonia emission and ammonia nitrogen isotope characteristics of typical agricultural and urban volatile sources[D]. Nanjing: Nanjing University of Information Science and Technology. | |
[63] | 王陈婧, 2019. 北京城区站点大气氨逐时变化特征分析及基于氮稳定同位素的来源解析[D]. 北京: 中国农业大学. |
WANG C J, 2019. Online monitoring of ambient ammonia and source apportionment based on nitrogen isotope in an urban site in Beijing[D]. Beijing: China Agricultural University. | |
[64] | 韦莲芳, 段菁春, 谭吉华, 等, 2015. 北京春季大气中氨的气粒相转化及颗粒态铵采样偏差研究[J]. 中国科学: 地球科学, 45(2): 216-226. |
WEI L F, DUAN Q C, TAN J H, et al., 2015. Gas-to-particle conversion of atmospheric ammonia and sampling artifacts of ammonium in spring of Beijing[J]. Science China: Earth Sciences, 45(2): 216-226. |
[1] | 汪洋, 李帆, 严笑, 梅言, 李培, 黄林, 赵俊杰. 山地高密度城市空间形态对冬季气溶胶格局的约束力探测——重庆中心城区案例研究[J]. 生态环境学报, 2025, 34(1): 56-66. |
[2] | 王薇, 伍君奇. 公共建筑入口形式对室内气溶胶扩散的影响研究[J]. 生态环境学报, 2024, 33(8): 1227-1235. |
[3] | 吴文伟, 沈城, 沙晨燕, 林匡飞, 吴健, 谢雨晴, 周璇. 城市工业地块土壤重金属污染风险评价与源解析[J]. 生态环境学报, 2024, 33(5): 791-801. |
[4] | 张淼, 王桂霞, 王昌伟, 贺艳云, 许艳芳, 李琪, 许杨, 张俊骁, 张桂芹. 济南市区黑碳污染变化特征及来源解析[J]. 生态环境学报, 2024, 33(4): 560-572. |
[5] | 黄怡容, 熊秋林, 熊正坤, 陈文波, 李长鸿, 沙鸿钰. 基于CNN-LSTM的鄱阳湖生态经济区大气污染物时空预测[J]. 生态环境学报, 2024, 33(12): 1891-1901. |
[6] | 赵琼, 胡溪, 张伟, 张增凯, 薛文博, 赵静. 京津冀区域燃煤小锅炉清洁改造环境效益评估[J]. 生态环境学报, 2024, 33(10): 1554-1562. |
[7] | 蒋伯琪, 浮天, 程昳璇, 苏枞枞, 沈建东, 于谨铖, 于兴娜. 沈阳市臭氧污染特征及其影响因素[J]. 生态环境学报, 2024, 33(1): 72-79. |
[8] | 温丽容, 林勃机, 李婷婷, 张子洋, 张正恩, 江明, 周炎, 张涛, 李军, 张干. 基于多同位素的珠三角PM2.5中二次无机气溶胶来源解析[J]. 生态环境学报, 2023, 32(9): 1654-1662. |
[9] | 王薇, 代萌萌. 基于颗粒物时空分布的街道峡谷空间形态研究——以合肥市同安街道为例[J]. 生态环境学报, 2023, 32(9): 1632-1643. |
[10] | 黄国锋, 贺斌, 谢志宜, 刘军, 王安侯, 廖彤, 王博瑾, 郝贝贝. 广东省农业源污染对水环境的影响及其空间分异格局[J]. 生态环境学报, 2023, 32(12): 2207-2215. |
[11] | 李姝亭, 胡冠九, 罗小三. 大气环境中全(多)氟烷基化合物(PFASs)的来源、分布及健康风险研究进展[J]. 生态环境学报, 2023, 32(12): 2103-2114. |
[12] | 江明, 张子洋, 李婷婷, 林勃机, 张正恩, 廖彤, 袁鸾, 潘苏红, 李军, 张干. 基于氮同位素的珠三角典型地区大气PM2.5中NH4+来源解析[J]. 生态环境学报, 2022, 31(9): 1840-1848. |
[13] | 王薇, 程歆玥. 合肥市不同功能街道峡谷PM2.5和PM10时空分布特征及影响因素分析[J]. 生态环境学报, 2022, 31(3): 524-534. |
[14] | 廖彤, 熊鑫, 王在华, 杨夏捷, 黄映楠, 冯嘉颖. 世界三大湾区大气污染治理经验及对粤港澳大湾区的启示[J]. 生态环境学报, 2022, 31(11): 2242-2250. |
[15] | 石慧斌, 黄艺, 程馨, 李婷, 何敏, 王进进. 成都市冬季PM2.5中碳组分污染特征及来源解析[J]. 生态环境学报, 2021, 30(7): 1420-1427. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||