生态环境学报 ›› 2022, Vol. 31 ›› Issue (11): 2242-2250.DOI: 10.16258/j.cnki.1674-5906.2022.11.016
廖彤1(), 熊鑫2, 王在华3,*(
), 杨夏捷4, 黄映楠4, 冯嘉颖3
收稿日期:
2022-07-10
出版日期:
2022-11-18
发布日期:
2022-12-22
通讯作者:
*王在华(1981年生),男,高级工程师,主要从事大气环境监测与源解析。E-mail: zaihuawang@163.com作者简介:
廖彤(1969年生),男,高级工程师,主要研究方向为大气环境监测与预报预警。E-mail: 2249819237@qq.com
基金资助:
LIAO Tong1(), XIONG Xin2, WANG Zaihua3,*(
), YANG Xiajie4, HUANG Yingnan4, FENG Jiaying3
Received:
2022-07-10
Online:
2022-11-18
Published:
2022-12-22
摘要:
粤港澳大湾区作为中国经济活力最强的区域之一,在持续高速发展的同时大气污染问题也不断凸显,对公众健康和生态环境产生巨大的威胁。世界三大湾区(旧金山湾区、纽约湾区和东京湾区)在发展过程中也经历过严重的空气污染(尤其是以臭氧(O3)为主的光化学污染)。其中,旧金山湾区O3污染的主要原因是高排放和不利的气象条件的共同加持作用;纽约湾区主要面临由高能源消耗所引起的O3和PM2.5的复合污染;而东京湾区则是由经济高速发展所导致的光化学污染。面对当时严重的光化学污染,三大湾区在科学研究和技术研发的基础上,通过制定相关的政策法规和标准,协同降低O3前体物(NOx和VOCs)的排放,从而有效解决了污染问题。相比于世界三大湾区,粤港澳大湾区当前的O3污染仍然严峻。该文通过全面梳理三大湾区的空气污染治理措施和经验,对粤港澳大湾区的O3污染治理提出以下几点建议:(1)完善大湾区O3前体物精细化管控;(2)推动大湾区O3前体物监测技术革新;(3)建立健全粤港澳三地跨境联防联控机制。该文通过分析世界三大湾区的空气污染成因、治理历程以及取得的经验,并在此基础上进一步总结了粤港澳大湾区空气质量管理的方法和经验,旨在推动建立具有中国特色的国际一流湾区空气质量管理体系。
中图分类号:
廖彤, 熊鑫, 王在华, 杨夏捷, 黄映楠, 冯嘉颖. 世界三大湾区大气污染治理经验及对粤港澳大湾区的启示[J]. 生态环境学报, 2022, 31(11): 2242-2250.
LIAO Tong, XIONG Xin, WANG Zaihua, YANG Xiajie, HUANG Yingnan, FENG Jiaying. The Experience of Prevention and Control of Air Pollution in International Advanced Bay Areas and Its Enlightenment to Guangdong-Hong Kong-Macao Greater Bay Area in China[J]. Ecology and Environment, 2022, 31(11): 2242-2250.
时间 Time | 管控措施及主要内容 Control measures and main contents |
---|---|
1947 | 洛杉矶监督委员会创立了空气污染控制局(Air Pollution Control District,APCD)。这是全美第一个县域空气质量管理机构 |
1953 | 洛杉矶郡APCD要求减少工业汽油储存罐的HC排放、汽油罐货车和加油站地下储存罐的蒸汽泄漏。 这些措施每日能削减约2000 t HC排放及250 t NOx排放 |
1955 | 全加州第一个光化学烟雾报警系统启用 |
1956 | 全加州第一个空气监测系统投入使用 |
1958 | 加州地政府禁止使用庭院垃圾焚烧炉,并且垃圾填埋场、精炼厂、发电厂等工业设施排放需要受到监管 |
1960 | 加州立法机构成立了加州机动车污染控制委员会,以测试车辆排放并查证排放控制设备 |
1966 | 加州建立汽车尾气排放标准 |
1969 | 加州颁布全州首个环境空气质量标准 |
1970 | 美国环境保护署(EPA)成立,并制定了联邦《清洁空气法》 |
1971 | 美国环境保护署制定了《国家环境空气质量标准》 |
1977 | 南加州空气质量管理局成立 |
1981 | 联邦政府发布《国家臭氧执行计划》 |
1987 | 加州颁布本地的清洁空气法案:《加州清洁空气法案》 |
1990 | 联邦政府修订《清洁空气法》,实现了从属地管理到区域管理的思路转换 |
1991 | 加州环保署(CalEPA)成立 |
1997 | 联邦政府修订《国家环境空气质量标准》,修改了O3环境标准(由1 h变为8 h) |
表1 美国联邦和加州政府O3管控历程(21世纪前)
Table 1 O3 control process of the federal and California governments of the U.S (before the 21st century)
时间 Time | 管控措施及主要内容 Control measures and main contents |
---|---|
