生态环境学报 ›› 2025, Vol. 34 ›› Issue (10): 1569-1578.DOI: 10.16258/j.cnki.1674-5906.2025.10.007
收稿日期:
2025-03-06
出版日期:
2025-10-18
发布日期:
2025-09-26
通讯作者:
E-mail: 作者简介:
陈鑫怡(2001年生),女,硕士研究生,主要研究方向为土壤质量时空变化。E-mail: 2854626980@qq.com
基金资助:
CHEN Xinyi(), MAO Yaruo, SONG Liangying, WANG Tongyao, LI Qiquan*(
)
Received:
2025-03-06
Online:
2025-10-18
Published:
2025-09-26
摘要:
深入了解土壤全磷的空间分布特征及其主控因素,对于制定科学的施肥策略、提高磷肥利用率以及防控面源污染和促进农业可持续发展具有重要意义。基于2017-2019年在四川盆地内实地采集获得的4409个表层土壤(0-20 cm)样点数据,应用地统计学方法、随机森林模型、方差分析、回归分析等方法分析该区域内土壤全磷含量空间分布特征及不同影响因素对耕层土壤全磷含量的影响程度。 结果表明,四川盆地土壤全磷含量变幅在0.30-3.92 g·kg−1之间,平均值为1.59 g·kg−1,属于一级(极高)水平。盆地内耕地表层土壤全磷含量整体呈现西北高、东南低的空间分布趋势。降雨是控制四川盆地耕地表层土壤全磷含量空间分布的主控因素,其主要通过调控土壤pH、促进土壤磷素淋失等影响土壤全磷含量的空间分布格局;其次为土壤砂粒含量。在未来施肥和秸秆还田等农业活动中,应充分考虑气候因素及土壤质地、pH等土壤性质,合理控制施肥用量;在降雨量小、土壤砂粒含量低的地区应提高肥料利用率,避免磷素过量积累;在降雨量大、土壤砂粒含量高的地区采取水土保持措施,以减少磷素流失至水体中,降低环境污染风险,推动农业可持续发展。
中图分类号:
陈鑫怡, 毛雅若, 宋靓颖, 王童瑶, 李启权. 四川盆地耕地土壤全磷空间分布特征及其主控因素[J]. 生态环境学报, 2025, 34(10): 1569-1578.
CHEN Xinyi, MAO Yaruo, SONG Liangying, WANG Tongyao, LI Qiquan. Characteristics of Spatial Distribution of Total Phosphorus in Cropland Soils and Its Main Controlling Factors in the Sichuan Basin[J]. Ecology and Environmental Sciences, 2025, 34(10): 1569-1578.
分区方式 | 分区名 | 样点个数 | 最小值/(g·kg−1) | 最大值/(g·kg−1) | 平均值±标准差/(g·kg−1) | 变异系数/% | 偏度 | 峰度 | 数据分布类型 |
---|---|---|---|---|---|---|---|---|---|
全区 | 四川盆地 | 4409 | 0.30 | 3.92 | 1.59±0.51 | 32.27 | 0.46 | 0.66 | 正态分布 |
涪江流域 | 523 | 0.53 | 3.70 | 1.84±0.41a | 22.24 | 0.48 | 2.53 | 正态分布 | |
嘉陵江流域 | 496 | 0.67 | 2.97 | 1.49±0.35c | 23.22 | 0.52 | 1.07 | 正态分布 | |
流域 | 岷江流域 | 882 | 0.37 | 3.32 | 1.68±0.42b | 25.15 | 0.25 | 0.68 | 正态分布 |
渠江流域 | 836 | 0.42 | 2.47 | 1.25±0.31d | 25.22 | 0.22 | 0.08 | 正态分布 | |
沱江流域 | 881 | 0.39 | 3.82 | 1.82±0.50a | 27.72 | 0.33 | 1.00 | 正态分布 | |
长江干流区 | 791 | 0.30 | 3.92 | 1.48±0.66c | 44.74 | 0.63 | −0.07 | 正态分布 | |
成都平原区 | 491 | 0.78 | 3.82 | 2.16±0.45a | 20.86 | 0.58 | 1.20 | 正态分布 | |
地貌 | 川中丘陵区 | 2383 | 0.30 | 3.30 | 1.50±0.43c | 28.74 | 0.04 | 0.25 | 正态分布 |
盆周山区 | 1305 | 0.44 | 3.92 | 1.59±0.54b | 33.93 | 0.63 | 0.60 | 正态分布 | |
平行岭谷区 | 230 | 0.42 | 2.47 | 1.28±0.39d | 30.28 | 0.11 | −0.05 | 正态分布 |
表1 四川盆地耕地表层土壤全磷含量统计特征
Table 1 Statistical characteristics of total phosphorus content in surface soil of arable land in Sichuan Basin
