生态环境学报 ›› 2024, Vol. 33 ›› Issue (6): 919-926.DOI: 10.16258/j.cnki.1674-5906.2024.06.009
潘光1,2(), 苗亚茹1, 谷树茂3, 唐厚全2, 毛书帅1, 张桂芹1, 闫学军2,*(
)
收稿日期:
2023-11-15
出版日期:
2024-06-18
发布日期:
2024-07-30
通讯作者:
* 闫学军。E-mail: 15806663698@163.com作者简介:
潘光(1968年生),男,研究员,主要从事环境监测研究工作。E-mail: 13969150728@163.com
基金资助:
PAN Guang1,2(), MIAO Yaru1, GU Shumao3, TANG Houquan2, MAO Shushuai1, ZHANG Guiqin1, YAN Xuejun2,*(
)
Received:
2023-11-15
Online:
2024-06-18
Published:
2024-07-30
摘要:
利用稀释通道采样法于2022年12月对济南市热电厂、热源厂、电厂3种类型冬季燃煤供暖典型企业废气细颗粒物进行采样,结合在线监测数据分析了SO2、NOx、PM2.5和NH3排放情况及PM2.5化学组分特征,并估算了济南市冬季3种类型供暖企业PM2.5主要组分排放量。结果表明:3种类型燃煤供暖企业SO2、NOx、PM2.5和NH3排放浓度均值范围分别为1.01—15.0、18.6—39.8、0.592—2.37、0.125—2.00 mg∙m−3,排放浓度差异较大,其中使用含硫率较低的燃煤供暖热源厂SO2排放浓度明显低于热电厂和电厂。热电厂和电厂SO2、NOx、PM2.5排放浓度均满足国家超低排放限值要求,热源厂满足山东省地方燃煤锅炉排放标准限值要求。PM2.5组分特征分析结果表明不同供暖类型企业排放主要组分存在较大差异,其中热电厂主要为SO42−(11.8%)、OC(17.1%),热源厂主要为Ca2+(11.6%)、OC(33.5%),电厂主要为SO42−(23.0%)、OC(18.6%),3类企业OC占比均远高于国内其他地区,这可能与本地调查企业煤质及环保设施运行工况等有关,热电厂和电厂高的SO42−占比与燃料含硫率较高有关。经估算,2022—2023年供暖季济南市3种类型供暖企业排放烟气PM2.5组分中水溶性离子总量最多,排放总量为3.74×104 kg,是碳组分的2.07倍,是无机元素的5.18倍,其中水溶性离子排放总量以电厂最多,排放量为3.01×104 kg,占比为80.5%;热源厂水溶性离子排放量是热电厂的4.14倍,无机元素排放量以电厂最高,排放量为4.96×103 kg,热源厂的水溶性离子(0.605 kg∙m−3烟气)、碳组分(0.715 kg∙m−3烟气)、无机元素(0.161 kg∙m−3烟气)均呈现高排放特征,建议进一步加强对冬季热源厂PM2.5中碳组分及水溶性离子的管控,关注脱硝设施的稳定运行。
中图分类号:
潘光, 苗亚茹, 谷树茂, 唐厚全, 毛书帅, 张桂芹, 闫学军. 济南市不同类型燃煤供暖企业废气组分特征及排放估算[J]. 生态环境学报, 2024, 33(6): 919-926.
PAN Guang, MIAO Yaru, GU Shumao, TANG Houquan, MAO Shushuai, ZHANG Guiqin, YAN Xuejun. Component Characteristics and Emission Estimation of Exhaust Gas from Different Types of Coal-fired Heating Enterprises in Ji’nan, China[J]. Ecology and Environment, 2024, 33(6): 919-926.