1947 | 洛杉矶监督委员会创立了空气污染控制局(Air Pollution Control District,APCD)。这是全美第一个县域空气质量管理机构 |
1953 | 洛杉矶郡APCD要求减少工业汽油储存罐的HC排放、汽油罐货车和加油站地下储存罐的蒸汽泄漏。 这些措施每日能削减约2000 t HC排放及250 t NOx排放 |
1955 | 全加州第一个光化学烟雾报警系统启用 |
1956 | 全加州第一个空气监测系统投入使用 |
1958 | 加州地政府禁止使用庭院垃圾焚烧炉,并且垃圾填埋场、精炼厂、发电厂等工业设施排放需要受到监管 |
1960 | 加州立法机构成立了加州机动车污染控制委员会,以测试车辆排放并查证排放控制设备 |
1966 | 加州建立汽车尾气排放标准 |
1969 | 加州颁布全州首个环境空气质量标准 |
1970 | 美国环境保护署(EPA)成立,并制定了联邦《清洁空气法》 |
1971 | 美国环境保护署制定了《国家环境空气质量标准》 |
1977 | 南加州空气质量管理局成立 |
1981 | 联邦政府发布《国家臭氧执行计划》 |
1987 | 加州颁布本地的清洁空气法案:《加州清洁空气法案》 |
1990 | 联邦政府修订《清洁空气法》,实现了从属地管理到区域管理的思路转换 |
1991 | 加州环保署(CalEPA)成立 |
1997 | 联邦政府修订《国家环境空气质量标准》,修改了O3环境标准(由1 h变为8 h) |
时间 Time | 管控措施及主要内容 Control measures and main contents |
---|---|
1955 | 东京制定《防止排烟条例》 |
1962 | 日本制定第一部空气污染控制法-《煤烟排放控制有关法律》 |
1967 | 日本制定《公害对策基本法》,明确了企业、国家和地方公共团体对防治公害的基本对策 |
1968 | 日本政府出台《大气污染防治法》 |
1970 | 日本政府修订《公害对策基本法》 |
1971 | 日本成立环境省,各都道府县、各市町村设置政府环保机构 |
1992 | 日本颁布《机动车NOx法》,控制尾气NOx排放 |
1993 | 日本政府颁布《环境基本法》,标志着日本的环境法迈入新的阶段 |
2000 | 东京都制定了《环境确保条例》,在东京都全域内禁止不符合PM排放标准的柴油车行驶 |
2001 | 日本修订《机动车NOx法》,加入了对尾气颗粒物排放的控制,并更名为《机动车NOx、PM法》, 标志着日本机动车尾气区域总量控制制度的形成,对日本机动车尾气污染防治具有划时代的意义 |
表2 日本政府空气污染管控历程
Table 2 Air pollution control history of the Japanese government
时间 Time | 管控措施及主要内容 Control measures and main contents |
---|---|
1955 | 东京制定《防止排烟条例》 |
1962 | 日本制定第一部空气污染控制法-《煤烟排放控制有关法律》 |
1967 | 日本制定《公害对策基本法》,明确了企业、国家和地方公共团体对防治公害的基本对策 |
1968 | 日本政府出台《大气污染防治法》 |
1970 | 日本政府修订《公害对策基本法》 |
1971 | 日本成立环境省,各都道府县、各市町村设置政府环保机构 |
1992 | 日本颁布《机动车NOx法》,控制尾气NOx排放 |
1993 | 日本政府颁布《环境基本法》,标志着日本的环境法迈入新的阶段 |
2000 | 东京都制定了《环境确保条例》,在东京都全域内禁止不符合PM排放标准的柴油车行驶 |
2001 | 日本修订《机动车NOx法》,加入了对尾气颗粒物排放的控制,并更名为《机动车NOx、PM法》, 标志着日本机动车尾气区域总量控制制度的形成,对日本机动车尾气污染防治具有划时代的意义 |
地区 Areas | NO2 (10-9) | TSP/ (μg·m-3) | PM2.5/ (μg·m-3) | 日间O3-1h平均 Daytime average of O3-1h (10-9) | SO2 (10-9) | CO (10-9) |
---|---|---|---|---|---|---|
(1) | 10 | 19 | 13.9 | 48 | 2 | 300 |
(2) | 17 | 19 | 13.8 | 31 | 2 | 200 |
(3) | 15 | 20 | 12.8 | 47 | 2 | 300 |
(4) | 13 | 18 | 12 | 33 | 2 | - |
(5) | 13 | 20 | 13.2 | 33 | 1 | 300 |
(6) | 15 | 19 | 13 | 36 | 2 | 270 |
(7) | 100% | 100% | 75% | 0% | 100% | 100% |
(8) | 100% | 100% | 89% | 0% | 99% | 100% |
表3 2015年日本全国及主要县区空气质量状况
Table 3 Air quality in Japan and its major counties in 2015
地区 Areas | NO2 (10-9) | TSP/ (μg·m-3) | PM2.5/ (μg·m-3) | 日间O3-1h平均 Daytime average of O3-1h (10-9) | SO2 (10-9) | CO (10-9) |