分区方式 | 分区名 | 样点个数 | 最小值/(g·kg−1) | 最大值/(g·kg−1) | 平均值±标准差/(g·kg−1) | 变异系数/% | 偏度 | 峰度 | 数据分布类型 |
---|---|---|---|---|---|---|---|---|---|
全区 | 四川盆地 | 4409 | 0.30 | 3.92 | 1.59±0.51 | 32.27 | 0.46 | 0.66 | 正态分布 |
涪江流域 | 523 | 0.53 | 3.70 | 1.84±0.41a | 22.24 | 0.48 | 2.53 | 正态分布 | |
嘉陵江流域 | 496 | 0.67 | 2.97 | 1.49±0.35c | 23.22 | 0.52 | 1.07 | 正态分布 | |
流域 | 岷江流域 | 882 | 0.37 | 3.32 | 1.68±0.42b | 25.15 | 0.25 | 0.68 | 正态分布 |
渠江流域 | 836 | 0.42 | 2.47 | 1.25±0.31d | 25.22 | 0.22 | 0.08 | 正态分布 | |
沱江流域 | 881 | 0.39 | 3.82 | 1.82±0.50a | 27.72 | 0.33 | 1.00 | 正态分布 | |
长江干流区 | 791 | 0.30 | 3.92 | 1.48±0.66c | 44.74 | 0.63 | −0.07 | 正态分布 | |
成都平原区 | 491 | 0.78 | 3.82 | 2.16±0.45a | 20.86 | 0.58 | 1.20 | 正态分布 | |
地貌 | 川中丘陵区 | 2383 | 0.30 | 3.30 | 1.50±0.43c | 28.74 | 0.04 | 0.25 | 正态分布 |
盆周山区 | 1305 | 0.44 | 3.92 | 1.59±0.54b | 33.93 | 0.63 | 0.60 | 正态分布 | |
平行岭谷区 | 230 | 0.42 | 2.47 | 1.28±0.39d | 30.28 | 0.11 | −0.05 | 正态分布 |
模型 | 有效滞后 距离/km | 步长/ km | (块金值/基台值)/ % | 变程/ km | 决定系数 R2 | 残差 RSS | |
---|---|---|---|---|---|---|---|
球状 | 400 | 15 | 35.33 | 295 | 0.910 | 0.009715 |
表2 四川盆地耕地表层土壤全磷含量半方差分析
Table 2 Semi-analysis of variance (ANOVA) of total phosphorus content in surface soil of arable land in Sichuan Basin
模型 | 有效滞后 距离/km | 步长/ km | (块金值/基台值)/ % | 变程/ km | 决定系数 R2 | 残差 RSS | |
---|---|---|---|---|---|---|---|
球状 | 400 | 15 | 35.33 | 295 | 0.910 | 0.009715 |
[1] | BARROW N J, 1983. A mechanistic model for describing the sorption and desorption of phosphate by soil[J]. Journal of Soil Science, 34(4): 733-750. |
[2] | CHEN Y Y, LIU J, RAN J Y, et al., 2022. Fluxes, patterns and sources of phosphorus deposition[J]. Atmospheric Chemistry and Physics, 22(22): 14813-14823. |
[3] | CHYTRÝ M, DANIHELKA J, ERMAKOV N, et al., 2007. Plant species richness in continental southern Siberia: Effects of pH and climate in the context of the species pool hypothesis[J]. Global Ecology and Biogeography, 16(5): 668-678. |
[4] | FANG J Y, GUO Z D, PIAO S L, et al., 2007. Terrestrial vegetation carbon sinks in China, 1981-2000[J]. Science in China Series D: Earth Sciences, 50(9): 1341-1350. |
[5] |
HOU E Q, CHEN C R, LUO Y Q, et al., 2018. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems[J]. Global Change Biology, 24(8): 3344-3356.