监测对象 | 锅炉类型及台数 | 废气处理工艺 | 燃料含硫率/% | 废气排放量/(m3·h−1) | 锅炉吨位/(t·h−1) |
---|---|---|---|---|---|
热电厂 1# | 循环流化床锅炉, 4台 | 低氮燃烧+SNCR+氨水 (13.0%) 脱硝; 电袋复合除尘; 石灰-石膏法脱硫 (两炉一塔, 7层喷淋单塔双循环); 湿电除尘 | 1.09 | 2.84×105 | 75.0 |
热源厂 2# | 循环流化床锅炉, 6台 | 低氮燃烧+SNCR+尿素脱硝; 布袋除尘; 石灰石-石膏法脱硫 (单塔双循环, 3+2层喷淋); 湿电除尘 | 0.400, 采用水煤浆 | 3.58×105 | 100 |
电厂 3# | 煤粉炉, 4台 | SCR+液氨脱硝 (3层催化剂); 电袋复合除尘器; 石灰石-石膏法脱硫 (一炉双塔, 4+3层喷淋); 湿电除尘 | 1.10 | 1.21×106 | 3000 |
表1 燃煤供暖企业基本情况
Table 1 Basic situation of coal-fired heating enterprises
监测对象 | 锅炉类型及台数 | 废气处理工艺 | 燃料含硫率/% | 废气排放量/(m3·h−1) | 锅炉吨位/(t·h−1) |
---|---|---|---|---|---|
热电厂 1# | 循环流化床锅炉, 4台 | 低氮燃烧+SNCR+氨水 (13.0%) 脱硝; 电袋复合除尘; 石灰-石膏法脱硫 (两炉一塔, 7层喷淋单塔双循环); 湿电除尘 | 1.09 | 2.84×105 | 75.0 |
热源厂 2# | 循环流化床锅炉, 6台 | 低氮燃烧+SNCR+尿素脱硝; 布袋除尘; 石灰石-石膏法脱硫 (单塔双循环, 3+2层喷淋); 湿电除尘 | 0.400, 采用水煤浆 | 3.58×105 | 100 |
电厂 3# | 煤粉炉, 4台 | SCR+液氨脱硝 (3层催化剂); 电袋复合除尘器; 石灰石-石膏法脱硫 (一炉双塔, 4+3层喷淋); 湿电除尘 | 1.10 | 1.21×106 | 3000 |
序号 | 组分 | 本研究 | 阳泉市 (王毓秀等, | 北京市 (马召辉等, | 烟台市 (温杰等, | 西安市 (夏永军等, | ||
---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | ||||||
1 | SO42− | 11.8±7.80 | 5.90±0.824 | 23.0±5.70 | 14.5 | 5.77 | 7.80 | 27.0 |
2 | Cl− | 4.51±0.741 | 1.98±1.68 | 4.76±2.13 | 1.02 | 1.85 | 9.30 | 7.88 |
3 | NH4+ | 3.31±0.272 | 3.37±0.723 | 13.1±3.33 | 6.89 | 0.577 | - | 13.8 |
4 | NO3− | 2.05±0.214 | 1.24±0.398 | 3.83±1.05 | 6.89 | 1.48 | 0.000 | - |
5 | Ca2+ | 1.68±0.433 | 11.6±0.434 | 3.91±0.321 | - | - | - | - |
6 | Mg2+ | 0.844±0.359 | 2.52±0.627 | 1.19±0.172 | - | - | - | - |
7 | K+ | 0.295±0.442 | 1.39±2.40 | 0.125±0.011 | - | - | - | - |
8 | Na+ | 0.273±0.284 | 0.315±0.191 | 5.25±1.24 | - | - | - | - |
离子合计 | 24.7±0.582 | 28.3±0.141 | 55.2±3.14 | - | - | - | - | |
1 | Al | 4.67±1.84 | 2.35±0.852 | 3.58±1.68 | 3.80 | 2.27 | 2.20 | 0.651 |
2 | Si | 1.94±0.555 | 0.222±0.064 | 3.03±0.321 | - | - | - | - |
3 | Fe | 1.51±0.204 | 0.611±0.347 | 1.69±1.36 | 1.04 | 0.864 | 1.60 | 4.69 |
4 | Ca | 1.50±0.282 | 3.68±1.31 | 0.222±0.222 | 14.3 | 3.00 | 3.60 | 4.16 |
5 | Mg | 0.616±0.253 | 0.494±0.288 | 0.418±0.392 | 1.15 | - | 0.200 | 0.118 |
6 | 其他元素占比 | 1.24±0.552 | 0.680±0.171 | 0.531±0.362 | 1.31 | 0.0850 | 0.500 | - |
无机元素合计 | 11.5±1.05 | 8.04±3.19 | 9.47±2.72 | - | - | - | - | |
1 | OC | 17.1±3.81 | 33.5±3.25 | 18.6±4.87 | 5.86 | 12.8 | 1.40 | 6.99 |
2 | EC | 0.487±0.387 | 0.011±0.001 | 0.010±0.000 | 5.03 | 0.396 | 0.100 | 1.05 |