---|---|---|---|---|---|---|
(1) | 10 | 19 | 13.9 | 48 | 2 | 300 |
(2) | 17 | 19 | 13.8 | 31 | 2 | 200 |
(3) | 15 | 20 | 12.8 | 47 | 2 | 300 |
(4) | 13 | 18 | 12 | 33 | 2 | - |
(5) | 13 | 20 | 13.2 | 33 | 1 | 300 |
(6) | 15 | 19 | 13 | 36 | 2 | 270 |
(7) | 100% | 100% | 75% | 0% | 100% | 100% |
(8) | 100% | 100% | 89% | 0% | 99% | 100% |
项目 Items | 旧金山湾区 San Francisco Bay Area | 纽约湾区 New York Bay Area | 东京湾区 Tokyo Bay Area |
---|---|---|---|
当前大气环境质量浓度 Mass concentration of current atmospheric environment/(μg·m-3) | ρ(PM2.5)<12, O3-8h第四极大值(1)<161 | ρ(PM2.5)<10, O3-8h第四极大值(1)<161 | ρ(PM2.5)<15, O3-8h平均值(2)<120 |
主要特征 Key feature | 光化学污染 | 光化学和颗粒物的复合型污染 | 光化学污染 |
管控NOx NOx control | 机动车全生命周期污染物排放标准体系 | 推广应用新技术(如优化能源结构,限制取暖油的污染物成分,等) | 立法限制机动车排放;修改机动车的结构装置 |
管控VOCs VOCs control | 联邦制定机动车修补漆、建筑涂料、消费品和气溶胶涂料等的排放标准;通过技术革新降低排放 | 法规监管与企业自主减排相结合;分行业工艺 过程VOC源头控制;VOC的末端治理技术 | |
共同治理经验 Joint governance experience | (1)成立区域空气污染控制机构;(2)加强区域大气污染联防联控; (3)完善NOx和VOCs环境标准体系;(4)推动公众、企业、智库等多主体参与湾区环境管理 |
表4 三大湾区现行空气治理措施和经验总结
Table 4 Current air control measures and experience summary in the three international bay areas
项目 Items | 旧金山湾区 San Francisco Bay Area | 纽约湾区 New York Bay Area | 东京湾区 Tokyo Bay Area |
---|---|---|---|
当前大气环境质量浓度 Mass concentration of current atmospheric environment/(μg·m-3) | ρ(PM2.5)<12, O3-8h第四极大值(1)<161 | ρ(PM2.5)<10, O3-8h第四极大值(1)<161 | ρ(PM2.5)<15, O3-8h平均值(2)<120 |
主要特征 Key feature | 光化学污染 | 光化学和颗粒物的复合型污染 | 光化学污染 |
管控NOx NOx control | 机动车全生命周期污染物排放标准体系 | 推广应用新技术(如优化能源结构,限制取暖油的污染物成分,等) | 立法限制机动车排放;修改机动车的结构装置 |
管控VOCs VOCs control | 联邦制定机动车修补漆、建筑涂料、消费品和气溶胶涂料等的排放标准;通过技术革新降低排放 | 法规监管与企业自主减排相结合;分行业工艺 过程VOC源头控制;VOC的末端治理技术 | |
共同治理经验 Joint governance experience | (1)成立区域空气污染控制机构;(2)加强区域大气污染联防联控; (3)完善NOx和VOCs环境标准体系;(4)推动公众、企业、智库等多主体参与湾区环境管理 |
[1] |
ATKINSON R, AREY J, 2004. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 103: 4605-4638.
DOI URL |
[2] |
AVNERY S, MAUZERALL D L, LIU J, et al., 2011. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage[J]. Atmospheric Environment, 45(13): 2284-2296.
DOI URL |
[3] |
BENAS N, MOURTZANOU E, KOUVARAKIS G, et al., 2013. Surface ozone photolysis rate trends in the Eastern Mediterranean: Modeling the effects of aerosols and total column ozone based on Terra MODIS data[J]. Atmospheric Environment, 74: 1-9.