DOI PMID |
[6] | LI A W, LI C J, ZHANG Y Y, et al., 2023. The driving factors and buffering mechanism regulating cropland soil acidification across the Sichuan Basin of China[J]. Catena, 220(Part A): 106688. |
[7] | LIU Z P, SHAO M A, WANG Y Q, 2013. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China[J]. Geoderma, 197-198: 67-78. |
[8] | MASHAL K, Al-DEGS Y S, Al-QINNA M, et al., 2014. Elucidation of phosphorous sorption by calcareous soils using principal component analysis[J]. Chemistry and Ecology, 30(2): 133-146. |
[9] | SIEBERS N, SUMANN M, KAISER K, et al., 2017. Climatic effects on phosphorus fractions of native and cultivated north American grassland soils[J]. Soil Science Society of America Journal, 81(2): 299-309. |
[10] | SZOGI A A, BAUER P J, VANOTTI M B, 2012. Vertical distribution of phosphorus in a sandy soil fertilized with recovered manure phosphates[J]. Journal of Soils and Sediments, 12(3): 334-340. |
[11] | WANG R Z, CREAMER C A, WANG X, et al., 2016. The effects of a 9-year nitrogen and water addition on soil aggregate phosphorus and sulfur availability in a semi-arid grassland[J]. Ecological Indicators, 61(Part 2): 806-814. |
[12] | ZHANG S, HUFFMAN T, ZHANG X, et al., 2014. Spatial distribution of soil nutrient at depth in black soil of northeast China: A case study of soil available phosphorus and total phosphorus[J]. Journal of Soils and Sediments, 14(11): 1775-1789. |
[13] | ZHAO Y C, WANG M Y, HU S J, et al., 2018. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences, 115(16): 4045-4050. |
[14] | ZHU J, WU A C, ZHOU G Y, 2021. Spatial distribution patterns of soil total phosphorus influenced by climatic factors in China’s forest ecosystems[J]. Scientific Reports, 11(1): 5357. |
[15] | 陈丹, 成金礼, 王童瑶, 等, 2024. 四川盆地耕地土壤有效磷空间变异特征及影响因素[J]. 植物营养与肥料学报, 30(9): 1768-1781. |
CHEN D, CHENG J L, WANG T Y, et al., 2024. Spatial variability of effective phosphorus in arable soils in the Sichuan Basin and its influencing factors[J]. Journal of Plant Nutrition and Fertilizer, 30(9): 1768-1781. | |
[16] | 代天飞, 2021. 四川省农田生态系统养分输入、累积、输出与表观盈亏特征研究[D]. 成都: 四川农业大学: 1-110. |
DAI T F, 2021. Characterization of nutrient input, accumulation, output and apparent gain/loss in farmland ecosystems in Sichuan Province[D]. Chengdu: Sichuan Agricultural University: 1-110 | |
[17] | 戴晓康, 冯茂松, 黄从德, 等, 2020. 四川盆地南缘不同海拔金佛山方竹林 (Chimonobambusa utilis) 土壤化学计量及笋产量特征[J]. 四川农业大学学报, 38(1): 43-51. |
DAI X K, FENG M S, HUANG C D, et al., 2020. Characteristics of soil stoichiometry and shoot yield in square bamboo forests (Chimonobambusa utilis) at different elevations in Jinfoshan at the southern margin of Sichuan Basin[J]. Journal of Sichuan Agricultural University, 38(1): 43-51. | |
[18] | 邓欧平, 张春龙, 唐锐, 等, 2018. 气象因素对成都平原夏季大气氮、磷连续性沉降的影响[J]. 四川农业大学学报, 36(2): 223-232. |
DENG O P, ZHANG C L, TANG R, et al., 2018. Influence of meteorological factors on continuous atmospheric nitrogen and phosphorus deposition in Chengdu Plain in summer[J]. Journal of Sichuan Agricultural University, 36(2): 223-232. | |
[19] | 邓茜, 方红艳, 张元媛, 等, 2022. 四川盆地耕地土壤pH空间变异特征及影响因素[J]. 土壤, 54(6): 1283-1290. |
DENG Q, FANG H Y, ZHANG Y Y, et al., 2022. Characteristics of spatial variation of soil pH in arable land in the Sichuan Basin and the factors affecting it[J]. Soil, 54(6): 1283-1290. | |
[20] |
樊慧琳, 张佳敏, 李欢, 等, 2023. 坡耕地稻田剖面磷的储存格局与流失风险研究[J]. 生态环境学报, 32(2): 283-291.