碳组分合计 | 17.6±3.44 | 33.5±3.25 | 18.6±4.87 | - | - | - | - |
表2 废气PM2.5主要组分质量分数
Table 2 Mass fraction of main components in exhaust gas PM2.5 %
序号 | 组分 | 本研究 | 阳泉市 (王毓秀等, | 北京市 (马召辉等, | 烟台市 (温杰等, | 西安市 (夏永军等, | ||
---|---|---|---|---|---|---|---|---|
1# | 2# | 3# | ||||||
1 | SO42− | 11.8±7.80 | 5.90±0.824 | 23.0±5.70 | 14.5 | 5.77 | 7.80 | 27.0 |
2 | Cl− | 4.51±0.741 | 1.98±1.68 | 4.76±2.13 | 1.02 | 1.85 | 9.30 | 7.88 |
3 | NH4+ | 3.31±0.272 | 3.37±0.723 | 13.1±3.33 | 6.89 | 0.577 | - | 13.8 |
4 | NO3− | 2.05±0.214 | 1.24±0.398 | 3.83±1.05 | 6.89 | 1.48 | 0.000 | - |
5 | Ca2+ | 1.68±0.433 | 11.6±0.434 | 3.91±0.321 | - | - | - | - |
6 | Mg2+ | 0.844±0.359 | 2.52±0.627 | 1.19±0.172 | - | - | - | - |
7 | K+ | 0.295±0.442 | 1.39±2.40 | 0.125±0.011 | - | - | - | - |
8 | Na+ | 0.273±0.284 | 0.315±0.191 | 5.25±1.24 | - | - | - | - |
离子合计 | 24.7±0.582 | 28.3±0.141 | 55.2±3.14 | - | - | - | - | |
1 | Al | 4.67±1.84 | 2.35±0.852 | 3.58±1.68 | 3.80 | 2.27 | 2.20 | 0.651 |
2 | Si | 1.94±0.555 | 0.222±0.064 | 3.03±0.321 | - | - | - | - |
3 | Fe | 1.51±0.204 | 0.611±0.347 | 1.69±1.36 | 1.04 | 0.864 | 1.60 | 4.69 |
4 | Ca | 1.50±0.282 | 3.68±1.31 | 0.222±0.222 | 14.3 | 3.00 | 3.60 | 4.16 |
5 | Mg | 0.616±0.253 | 0.494±0.288 | 0.418±0.392 | 1.15 | - | 0.200 | 0.118 |
6 | 其他元素占比 | 1.24±0.552 | 0.680±0.171 | 0.531±0.362 | 1.31 | 0.0850 | 0.500 | - |
无机元素合计 | 11.5±1.05 | 8.04±3.19 | 9.47±2.72 | - | - | - | - | |
1 | OC | 17.1±3.81 | 33.5±3.25 | 18.6±4.87 | 5.86 | 12.8 | 1.40 | 6.99 |
2 | EC | 0.487±0.387 | 0.011±0.001 | 0.010±0.000 | 5.03 | 0.396 | 0.100 | 1.05 |
碳组分合计 | 17.6±3.44 | 33.5±3.25 | 18.6±4.87 | - | - | - | - |
项目 | 1# | 2# | 3# |
---|---|---|---|
水溶性离子排放量/kg | 52.0 | 1.10×103 | 2.13×103 |
碳组分排放量/kg | 37.0 | 1.30×103 | 7.16×102 |
无机元素排放量/kg | 23.9 | 2.91×102 | 3.51×102 |
水溶性离子单位烟气排放量/(kg·m−3) | 0.131 | 0.605 | 0.670 |
碳组分单位烟气排放量/(kg·m−3) | 0.094 | 0.715 | 0.226 |
无机元素单位烟气排放量/(kg·m−3) | 0.061 | 0.161 | 0.111 |
表3 济南市典型燃煤供暖企业2022年供暖期间烟气PM2.5中主要组分排放量估算
Table 3 Emission estimation of main components of PM2.5 in flue gas of typical coal-fired heating enterprises during heating period in Ji’nan City in 2022
项目 | 1# | 2# | 3# |
---|---|---|---|
水溶性离子排放量/kg | 52.0 | 1.10×103 | 2.13×103 |
碳组分排放量/kg | 37.0 | 1.30×103 | 7.16×102 |
无机元素排放量/kg | 23.9 | 2.91×102 | 3.51×102 |
水溶性离子单位烟气排放量/(kg·m−3) | 0.131 | 0.605 | 0.670 |