DOI URL |
[4] | BIAN Y H, HUANG Z J, OU J M, et al., 2019. Evolution of anthropogenic air pollutant emissions in Guangdong Province, China, from 2006 to 2015[J]. Atmospheric Chemistry and Physics, 19(18): 11701-11719. |
[5] | CANELLA R, ROBERTA B, CAVICCHIO C, et al., 2016. Tropospheric ozone effects on chlorine current in lung epithelial cells: An electrophysiological approach[J]. Free Radical Biology and Medicine, 96: S58-59. |
[6] | CARTER W, 1994. Development of ozone reactivity scales for volatile organic compounds[J]. Journal of the air and waste management association, 44: 881-899. |
[7] |
CARTER W, 1996. Computer modelling of environmental chamber measurements of maximum incremental reactivities of volatile organic compounds[J]. Atmospheric Environment, 29: 2513-2527.
DOI URL |
[8] |
CASTRO T, MADRONICH S, RIVALE S, et al., 2001. The influence of aerosols on photochemical smog in Mexico City[J]. Atmospheric Environment, 35(10): 1765-1772.
DOI URL |
[9] |
CHAMEIDES W L, FEHSENFELD F, RODGERS M O, et al., 1992. Ozone precursor relationships in the ambient atmosphere[J]. Journal of Geophysical Research: Atmospheres, 97(D5): 6037-6055.
DOI URL |
[10] |
CHEN X, ZHONG B Q, HUANG F X, et al., 2019. The role of natural factors in constraining long-term tropospheric ozone trends over Southern China[J]. Atmospheric Environment, 220: 117060.
DOI URL |
[11] |
CHEN Z Y, LI R Y, CHEN D L, et al., 2020. Understanding the causal influence of major meteorological factors on ground ozone concentrations across China[J]. Journal of Cleaner Production, 242: 118498.
DOI URL |
[12] |
CHENG H R, SAUNDER S M, GUO H, et al., 2013. Photochemical trajectory modeling of ozone concentrations in Hong Kong[J]. Environmental Pollution, 180: 101-110.
DOI PMID |
[13] |
FENG Z Z, HU E Z, WANG X K, JIANG L, et al., 2015. Ground-level O3 pollution and its impacts on food crops in China: A review[J]. Environmental Pollution, 199: 42-48.
DOI URL |
[14] |
FU J, DONG X Y, GAO Y, et al., 2012. Sensitivity and linearity analysis of ozone in East Asia: The effects of domestic emission and intercontinental transport[J]. Journal of the Air and Waste Management Association, 62(9): 1102-1114.
PMID |
[15] |
FU Y, LIAO H, YANG Y, 2019. Interannual and decadal changes in tropospheric ozone in China and the associated chemistry-climate interactions: A review[J]. Advances in Atmospheric Sciences, 36(9): 975-993.
DOI URL |
[16] |
GAO D, XIE M, CHEN X, et al., 2019. Modeling the effects of climate change on surface ozone during summer in the Yangtze River Delta region, China[J]. International Journal of Environmental Research and Public Health, 16(9): 1528.
DOI URL |
[17] |
GAO J H, BIN Z, XIAO H, et al., 2016. A case study of surface ozone source apportionment during a high concentration episode, under frequent shifting wind conditions over the Yangtze River Delta, China[J]. Science of the Total Environment, 544: 853-863.
DOI URL |
[18] |
HERVÉ G, JEAN-PIERRE C, ALAIN M, et al., 1996. Ozone peaks associated with a subtropical tropopause fold and with the trade wind inversion: A case study from the airborne campaign TROPOZ II over the Caribbean in winter[J]. Journal of Geophysical Research, 101 (D20): 25979-25993.
DOI URL |
[19] | HAN L, ZHU L Y, WANG S L, et al., 2018. Modeling study of impacts on surface ozone of regional transport and emissions reductions over North China Plain in summer 2015[J]. Atmospheric Chemistry and Physics, 18(16): 12207-12221. |
[20] | HE H, LIANG X Z, SUN C, et al., 2020. The long-term trend and production sensitivity change in the US ozone pollution from observations and model simulations[J]. Atmospheric Chemistry and Physics, 20(5): 3191-3208. |
[21] |
HE J J, GONG S L, YU Y, et al., 2017. Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities[J]. Environmental pollution, 223: 484-496.
DOI PMID |
[22] | HU J, LI Y C, ZHAO T L, et al., 2018. An important mechanism of regional O3 transport for summer smog over the Yangtze River Delta in eastern China[J]. Atmospheric Chemistry and Physics, 18(22): 16239-16251. |
[23] |
HU X M, DOUGHTY D C, SANCHEZ K J, et al., 2012. Ozone variability in the atmospheric boundary layer in Maryland and its implications for vertical transport model[J]. Atmospheric Environment, 46: 354-364.
