[1] |
ANDERSON J P E, DOMSCH K H, 1975. Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils[J]. Canadian Journal of Microbiology, 21(3): 314-322.
PMID
|
[2] |
BADALUCCO L, POMARE F, GREGO S, et al., 1994. Activity and degradation of streptomycin and cycloheximide in soil[J]. Biology and Fertility of Soils, 18: 334-340.
|
[3] |
BAKER B J, DE ANDA V, SEITZ K W, et al., 2020. Diversity, ecology and evolution of Archaea[J]. Nature Microbiology, 5(7): 887-900.
DOI
PMID
|
[4] |
BATJES N H, 2016. Harmonized soil property values for broad-scale modeling (WISE30sec) with estimates of global soil carbon stocks[J]. Geoderma, 269: 61-68.
|
[5] |
BENARROCH J M, GHOSH A, 2011. Antibiotic resistance in archaeal ribosomes[J]. Antibiotics, 5(12): 50-60.
|
[6] |
BERNARD L, BASILE‐DOELSCH I, DERRIEN D, et al., 2022. Advancing the mechanistic understanding of the priming effect on soil organic matter mineralization[J]. Functional Ecology, 36(6): 1355-1377.
|
[7] |
BINGEMAN C W, VARNER J E, MARTIN W P, 1953. The effect of the addition of organic materials on the decomposition of an organic soil[J]. Soil Science Society of America Journal, 17(1): 34-38.
|
[8] |
CARTER A P, CLEMONS J W M, BRODERSEN D E, et al., 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics[J]. Nature, 407(6802): 340-348.
|
[9] |
CHENG H T, ZHOU X H, DONG R S, et al., 2022. Priming of soil organic carbon mineralization and its temperature sensitivity in response to vegetation restoration in a karst area of Southwest China[J]. Science of the Total Environment, 851(Part 2): 158400.
|
[10] |
DAVIS B D, DAVIS K, 1956. Mechanism of action of streptomycin[J]. Journal of Biological Chemistry, 221(2): 567-583.
|
[11] |
DERRIEN D, PLAIN C, COURTY PE, et al., 2014. Does the addition of labile substrate destabilise old soil organic matter[J]. Soil Biology and Biochemistry, 76: 149-160.
|
[12] |
EMERSON J B, 2019. Soil viruses: A new hope[J]. mSystems, 4(3): e00120-19.
|
[13] |
GONZALEZ O, FONTANES V, RAYCHAUDHURI S, et al., 2009. Inhibition of cycloheximide-induced host cell translation enhances replication of encephalomyocarditis virus[J]. Journal of Virology, 83(13): 6947-6954.
|
[14] |
HAMER U, MARSCHNER B, 2005. Priming effects in soils after combined and repeated substrate additions[J]. Geoderma, 128(1-2): 38-51.
|
[15] |
HU L A, LI Q, YAN J H, et al., 2022. Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region[J]. Science of the Total Environment, 820: 153137.
|
[16] |
INGHAM E R, COLEMAN D, 1984. Effects of streptomycin, cycloheximide, fungizone, captan, carbofuran, cygon, and PCNB on soil microorganisms[J]. Microbial Ecology, 10: 345-358.
DOI
PMID
|
[17] |
JIANG B, SHEN Y X, LU X, et al., 2022. Toxicity assessment and microbial response to soil antibiotic exposure: Differences between individual and mixed antibiotics[J]. Environmental Science: Processes & Impacts, 24(3): 460-473.
|
[18] |
KOK D D, SCHERER L, DE VRIES W, et al., 2022. Relationships of priming effects with organic amendment composition and soil microbial properties[J]. Geoderma, 422: 115951.
|
[19] |
KUZYAKOV Y, FRIEDEL J K, STAHR K, 2000. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry, 32(11-12): 1485-1498.
|
[20] |
LIANG C, ZHU X F, 2021. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration[J]. Science China Earth Sciences, 64(4): 545-558.