碳组分单位烟气排放量/(kg·m−3) | 0.094 | 0.715 | 0.226 |
无机元素单位烟气排放量/(kg·m−3) | 0.061 | 0.161 | 0.111 |
项目 | 热电厂 | 热源厂 | 电厂 | 合计 |
---|---|---|---|---|
水溶性离子排放量/kg | 1.42×103 | 5.88×103 | 3.01×104 | 3.74×104 |
碳组分排放量/kg | 1.01×103 | 6.95×103 | 1.01×104 | 1.81×104 |
无机元素排放量/kg | 6.54×102 | 1.61×103 | 4.96×103 | 7.23×103 |
合计 | 3.09×103 | 1.44×104 | 4.52×104 | 6.27×104 |
表4 济南市3种不同类型燃煤供暖企业2022年供暖期间烟气PM2.5中主要组分排放量估算
Table 4 Estimation of emissions of main components of PM2.5 in flue gas of 3 different types of coal-fired heating enterprises during heating period in Ji’nan City in 2022
项目 | 热电厂 | 热源厂 | 电厂 | 合计 |
---|---|---|---|---|
水溶性离子排放量/kg | 1.42×103 | 5.88×103 | 3.01×104 | 3.74×104 |
碳组分排放量/kg | 1.01×103 | 6.95×103 | 1.01×104 | 1.81×104 |
无机元素排放量/kg | 6.54×102 | 1.61×103 | 4.96×103 | 7.23×103 |
合计 | 3.09×103 | 1.44×104 | 4.52×104 | 6.27×104 |
[1] | LI B, SONG Y Q, ZHANG Q L, et al., 2018. Pollutants emission characteristics of an ultra-low coal-fired power unit[J]. Earth and Environmental Science, 159: 012014. |
[2] | HE C Y, HUANG G H, LIU L R, et al., 2021. Assessment and offset of the adverse effects induced by PM2.5 from coal-fired power plants in China[J]. Journal of Cleaner Production, 286: 125397. |
[3] | JIAO X M, LIU X, GU Y Z, et al., 2020. Satellite verification of ultra-low emission reduction effect of coal-fired power plants[J]. Atmospheric Pollution Research, 11(7): 1179-1186. |
[4] | LI Z, JIANG J K, MA Z Z, et al., 2017. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5from coal-fired power plants equipped with selective catalytic reduction (SCR)[J]. Environmental Pollution, 230: 655-662. |
[5] | MA Z Z, DENG J G, LI Z, et al., 2016. Characteristics of NOx emission from Chinese coal-fired power plants equipped with new technologies[J]. Atmospheric Environment, 131: 164-170. |
[6] | SHI K F, WU Y Z, LI L Y, 2021. Quantifying and evaluating the effect of urban expansion on the fine particulate matter (PM2.5) emissions from fossil fuel combustion in China[J]. Ecological Indicators, 125: 107541. |
[7] | SHON Z H, KANG M S, PARK G Y, et al., 2020. Impact of temporary emission reduction from a large-scale coal-fired power plant on air quality[J]. Atmospheric Environment: X, 5: 100056. |