DOI |
FAN H L, ZHANG J M, LI H, et al., 2023. Study on the profile storage pattern and loss risk of phosphorus in sloping paddy red soil[J]. Journal of Ecology and Environment, 32(2): 283-291. | |
[21] | 何林东, 吴勇, 田耘, 等, 2024. 崩塌堆积物对紫色土养分含量的影响[J]. 水土保持通报, 44(4): 66-76. |
HE L D, WU Y, TIAN Y, et al., 2024. Influence of collapse deposits on nutrient content of purple soil[J]. Soil and Water Conservation Bulletin, 44(4): 66-76. | |
[22] | 黄小辉, 王玉书, 魏立本, 等, 2023. 重庆核桃主要产区土壤养分状况及肥力评价[J]. 东北林业大学学报, 51(1): 88-93. |
HUANG X H, WANG Y S, WEI L B, et al., 2023. Soil nutrient status and fertility evaluation of major walnut producing areas in Chongqing[J]. Journal of Northeast Forestry University, 51(1): 88-93. | |
[23] | 贾兴永, 李菊梅, 2011. 土壤磷有效性及其与土壤性质关系的研究[J]. 中国土壤与肥料 (6): 76-82. |
JIA X Y, LI J M, 2011. Research on soil phosphorus effectiveness and its relationship with soil properties[J]. China Soil and Fertilizer (6): 76-82. | |
[24] | 赖泉淏, 2018. 四川省农田耕层土壤磷素时空变异特征研究[D]. 成都: 四川农业大学: 1-82. |
LAI Q H, 2018. Characterization of spatial and temporal variability of soil phosphorus in farmland tillage layer in Sichuan Province[D]. Chengdu: Sichuan Agricultural University: 1-82. | |
[25] | 李呈吉, 张元媛, 方红艳, 等, 2022. 成都平原近40年来表层土壤全磷变化及其与农地利用方式转变的关系[J]. 土壤通报, 53(1): 187-194. |
LI C J, ZHANG Y Y, FANG H Y, et al., 2022. Changes of total phosphorus in topsoil of Chengdu Plain over the past 40 years and its relationship with the change of agricultural land use[J]. Soil Bulletin, 53(1): 187-194. | |
[26] | 李长燕, 彭希, 2019. 雅安不同海拔地区的珙桐群落土壤养分特征[J]. 四川林业科技, 40(3): 31-36. |
LI C Y, PENG X, 2019. Soil nutrient characteristics of dove tree communities at different elevations in Ya’an[J]. Sichuan Forestry Science and Technology, 40(3): 31-36. | |
[27] | 李娟, 杨满元, 杨宁, 2024. 紫色土丘陵恢复区不同土地利用方式土壤质量综合评价[J]. 草地学报, 23(9): 2875-2883. |
LI J, YANG M Y, YANG N, 2024. Comprehensive evaluation of soil quality of different land use modes in the restoration area of purple soil hills[J]. Grassland Journal, 23(9): 2875-2883. | |
[28] | 李盟军, 艾绍英, 宁建凤, 等, 2019. 不同养分管理措施下常年菜地磷、钾养分径流流失特征[J]. 农业资源与环境学报, 36(1): 33-42. |
LI M J, AI S Y, NING J F, et al., 2019. Characteristics of phosphorus and potassium nutrient runoff loss from perennial vegetable fields under different nutrient management measures[J]. Journal of Agricultural Resources and Environment, 36(1): 33-42. | |
[29] |
李珊, 李启权, 王昌全, 等, 2018. 成都平原西部土壤全磷的剖面分布及主控因素[J]. 资源科学, 40(7): 1397-1406.