|
[21] |
LIU X J A, FINLEY B K, MAU R L, et al., 2020. The soil priming effect: Consistent across ecosystems, elusive mechanisms[J]. Soil Biology and Biochemistry, 140: 107617.
|
[22] |
LLOYD J, TAYLOR J A, 1994. On the temperature dependence of soil respiration[J]. Functional Ecology, 8(3): 315-323.
|
[23] |
MAIRE V, ALVAREZ G, COLOMBET J, et al., 2013. An unknown oxidative metabolism substantially contributes to soil CO2 emissions[J]. Biogeosciences, 10: 1155-1167.
|
[24] |
OBRIG T G, CULP W J, MCKEEHAN W L, et al., 1971. The mechanism by which cycloheximide and related glutarimideantibiotics inhibit peptide synthesis on reticulocyte ribosomes[J]. Journal of Biological Chemistry, 246(1): 174-181.
|
[25] |
PAUL E A, 2015. Soil Microbiology, Ecology and Biochemistry[M]. Fourth Edition. Oxford: Academic Press: 41-73.
|
[26] |
SCHULZ F, ROUX S, PAEZ-ESPINO D, et al., 2020. Giant virus diversity and host interactions through global metagenomics[J]. Nature, 578(7795): 432-436.
|
[27] |
SHEN J, BARTHA R, 1997. Priming effect of glucose polymers in soil-based biodegradation tests[J]. Soil Biology and Biochemistry, 29(8): 1195-1198.
|
[28] |
TANG Q, LI Q, TONG L C, et al., 2023. Rhizospheric soil organic carbon accumulated but its molecular groups redistributed via rhizospheric soil microorganisms along multi-root Cerasus Cerasus humilis plantation chronosequence at the karst rocky desertification control area[J]. Environmental Science and Pollution Research, 30: 72993-73007.
|
[29] |
VAN HEMELRYCK H, GOVERS G, VAN OOST K, et al., 2011. Evaluating the impact of soil redistribution on the in situ mineralization of soil organic carbon[J]. Earth Surface Processes and Landforms, 36(4): 427-438.
|
[30] |
VERBRIGGHE N, MEERAN K, BAHN M, et al., 2022. Negative priming of soil organic matter following long-term in situ warming of sub-arctic soils[J]. Geoderma, 410: 115652.
|
[31] |
WANG S L, WANG H, 2015. Adsorption behavior of antibiotic in soil environment: A critical review[J]. Frontiers of Environmental Science & Engineering, 9: 565-574.
|
[32] |
WILSON D N, CATE J H, 2012. The structure and function of the eukaryotic ribosome[J]. Cold Spring Harbor Perspectives in Biology, 4(5): a011536.
|
[33] |
YAN J H, LI Q, HU L A, et al., 2022. Response of microbial communities and their metabolic functions to calcareous succession process[J]. Science of the Total Environment, 825: 154020.
|
[34] |
YIN H J, PHILLIPS R P, LIANG R B, et al., 2016. Resource stoichiometry mediates soil C loss and nutrient transformations in forest soils[J]. Applied Soil Ecology, 108: 248-257.
|
[35] |
ZHANG X W, HAN X Z, YU W T, et al., 2017. Priming effects on labile and stable soil organic carbon decomposition: Pulse dynamics over two years[J]. PLoS One, 12(9): e0184978.
|
[36] |
陈丽红, 何连生, 孟甜, 等, 2023. 环境中典型抗生素生态安全阈值[J]. 环境科学学报, 43(4): 497-510.
|
|
CHEN L H, HE L S, MENG T, et al., 2023. Ecological safety threshold of typical antibiotics in environment[J]. Acta Scientiae Circumstantiae, 43(4): 497-510.
|
[37] |
高博, 周怀东, 金洁, 等, 2013. 土壤和沉积物中不同形式有机质的表征[J]. 光谱学与光谱析, 33(5): 1194-1197.