[8] | SOFOWOTE U M, HEALY R M, SU Y, et al., 2021. Sources, variability and parameterizations of intra-city factors obtained from dispersion-normalized multi-time resolution factor analyses of PM2.5 in an urban environment[J]. Science of the Total Environment, 761: 143225. |
[9] | ZHANG S, LI D P, GE S S, et al., 2021. Rapid sulfate formation from synergetic oxidation of SO2 by O3 and NO2 under ammonia-rich conditions: Implications for the explosive growth of atmospheric PM2.5 during haze events in China[J]. Science of the Total Environment, 772: 144897. |
[10] | ZHANG Y, XIN X Y, HU D, et al., 2019. Study on stability and reliability of NOx ultra-low emission in coal-fired power plants in China[J]. E3S Web of Conferences, 120(1): 03002. |
[11] | ZHU M H, LAI J K, TUMULURI U, et al., 2017. Reaction pathways and kinetics for selective catalytic reduction (SCR) of acidic NOx emissions from power plants with NH3[J]. ACS Catalysis, 7(12): 8358-8361. |
[12] | 陈家杨, 夏建军, 单明, 等, 2019. 北方冬季供热对大气环境的影响[J]. 区域供热 (5): 20-30. |
CHEN J Y, XIA J Z, SHAN M, et al., 2019. Effect of heating on atmospheric environment in winter in northern China[J]. District Heating (5): 20-30. | |
[13] | 程钰, 刘婷婷, 赵云璐, 等, 2019. 京津冀及周边地区 “2+26” 城市空气质量时空演变与经济社会驱动机理[J]. 经济地理, 39(10): 183-192. |
CHENG Y, LIU T T, ZHAO Y L, et al., 2019. Spatiotemporal evolution and socioeconomic driving mechanism of air quality in Beijing-Tianjin-Hebei and surrounding areas (“2+26” cities)[J]. Economic Geography, 39(10): 183-192. | |
[14] | 丁咚, 祝婕, 田世英, 等, 2022. 基于第二次全国污染源普查数据的 “乌-昌-石” 区域生活源锅炉对大气环境影响分析[J]. 新疆环境保护, 44(1): 1-7. |
DING D, ZHU J, TIAN S Y, et al., 2022. Analysis of the influence of domestic boiler on atmospheric environment in Urumqi-Changji-Shihezi area based on the data of the second national survey of pollution sources[J]. Environmental Protection of Xinjiang, 44(1): 1-7. | |
[15] | 段雷, 马子轸, 李振, 等, 2015. 燃煤电厂排放细颗粒物的水溶性无机离子特征综述[J]. 环境科学, 36(3): 1117-1122. |
DUAN L, MA Z Z, LI Z, et al., 2015. Characteristics of water soluble inorganic ions in fine particles emitted from coal-fired power plants[J]. Environmental Science, 36(3): 1117-1122. | |
[16] | 冯小琼, 陈军辉, 熊文朋, 等, 2019. 四川省典型工业行业PM2.5成分谱分析[J]. 环境科学, 40(3): 1043-1051. |
FENG X Q, CHEN J H, XIONG W P, et al., 2019. Fine particulate matter source profile of typical industries in Sichuan Province[J]. Environmental Science, 40(3): 1043-1051. | |
[17] |
郭雯雯, 陈永金, 刘阁, 等, 2020. 2016-2019年长江中游城市群空气质量时空变化特征及影响因素分析[J]. 生态环境学报, 29(10): 2034-2044.