DOI |
LI S, LI Q Q, WANG C Q, et al., 2018. Profile distribution and main controlling factors of soil total phosphorus in western Chengdu Plain[J]. Resource Science, 40(7): 1397-1406. | |
[30] | 李雪, 顾莉丽, 李瑞, 2022. 我国粮食主产区粮食生产生态效率评价研究[J]. 中国农机化学报, 43(2): 205-213. |
LI X, GU L L, LI R, 2022. Evaluation of the ecological efficiency of grain production in major grain producing areas in China[J]. Chinese Journal of Agricultural Mechanical Chemistry, 43(2): 205-213. | |
[31] | 李志伟, 崔力拓, 耿世刚, 等, 2007. 影响土壤磷素解吸的环境因素研究[J]. 中国水土保持 (6): 33-34. |
LI Z W, CUI L T, GENG S G, et al., 2007. Environmental factors affecting soil phosphorus desorption[J]. Soil and water conservation in China (6): 33-34. | |
[32] | 刘奇鑫, 王昌全, 李冰, 等, 2021. 成都平原氮磷化肥施用强度空间分布及影响因素分析[J]. 环境科学, 42(7): 3555-3564. |
LIU Q X, WANG C Q, LI B, et al., 2021. Spatial distribution of nitrogen and phosphorus fertilizer application intensity in Chengdu Plain and analysis of influencing factors[J]. Environmental Science, 42(7): 3555-3564. | |
[33] | 刘双凤, 杨德志, 王凤, 等, 2024. 施肥对我国农田土壤磷素形态影响的Meta分析[J]. 中国土壤与肥料 (8): 43-51. |
LIU S F, YANG D Z, WANG F, et al., 2024. Meta-analysis of the effect of fertilizer application on phosphorus patterns in farmland soils in China[J]. China Soil and Fertilizer (8): 43-51. | |
[34] |
马胜兰, 况福虹, 林洪羽, 等, 2023. 秸秆还田量对川中丘陵冬小麦-夏玉米轮作体系土壤物理特性的影响[J]. 中国农业科学, 56(7): 1344-1358.
DOI |
MA S L, KUANG F H, LIN H Y, et al., 2023. Effects of straw return on soil physical properties of winter wheat-summer maize rotation system in the central Sichuan hills[J]. Chinese Agricultural Science, 56(7): 1344-1358. | |
[35] | 庞艳梅, 陈超, 徐富贤, 等, 2020. 气候变化对四川盆地主要粮食作物生产潜力的影响[J]. 中国生态农业学报(中英文), 28(11): 1661-1672. |
PANG Y M, CHEN C, XU F X, et al., 2020. Impact of climate change on the production potential of major food crops in the Sichuan Basin[J]. Chinese Journal of Ecological Agriculture, 28(11): 1661-1672. | |
[36] | 宋春, 徐敏, 赵伟, 等, 2015. 不同土地利用方式下紫色土磷有效性及其影响因素研究[J]. 水土保持学报, 29(6): 85-89. |
SONG C, XU M, ZHAO W, et al., 2015. Research on phosphorus effectiveness and its influencing factors in purple soil under different land utilization[J]. Journal of Soil and Water Conservation, 29(6): 85-89. | |
[37] | 田娟, 刘凌, 董贵明, 等, 2008. 淹水土壤磷释放机理研究进展[J]. 土壤通报 (2): 426-430. |
TIAN J, LIU L, DONG G M, et al., 2008. Progress of phosphorus release mechanism in flooded soil[J]. Soil Bulletin (2): 426-430. | |
[38] | 王成栋, 2025. 粮食产量726.8亿斤对四川意味着什么[N]. 四川日报, 2025-01-15. |
WANG C D, 2025. What grain output of 72.68 billion kilograms means for Sichuan[N]. Sichuan Daily, 2025-01-15. | |
[39] | 王永壮, 陈欣, 史奕, 2013. 农田土壤中磷素有效性及影响因素[J]. 应用生态学报, 24(1): 260-268. |
WANG Y Z, CHEN X, SHI Y, 2013. Phosphorus effectiveness and influencing factors in agricultural soils[J]. Journal of Applied Ecology, 24(1): 260-268. | |
[40] |
向晓玲, 陈松鹤, 杨洪坤, 等, 2022. 秸秆覆盖与施磷对四川丘陵旱地土壤磷形态及有效性的影响[J]. 应用生态学报, 33(12): 3337-3344.