|
|
GAO B, ZHOU H D, JIN J, et al., 2013. Characterization of the different organic matter from soils and sediments[J]. Spectroscopy and Spectral Analysis, 33(5): 1194-1197.
|
[38] |
龚子同, 张甘霖, 陈志诚, 等, 2002. 以中国土壤系统分类为基础的土壤参比[J]. 土壤通报, 33(1): 1-5.
|
|
GONG Z T, ZHANG G L, CHEN Z C, et al., 2002. Soil reference on the bases of Chinese soil taxonomy[J]. Chinese Journal of Soil Science, 33(1): 1-5.
|
[39] |
林启美, 1999. 选择性呼吸抑制技术在土壤细菌和真菌生物量测定中的应用[J]. 生态学报, 19(6): 921-926.
|
|
LIN Q M, 1999. The application of selective inhibition technique in the measurement of soil bacterial and fungal ratio[J]. Acta Ecologica Sinica, 19(6): 921-926.
|
[40] |
覃莹璐, 丁凯, 程亚平, 等, 2024. 广西恭城县河谷阶地地貌区岩溶塌陷地质灾害发育特征及形成机理[J]. 地下水, 46(3): 149-152.
|
|
QIN Y L, DING K, CHENG Y P, et al., 2024. Development characteristics and formation mechanism of karst collapse geological disasters in the river valley terrace landform area of Gongcheng County, Guangxi, China[J]. Ground Water, 46(3): 149-152.
|
[41] |
王金花, 朱鲁生, 王军, 等, 2011. 4种典型抗生素对土壤微生物呼吸的影响[J]. 农业环境科学学报, 30(11): 2232-2236.
|
|
WANG J H, ZHU L J, WANG J, et al., 2011. Effects of four typical antibiotics on soil microbial respiration[J]. Journal of Agro- Environment Science, 30(11): 2232-2236.
|
[42] |
魏圆云, 崔丽娟, 张曼胤, 等, 2019. 土壤有机碳矿化激发效应的微生物机制研究进展[J]. 生态学杂志, 38(4): 1202-1211.
|
|
WEI Y Y, CUI L J, ZHANG M Y, et al., 2019. Research advances in microbial mechanisms underlying priming effect of soil organic carbon mineralization[J]. Chinese Journal of Ecology, 38(4): 1202-1211.
|
[43] |
严嘉慧, 邱江梅, 李强, 2023. 岩溶断陷盆不同深度土壤微生物量碳氮对植被演替的响应[J]. 中国岩溶, 42(5): 1098-1105.
|
|
YAN J H, QIU J M, LI Q, 2023. Response of soil microbial biomass carbon and nitrogen to vegetation succession in different soil depths of karst fault basin[J]. Carsologica Sinica, 42(5): 1098-1105.
|
[44] |
赵东升, 张雪梅, 2021. 生态系统多稳态研究进展[J]. 生态学报, 41(16): 6314-6328.
|
|
ZHAO D S, ZHANG X M, 2021. Review of alternative stable states theory in ecosystem[J]. Acta Ecologica Sinica, 41(16): 6314-6328.
|
[45] |
赵方凯, 杨磊, 乔敏, 等, 2017. 土壤中抗生素的环境行为及分布特征研究进展[J]. 土壤, 49(3): 428-436.
|
|
ZHAO F K, YANG L, QIAO M, et al., 2017. Environmental behavior and distribution of antibiotics in soils: A review[J]. Soils, 49(3): 428-436.
|
[46] |
周椿富, 于锐, 王翔, 等, 2022. 抗生素对不同土壤中酶活性的影响[J]. 生态环境学报, 31(11): 2234-2241.
DOI
|
|
ZHOU C F, YU R, WANG X, et al., 2022. Effects of antibiotics on soil enzyme activities in different soils[J]. Ecology and Environmental Sciences, 31(11): 2234-2241.
|