DOI |
GUO W W, CHEN Y J, LIU G, et al., 2020. Analysis on the characteristics and influencing factors of air quality of urban agglomeration in the middle reaches of the Yangtze River in 2016 to 2019[J]. Ecology and Environmental Sciences, 29(10): 2034-2044. | |
[18] | 胡月琪, 马召辉, 冯亚君, 等, 2015. 北京市燃煤锅炉烟气中水溶性离子排放特征[J]. 环境科学, 36(6): 1966-1974. |
HU Y Q, MA Z H, FENG Y J, et al., 2015. Emission characteristics of water-soluble ions in fumes of coal fired boilers in Beijing[J]. Environmental Science, 36(6): 1966-1974. | |
[19] | 环境保护部, 国家质量监督检验检疫总局, 2011. 火电厂大气污染物排放标准: GB 13223—2011[S]. 北京: 中国标准出版社. |
Ministry of Environmental Protection, General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China, 2011. Emission standards for air pollutants for thermal power plants: GB 13223—2011 [S]. Beijing: China Standards Press. | |
[20] | 李超, 李兴华, 段雷, 等, 2009. 燃煤工业锅炉可吸入颗粒物的排放特征[J]. 环境科学, 30(3): 650-655. |
LI C, LI X H, DUAN L, et al., 2009. Emission characteristics of PM10 from coal fired industrial boiler[J]. Environmental Science, 30(3): 650-655. | |
[21] | 李松, 郎建垒, 程水源, 等, 2016. 典型固定燃烧源颗粒物成分谱特征研究[J]. 安全与环境学报, 16(5): 312-319. |
LI S, LANG J L, CHENG S Y, et al., 2016. Analysis of the profiles characteristic features of the particulate matters in regard to the stationary coal combus tion sources[J]. Journal of Safety and Environment, 16(5): 312-319. | |
[22] | 梁云平, 王则武, 马召辉, 等, 2016. 燃煤锅炉湿法脱硫烟气中颗粒物排放特征[J]. 中国环境监测, 32(5): 35-39. |
LIANG Y P, WANG Z W, MA Z H, et al., 2016. Study on the particle matter emission characteristics of flue gas from coal-fired boilers equipped with wet desulphurization[J]. Environmental Monitoring in China, 32(5): 35-39. | |
[23] | 刘素, 马彤, 杨艳, 等, 2019. 太原市冬季PM2.5化学组分特征与来源解析[J]. 环境科学, 40(4): 1537-1544. |
LIU S, MA T, YANG Y, et al., 2019. Chemical composition characteristics and source apportionment of PM2.5 during winter in Taiyuan[J]. Environmental Science, 40(4): 1537-1544. | |
[24] | 刘艳梅, 闫静, 徐文帅, 等, 2020. 超低排放改造后燃煤电厂常规大气污染物排放特征[J]. 环境科学学报, 40(6): 1967-1975. |
LIU Y M, YAN J, XU W S, et al., 2020. Emission characteristics of conventional air pollutants in coal-fired power plants after ultra-low emission transformation[J]. Acta Scientiae Circumstantiae, 40(6): 1967-1975. | |
[25] | 陆炳, 孔少飞, 韩斌, 等, 2011. 燃煤锅炉排放颗粒物成分谱特征研究[J]. 煤炭学报, 36(11): 1928-1933. |
LU B, KONG S F, HAN B, et al., 2011. Source profile of TSP and PM10 from coal-fired boilers[J]. Journal of China Coal Science, 36(11): 1928-1933. | |
[26] | 吕柏霖, 杨乃旺, 2021. 西安市集中供热燃煤锅炉排放PM2.5和PM10组分特征[J]. 环保科技, 27(5): 37-42. |