DOI |
XIANG X L, CHEN S H, YANG H K, et al., 2022. Effects of straw mulching and phosphorus application on phosphorus morphology and effectiveness in hilly dryland soils of Sichuan[J]. Journal of Applied Ecology, 33(12): 3337-3344. | |
[41] | 徐华勤, 章家恩, 余家瑜, 等, 2011. 模拟酸雨对赤红壤磷素及Ca2+、Al3+、Fe2+淋失特征的影响[J]. 植物营养与肥料学报, 17(5): 1172-1178. |
XU H Q, ZHANG J E, YU J Y, et al., 2011. Effects of simulated acid rain on phosphorus and Ca2+, Al3+ and Fe2+ leaching characteristics of reddish soil[J]. Journal of Plant Nutrition and Fertilizer, 17(5): 1172-1178. | |
[42] | 杨宬君, 张鑫, 马孟平, 等, 2024. 华西雨屏区不同林龄柳杉人工林表层土壤磷组分特征[J]. 生态学杂志, 43(3): 623-632. |
YANG C J, ZHANG X, MA M P, et al., 2024. Characteristics of phosphorus fractions in the surface soil of willow plantation forests of different stand ages in the rain screen area of West China[J]. Journal of Ecology, 43(3): 623-632. | |
[43] | 杨兴, 庞鑫, 曹卓冰, 等, 2020. 模拟降雨条件下工程边坡土壤磷素流失特征[J]. 水土保持通报, 40(1): 24-29. |
YANG X, PANG X, CAO Z B, et al., 2020. Characteristics of soil phosphorus loss from engineered slopes under simulated rainfall conditions[J]. Soil and Water Conservation Bulletin, 40(1): 24-29. | |
[44] |
张瑶瑶, 冷若琳, 崔霞, 等, 2018. 甘南州高寒草地土壤氮磷空间分布特征[J]. 草业学报, 27(12): 12-21.
DOI |
ZHANG Y Y, LENG R L, CUI X, et al., 2018. Characteristics of spatial distribution of soil nitrogen and phosphorus in alpine grassland of Gannan Prefecture[J]. Journal of Grass Industry, 27(12): 12-21. | |
[45] | 章明奎, 郑顺安, 王丽平, 2007. 利用方式对砂质土壤有机碳、氮和磷的形态及其在不同大小团聚体中分布的影响[J]. 中国农业科学, 40(8): 1703-1711. |
ZHANG M K, ZHENG S A, WANG L P, 2007. Effects of utilization mode on the morphology of organic carbon, nitrogen and phosphorus in sandy soils and their distribution in different sized aggregates[J]. Chinese Agricultural Science, 40(8): 1703-1711. | |
[46] | 赵亚杰, 赵牧秋, 鲁彩艳, 等, 2015. 施肥对设施菜地土壤磷累积及淋失潜能的影响[J]. 应用生态学报, 26(2): 466-472. |