DOI URL |
[24] |
ITO A, WAKAMASTU S, MORIKAWA T, et al., 2021. 30 Years of Air Quality Trends in Japan[J]. Atmosphere, 12(8): 1072.
DOI URL |
[25] |
JACOB D J, WINNER D A, 2009. Effect of climate change on air quality[J]. Atmospheric Environment, 43(1): 51-63.
DOI URL |
[26] | KUNUGI Y, ARIMURA T H, IWATA K, et al., 2018. Cost-efficient strategy for reducing PM2.5 levels in the Tokyo metropolitan area: an integrated approach with air quality and economic models[J]. PLoS One, 13(11): 3588-3596. |
[27] |
LI Y, LAU A K H, FUNG J C H, et al., 2013. Systematic evaluation of ozone control policies using an Ozone Source Apportionment method[J]. Atmospheric Environment, 76: 136-146.
DOI URL |
[28] |
MARR L C, HARLEY R A, 2002. Spectral analysis of weekday-weekend differences in ambient ozone, nitrogen oxide, and non-methane hydrocarbon time series in California[J]. Atmospheric Environment, 36(14): 2327-2335.
DOI URL |
[29] | MAXIMILIAN A, RYAN K, 2011. Clearing the air? The effects of gasoline content regulation on air quality, the American economic review[M]. New York: American Economic Association. |
[30] | New York City, 2017. PlaNYC: A Greener, Greater New York[J]. Synthese, 6(3-4): 1-1258. |
[31] | The Barry Commoner Center for Health and the Environment, 2013. New York City trend in air pollution and its health consequences[EB/OL]. (2013-10-25) [2022-05-10]. https://commonercenter.org/docs/air-quality-report-2013.pdf. |
[32] | United States Environmental Protection Agency, 2021. NAAQS Implementation Process[EB/OL]. Washington District of Columbia: United States Environmental Protection Agency, (2021-05-17) [2022-08-03]. https://www.epa.gov/criteria-air-pollutants/naaqs-implementation-process. |
[33] | United States Environmental Protection Agency, 2021. Summary of the clean air Act[EB/OL]. Washington District of Columbia: United States Environmental Protection Agency, (2021-09-28) [2022-08-03]. https://www.epa.gov/laws-regulations/summary-clean-air-act. |
[34] | United States Environmental Protection Agency, 2021. Air quality implementation plans[EB/OL]. Washington District of Columbia: United States Environmental Protection Agency, (2021-04-12) [2022-08-03]. https://www.epa.gov/air-quality-implementation-plans. |
[35] | United States Environmental Protection Agency, 2021. National volatile organic compound emission standards[EB/OL]. Washington District of Columbia: United States Environmental Protection Agency, (2021-12-23) [2022-08-03]. https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications. |
[36] | United States Environmental Protection Agency, 2020. Regulations to reduce mobile source pollution[EB/OL]. Washington District of Columbia: United States Environmental Protection Agency, (2020-02-06) [2022-08-03]. https://www.epa.gov/mobile-source-pollution/regulations-reduce-mobile-source-pollution. |
[37] | 蔡文博, 韩宝龙, 逯非, 等, 2020. 全球四大湾区生态环境综合评价研究[J]. 生态学报, 40(23): 8392-8402. |
CAI W B, HAN B L, LU F, et al., 2020. Comprehensive evaluation of the eco-environment in the four global bay areas[J]. Acta Ecologica Sinica, 40(23): 8392-8402. | |
[38] | 崔茹, 莫梓伟, 袁斌, 等, 2021. 我国日化用品使用挥发性有机物 (VOCs) 排放及臭氧生成潜势研究[J]. 环境科学学报, 41(6): 2272-2281. |