LÜ B L, YANG N W, 2021. Composition characteristics of PM2.5 and PM10 from coal fired central heating boilers in Xi’an[J]. Environmental Protection Technology, 27(5): 37-42. | |
[27] | 吕武学, 于燕飞, 曲保忠, 等, 2020. 燃煤电厂脱硫废水零排放技术现状与发展[J]. 洁净煤技术, 26(4): 11-20. |
LÜ W X, YU Y F, QU B Z, et al., 2020. Present situation and development of zero-discharge technology for desulfurization wastewater in coal-fired power plants[J]. Clean Coal Technology, 26(4): 11-20. | |
[28] | 马召辉, 梁云平, 张健, 等, 2015. 北京市典型排放源PM2.5成分谱研究[J]. 环境科学学报, 35(12): 4043-4052. |
MA Z H, LIANG Y P, ZHANG J, et al., 2015. PM2.5 profiles of typical sources in Beijing[J]. Acta Scientiae Circumstantiae, 35(12): 4043-4052. | |
[29] | 裴冰, 2010. 固定源排气中可凝结颗粒物排放与测试探讨[J]. 中国环境监测, 26(6): 9-12. |
PEI B, 2010. Discussion on the emission issues and testing of condensable particulate matter from exhaust gas of stationary source[J]. Environmental Monitoring in China, 26(6): 9-12. | |
[30] | 齐堃, 戴春岭, 冯媛, 等, 2015. 石家庄市PM2.5工业源成分谱的建立及分析[J]. 河北工业科技, 32(1): 78-84. |
QI K, DAI C L, FENG Y, et al., 2015. Establishment and analysis of PM2.5 industrial source profiles in Shijiazhuang City[J]. Hebei Journal of Industrial Science and Technology, 32(1): 78-84. | |
[31] | 山东省环境保护厅, 山东省质量技术监督局, 2018. 锅炉大气污染物排放标准: DB37/ 2374—2018[S]. http://sthj.shandong.gov.cn/zwgk/gsgg/201807/t20180711_1400335.html. |
Environmental Protection Department of Shandong Province, Shandong Provincial Bureau of Quality and Technical Supervision, 2018. Emission standard of air pollutants for boilers: DB37/ 2374—2018[S]. http://sthj.shandong.gov.cn/zwgk/gsgg/201807/t20180711_1400335.html. | |
[32] | 田莎莎, 张显, 卞思思, 等, 2019. 沈阳市PM2.5污染组分特征及其来源解析[J]. 中国环境科学, 39(2): 487-496. |
TIAN S S, ZHANG X, BIAN S S, et al., 2019. Characteristics of PM2.5 pollution components and their sources in Shenyang[J]. China Environmental Science, 39(2): 487-496. | |
[33] | 王成, 闫雨龙, 谢凯, 等, 2020. 阳泉市秋冬季PM2.5化学组分及来源分析[J]. 环境科学, 41(3): 1036-1044. |
WANG C, YAN Y L, XIE K, et al., 2020. Analysis of chemical components and sources of PM2.5 during autumn and winter in Yangquan City[J]. Environmental Science, 41(3): 1036-1044. | |
[34] | 王圣, 朱法华, 王慧敏, 等, 2011. 基于实测的燃煤电厂细颗粒物排放特性分析与研究[J]. 环境科学学报, 31(3): 630-635. |
WANG S, ZHU F H, WANG H M, et al., 2011. Fine particle emission characteristics from coal-fired power plants based on field tests[J]. Acta Scientiae Circumstantiae, 31(3): 630-635. | |
[35] | 王书肖, 赵秀娟, 李兴华, 等, 2009. 工业燃煤链条炉细粒子排放特征研究[J]. 环境科学, 30(4): 963-968. |
WANG S X, ZHAO X J, LI X H, et al., 2009. Emission characteristics of fine particles from grate firing boilers[J]. Environmental Science, 30(4): 963-968. | |