ZHAO Y J, ZHAO M Q, LU C Y, et al., 2015. Effects of fertilization on soil phosphorus accumulation and leaching potential of facility vegetable land[J]. Journal of Applied Ecology, 26(2): 466-472. | |
[47] | 周碧青, 邱龙霞, 张黎明, 等, 2018. 基于灰色关联-结构方程模型的土壤酸化驱动因子研究[J]. 土壤学报, 55(5): 1233-1242. |
ZHOU B Q, QIU L X, ZHANG L M, et al., 2018. Research on soil acidification driving factors based on gray correlation-structural equation modeling[J]. Soil Journal, 55(5): 1233-1242. |
[1] | 赵忠宝, 李婧, 刘小丹, 柏祥, 刘昊野, 徐晓娜, 耿世刚, 鲁少波. 河北省森林生态产品价值评估及其空间分布驱动因素研究[J]. 生态环境学报, 2025, 34(2): 321-332. |
[2] | 王安侯, 谢志宜, 陈多宏, 王博瑾, 黄莹, 逯颖, 王玉, 杨行健, 李永涛. 广州市典型小流域降雨时期农业面源污染特征分析[J]. 生态环境学报, 2025, 34(10): 1633-1643. |
[3] | 孙云堃, 冯琦, 丁长虹, 温兆飞. 三峡水库消落区生态系统服务功能变化格局研究[J]. 生态环境学报, 2025, 34(1): 13-25. |
[4] | 王薇, 夏宇轩. 基于遥感技术和机器学习的城市街区PM2.5空间分布特征研究——以合肥市滨湖新区为例[J]. 生态环境学报, 2024, 33(9): 1426-1437. |
[5] | 欧阳美凤, 尹宇莹, 张金谌, 刘清霖, 谢意南, 方平. 洞庭湖典型水域重金属含量的空间分布与来源解析[J]. 生态环境学报, 2024, 33(8): 1269-1278. |
[6] | 王聪聪, 张小玲, 雷雨, 黄小娟, 王婧怡, 尹黎昊, 王传扬. 基于WRF-CMAQ模型的四川盆地春季持续臭氧污染过程中PM2.5组分解析[J]. 生态环境学报, 2024, 33(8): 1214-1226. |
[7] | 梁贝竹, 陈建耀, 杨再智, 张鹏程, 任坤, 梁作兵, 杨晨晨, 吴洁珊. 华南滨海小流域地下水中PPCPs的分布、来源及影响因素——以珠海市唐家湾镇为例[J]. 生态环境学报, 2024, 33(2): 249-260. |
[8] | 高星星, 包海, 丁艳旭. 夏季呼和浩特市生物源挥发性有机物排放速率空间分布[J]. 生态环境学报, 2024, 33(12): 1902-1913. |
[9] | 韦钰, 胡颖, 李小珍, 廖家培, 付瑞玉, 胡中民, 杨岳. 全球草地生态系统净初级生产力的空间格局及降水非对称响应[J]. 生态环境学报, 2024, 33(12): 1827-1836. |
[10] | 王传扬, 张小玲, 兰琳惠, 潘婕. 2022年夏季高温干旱对四川盆地污染物浓度变化的影响分析[J]. 生态环境学报, 2024, 33(1): 80-91. |
[11] | 董智今, 张呈春, 展秀丽, 张维福. 宁夏河东沙地生物土壤结皮及其下伏土壤养分的空间分布特征[J]. 生态环境学报, 2023, 32(5): 910-919. |
[12] | 杨春亮, 刘旻霞, 王千月, 苗乐乐, 肖音迪, 王敏. 单户与联户放牧经营下草玉梅与嵩草种群空间格局及其关联性[J]. 生态环境学报, 2023, 32(4): 651-659. |
[13] | 钱海铭, 张运林, 李娜, 王玮佳, 孙晓, 张毅博, 施坤, 冯胜, 高阳辉. 典型降雨过程中河流饮用水源地水质高频监测研究[J]. 生态环境学报, 2023, 32(3): 579-589. |
[14] | 陈敏毅, 宋清梅, 叶权运, 游学睿, 吴颖欣. 华南典型金属制品遗留生产场地重金属空间分布特征[J]. 生态环境学报, 2023, 32(12): 2228-2235. |
[15] | 刘希林, 卓瑞娜. 崩岗崩积体坡面初始产流时间影响因素及其临界阈值[J]. 生态环境学报, 2023, 32(1): 36-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||