CUI R, MO Z W, YUAN B, et al., 2021. Emissions and ozone formation potential of volatile organic compounds (VOCs) from daily chemical products in China[J]. Acta Scientiae Circumstantiae, 41(6): 2272-2281. | |
[39] | 甘佳, 2014. 日本机动车尾气污染防治法律制度研究[D]. 南昌: 江西理工大学. |
GAN J, 2014. Study on the legal system of automobile exhaust pollution prevention in Japan[D]. Nanchang: Jiangxi University of Science and Technology. | |
[40] | 广东省生态环境厅, 2022. 2021年广东省生态环境状况公报[EB/OL]. (2022-05-10) [2022-05-10]. http://gdee.gd.gov.cn/attachment/0/488/488577/3927093.pdf. |
Guangdong Provincial Department of Ecological Environment, 2022. 2021 Report on the state of Guangdong provincial ecology and environment[EB/OL]. (2022-05-10) [2022-05-10]. http://gdee.gd.gov.cn/attachment/0/488/488577/3927093.pdf. | |
[41] | 黄俊, 廖碧婷, 吴兑, 等, 2018. 广州近地面臭氧浓度特征及气象影响分析[J]. 环境科学学报, 38(1): 23-31. |
HUANG J, LIAO B T, WU D, et al., 2018. Guangzhou ground level ozone concentration characteristics and associated meteorological factors[J]. Acta Scientiae Circumstantiae, 38(1): 23-31. | |
[42] | 江梅, 邹兰, 李晓倩, 等, 2015. 我国挥发性有机物定义和控制指标的探讨[J]. 环境科学, 36(9): 3522-3532. |
JIANG M, ZOU L, LI X Q, et al., 2015. Definition and control indicators of volatile organic compounds in China[J]. Environmental Science, 36(9): 3522-3532. | |
[43] | 李婷苑, 陈靖扬, 翁佳烽, 等, 2022. 广东省臭氧污染天气型及其变化特征[J]. 中国环境科学, 42(5): 2015-2024. |
LI W T, CHEN J Y, WENG J F, et al., 2022. Ozone pollution synoptic patterns and their variation characteristics in Guangdong Province[J]. China Environmental Science, 42(5): 2015-2024. | |
[44] | 李彦希, 谢丹平, 黎玉清, 等, 2022. 粤港澳大湾区大气中硝基多环芳烃污染特征与风险评估[J]. 环境科学, 43(1): 93-101. |
LI Y X, XIE D P, LI Y Q, et al., 2022. Pollution characteristics and risk assessment of nitrated polycyclic aromatic hydrocarbons in the atmosphere of Guangdong-Hong Kong-Macao Greater Bay Area[J]. Environmental Science, 43(1): 93-101. | |
[45] | 李媛媛, 黄新皓, 2018. 美国臭氧污染控制经验及其对中国的启示[J]. 世界环境, (1): 24-27. |
LI Y Y, HUANG X H, 2018. The experience of ozone pollution control in the United States and its implications to China[J]. World Environment, (1): 24-27. | |
[46] | 李圳, 黄志炯, 王肖丽, 等, 2022. 前体物排放变化对珠江三角洲地区秋季臭氧污染演变的影响研究[J/OL]. 环境科学学报, 1-13. (2022-04-24) [2022-06-25]. https://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?flag=2&file_no=202202060000002&journal_id=hjkxxb. |
LI Z, HUANG Z J, WANG X L, et al., 2022. Effects of changes in precursor emissions on the evolution of ozone pollution in the Pearl River Delta region in autumn[J/OL]. Acta Scientiae Circumstantiae, 1-13. (2022-04-24) [2022-06-25]. https://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?flag=2&file_no=202202060000002&journal_id=hjkxxb. | |
[47] | 梁英振, 2013. 双城记: 旧金山四十年大气污染治理历程对北京治污的启示(上)[J]. 世界环境 (6): 22-28. |
LIANG Y Z, 2013. A 40 year tale of two polluted cities (Part 1)[J]. World Environment (6): 22-28. | |
[48] | 马超平, 林晓云, 2020. 世界三大湾区发展演化对粤港澳大湾区融合发展的启示[J]. 产业与科技论坛, 19(24): 56-58. |
MA C P, LIN X Y, 2020. The enlightenment of the development and evolution of the world’s three Bay areas on the integrated development of Guangdong, Hong Kong and Macao Bay Area[J]. Industrial & Science Tribune, 19(24): 56-58. | |
[49] | 戚凯, 蔺睿, 2019. 减碳背景下都市群的能源保障—以纽约州及纽约都市群为例[J]. 国际石油经济, 27(4): 24-34. |
QI K, LIN R, 2019. Carbon reduction and energy security of urban agglomerations: A case study of New York State and its metropolitan area[J]. International Petroleum Economics, 27(4): 24-34. | |
[50] | 日本环境省, 2015. 日本的大气环境对策[EB/OL]. (2015-10-13) [2022-08-05]. https://www.iges.or.jp/jp/china-city/pdf/20151013/Japan_taikikankyou_ch.pdf. |
Ministry of the Environment in Japan, 2015. Countermeasures for atmospheric environment in Japan[EB/OL]. (2015-10-13) [2022-08-05]. https://www.iges.or.jp/jp/china-city/pdf/20151013/Japan_taikikankyou_ch.pdf. | |
[51] | 沈劲, 陈皓, 钟流举, 2015. 珠三角秋季臭氧污染来源解析[J]. 环境污染与防治, 37(1): 25-30. |
SHEN J, CHEN H, ZHONG L J, 2015. Source analysis of autumn ozone pollution in Pearl River Delta[J]. Environmental Pollution & Control, 37(1): 25-30. | |
[52] | 沈劲, 黄晓波, 汪宇, 等, 2017. 广东省臭氧污染特征及其来源解析研究[J]. 环境科学学报, 37(12): 4449-4457. |
SHEN J, HUANG X B, WANG Y, et al., 2015. Study on ozone pollution characteristics and source apportionment in Guangdong Province[J]. Acta Scientiae Circumstantiae, 37(12): 4449-4457. | |
[53] | 魏巍贤, 王月红, 2017. 跨界大气污染治理体系和政策措施: 欧洲经验及对中国的启示[J]. 中国人口·资源与环境, 27(9): 6-14. |
WEI W X, WANG Y H, 2017. Transboundary air pollution governance and policy measures: European experiences and its enlightenment to China[J]. China population,resources and environment, 27(9): 6-14. | |
[54] | 王佳佳, 张凤仪, 荣冬梅, 2022. 日本东京湾区自然资源管理对我国粤港澳大湾区建设的启示[J]. 国土资源情报 (5): 8-13. |
WANG J J, ZHANG F Y, RONG D M, 2022. The experience and enlightenment of natural resource management in the Tokyo Bay Area of Japan to the construction of the Guangdong-Hong Kong-Macao Greater Bay Area of China[J]. Natural Resources Information (5): 8-13. | |
[55] | 王宁, 宁淼, 臧宏宽, 等, 2016. 日本臭氧污染防治经验及对我国的启示[J]. 环境保护, 44(16): 69-72. |
WANG N, NING M, ZANG H K, et al., 2016. Experience of prevention and control of ozone pollution in Japan and its enlightenment to China[J]. Environmental Protection, 44(16): 69-72. | |
[56] | 王书肖, 邱雄辉, 张强, 等, 2017. 我国人为源大气污染物排放清单编制技术进展及展望[J]. 环境保护, 45(21): 21-26. |
WANG S X, QIU X H, ZHANG Q, et al., 2017. Developing anthropogenic air pollutant emission inventory in China: Progress and outlook[J]. Environmental Protection, 45(21): 21-26. | |
[57] | 王晓彦, 刘冰, 丁俊男, 等, 2019. 环境空气质量预报业务体系建设要点探讨[J]. 环境与可持续发展, 44(1): 103-105. |
WANG X Y, LIU B, DING J N, et al., 2019. Discussion on the main points of the operational system construction of ambient air quality forecasting[J]. Environment and Sustainable Development, 44(1): 103-105. | |
[58] | 王旭豪, 2020. 美国地面层臭氧污染的治理历程及启示[J]. 世界环境 (5): 40-44. |
WANG X H, 2020. The process of ground-level ozone pollution treatment in the United States and its enlightenment[J]. Word Environment (5): 40-44. | |
[59] | 王雪松, 2002. 区域大气中臭氧和二次气溶胶的数值模拟研究[D]. 北京: 北京大学. |
WANG X S, 2002. Numerical simulation of ozone and secondary aerosols in regional atmosphere[D]. Beijing: Peking University. | |
[60] | 王占山, 车飞, 任春, 等, 2013. 美国环境空气质量标准制修订历程[J]. 环境工程技术学报, 3(3): 240-246. |
WANG Z S, CHE F, REN C, et al., 2013. Research on setting and amending process of the national ambient air quality standards of the United States[J]. Journal of Environmental Engineering Technology, 3(3): 240-246. | |
[61] | 王自发, 李丽娜, 吴其重, 等, 2008. 区域输送对北京夏季臭氧浓度影响的数值模拟研究[J]. 自然杂志, 30(4): 194-198. |
WANG Z F, LI L N, WU Q Z, et al., 2008. Simulation of the impacts of regional transport on summer ozone levels over Beijing[J]. Chinese Journal of Nature, 30(4): 194-198. | |
[62] | 修光利, 吴应, 王芳芳, 等, 2020. 我国固定源挥发性有机物污染管控的现状与挑战[J]. 环境科学研究, 33(9): 2048-2060. |
XIU G L, WU Y, WANG F F, et al., 2020. Current status and challenge for control of volatile organic compounds (VOCs) from stationary sources in China[J]. Research of Environmental Sciences, 33(9): 2048-2060. | |
[63] | 薛文博, 许艳玲, 史旭荣, 等, 2021. 我国大气环境管理历程与展望[J]. 中国环境管理, 13(5): 52-60. |
XUE W B, XU Y L, SHI X R, et al., 2021. Atmospheric environment management in China: Progress and outlook[J]. Chinese Journal of Environmental Management, 13(5): 52-60. | |
[64] | 杨昆, 黄一彦, 石峰, 等, 2018. 美日臭氧污染问题及治理经验借鉴研究[J]. 中国环境管理, 10(2): 85-90. |
YANG K, HUANG Y Y, SHI F, et al., 2018. Research on the ozone pollution and control measures in US and Japan[J]. Chinese Journal of Environmental Management, 10(2): 85-90. | |
[65] | 杨一鸣, 崔积山, 童莉, 等, 2017. 美国VOCs定义演变历程对我国VOCs环境管控的启示[J]. 环境科学研究, 30(3): 368-379. |
YANG Y M, CUI J S, TONG L, et al., 2017. Evolution of the definition of volatile organic compounds in the United States and its implications for China[J]. Research of Environmental Sciences, 30(3): 368-379. | |
[66] | 湛社霞, 2018. 粤港澳大湾区常规大气污染物变化趋势与影响因素研究[D]. 北京: 中国科学院大学. |
ZHAN S X, 2018. Study on change trend and influencing factors of conventional air pollutants in Guangdong Hong Kong Macao Great Bay Area[D]. Beijing: University of Chinese Academy of Sciences. | |
[67] | 赵伟, 高博, 刘明, 等, 2019. 气象因素对香港地区臭氧污染的影响[J]. 环境科学, 40(1): 55-66. |
ZHAO W, GAO B, LIU M, et al., 2019. Impact of meteorological factors on the ozone pollution in Hong Kong[J]. Environmental Science, 40(1): 55-66. | |
[68] | 赵伟, 高博, 卢清, 等, 2021. 2006-2019年珠三角地区臭氧污染趋势[J]. 环境科学, 42(1): 97-105. |
ZHAO W, GAO B, LU Q, et al., 2021. Ozone pollution trend in the Pearl River Delta Region during 2006-2019[J]. Environmental Science, 42(1): 97-105. | |
[69] | 中华人民共和国国家发展和改革委员会, 2017. 深化粤港澳合作推进大湾区建设框架协议[Z]. |
National Development and Reform Commission, 2017. To deepen cooperation between Guangdong, Hong Kong and Macao and promote the development of the Greater Bay Area[Z]. | |
[70] | 朱迪, 颜敏, 郑卓云, 等, 2017. 生活生产类产品VOCs含量限值法规与标准研究[J]. 中国环境管理, 9(5): 69-76. |
ZHU D, YAN M, ZHENG Z Y, et al., 2017. Study on the regulations and standards of VOCs content limits in industrial and consumer products[J]. Chinese Journal of Environmental Management, 9(5): 69-76. |
[1] | 何艳虎, 龚镇杰, 吴海彬, 蔡宴朋, 杨志峰, 陈晓宏. 粤港澳大湾区城市生态效率时空演变及影响因素[J]. 生态环境学报, 2023, 32(3): 469-480. |
[2] | 温丽容, 江明, 黄渤, 袁鸾, 周炎, 陆炜梅, 张莹, 刘明, 张力昀. 珠三角典型区域臭氧成因分析与VOCs来源解析——以中山为例[J]. 生态环境学报, 2023, 32(3): 500-513. |
[3] | 冯娴慧, 曾芝琳. 粤港澳大湾区植被覆盖特征与变化趋势的自然驱动力研究[J]. 生态环境学报, 2022, 31(9): 1713-1724. |
[4] | 阮惠华, 许剑辉, 张菲菲. 2001—2020年粤港澳大湾区植被和地表温度时空变化研究[J]. 生态环境学报, 2022, 31(8): 1510-1520. |
[5] | 韦家怡, 李铖, 吴志峰, 张莉, 吉冬青, 程炯. 粤港澳大湾区生态安全格局及重要生态廊道识别[J]. 生态环境学报, 2022, 31(4): 652-662. |
[6] | 王薇, 程歆玥. 合肥市不同功能街道峡谷PM2.5和PM10时空分布特征及影响因素分析[J]. 生态环境学报, 2022, 31(3): 524-534. |
[7] | 王一荃, 周璋, 李意德, 陈德祥, 张涛, 杨繁. 不同热带森林空气负离子浓度评价研究[J]. 生态环境学报, 2021, 30(5): 898-906. |
[8] | 王薇, 程歆玥, 胡春, 夏斯涵, 王甜. 城市街道峡谷PM2.5时空分布特征与空气质量评价——以合肥市长淮街道为例[J]. 生态环境学报, 2021, 30(11): 2157-2164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||