[36] | 王毓秀, 彭林, 王燕, 等, 2016. 电厂燃煤烟尘PM2.5中化学组分特征[J]. 环境科学, 37(1): 60-65. |
WANG Y X, PENG L, WANG Y, et al., 2016. Characteristics of chemical components in PM2.5 from the coal dust of power plants[J]. Environmental Science, 37(1): 60-65. | |
[37] | 温杰, 李博, 张秀丽, 等, 2019. 烟台市典型工业排放PM2.5源成分谱特征研究[J]. 环境科学研究, 32(8): 1333-1339. |
WEN J, LI B, ZHANG X L, et al., 2019. PM2.5 profiles of typical industrial emissions in Yantai City, China[J]. Research of Environmental Sciences, 32(8): 1333-1339. | |
[38] | 夏永军, 黄学敏, 宋文斌, 等, 2017. 西安市燃煤锅炉排放颗粒物中PM2.5和PM10的组分研究[J]. 环境污染与防治, 39(2): 207-211. |
XIA Y J, HUANG X M, SONG W B, et al., 2017. Components of PM2.5 and PM10 in coal fired boiler particulate matter of Xi’an city[J]. Prevention and Control of Environmental Pollution, 39(2): 207-211. | |
[39] | 徐健, 黄成, 李莉, 等, 2018. 长三角地区中小燃煤锅炉PM2.5成分谱特征[J]. 环境科学, 39(4): 1493-1501. |
XU J, HUANG C, LI L, et al., 2018. Chemical composition characteristics of PM2.5 emitted by medium and small capacity coal-fired boilers in the Yangtze River delta region[J]. Environmental Science, 39(4): 1493-1501. | |
[40] | 徐媛, 孙韧, 高翔, 等, 2016. 供热锅炉颗粒物排放特征实测研究[J]. 环境科学与技术, 39(5): 70-74. |
XU Y, SUN R, GAO X, et al., 2016. Experiment study on emission characteristics of particle from heat-only boilers[J]. Environmental Science & Technology, 39(5): 70-74. | |
[41] | 赵雪, 程茜, 侯俊先, 等, 2018. 脱硫脱硝行业2017年发展综述[J]. 中国环保产业 (7): 10-24. |
ZHAO X, CHENG Q, HOU J X, et al., 2018. Development report on desulfurization and denitration industry in 2017[J]. China Environmental Protection Industry (7): 10-24. |
[1] | 魏代晓, 门亚泰, 李尧捷, 徐铭忆, 蔡文秀, 沈国锋. 生物质颗粒燃料取暖的环境健康效益及经济成本分析[J]. 生态环境学报, 2024, 33(6): 927-934. |
[2] | 李慧, 邓佳伟, 李亚鑫, 母滢琦. 秦岭北麓典型流域径流对气候和土地利用变化的响应——以灞河流域为例[J]. 生态环境学报, 2024, 33(5): 802-811. |
[3] | 何沐全, 石艳军, 王晨茜, 罗祖红, 张少通. 广东省植被生态质量演变与气象条件贡献分析[J]. 生态环境学报, 2024, 33(5): 679-688. |
[4] | 何杰, 李宗明, 杨正宇, 沈健林, 刘国平, 吴金水. 牛粪化肥配施对双季稻田CH4和N2O排放的影响[J]. 生态环境学报, 2024, 33(4): 573-584. |
[5] | 张淼, 王桂霞, 王昌伟, 贺艳云, 许艳芳, 李琪, 许杨, 张俊骁, 张桂芹. 济南市区黑碳污染变化特征及来源解析[J]. 生态环境学报, 2024, 33(4): 560-572. |
[6] | 吕金岭, 尤克, 何斌, 刘霜, 梁少民, 郭战玲. 玉米基肥期农田土壤氨挥发量与近地表氨浓度相关性研究[J]. 生态环境学报, 2024, 33(3): 399-407. |
[7] | 张桂芹, 王云博, 杜琪玥, 闫怀忠, 李思源, 石敬华, 刘仕杰, 朱文祺, 孙友敏. 济南市柴油型移动源排放颗粒物中碳组分特征和排放量估算[J]. 生态环境学报, 2024, 33(3): 408-417. |
[8] | 杨纯, 蒋恬田, 李欣, 李小马. 绿化覆盖率对城市绿地破碎度与地表温度的关系的影响[J]. 生态环境学报, 2024, 33(2): 242-248. |
[9] | 张杨, 徐永明, 卢响军, 莫亚萍, 吉蒙, 祝善友. 基于OCO-2遥感数据的新疆维吾尔自治区大气XCO2空间化研究[J]. 生态环境学报, 2024, 33(2): 231-241. |
[10] | 蒋伯琪, 浮天, 程昳璇, 苏枞枞, 沈建东, 于谨铖, 于兴娜. 沈阳市臭氧污染特征及其影响因素[J]. 生态环境学报, 2024, 33(1): 72-79. |
[11] | 王传扬, 张小玲, 兰琳惠, 潘婕. 2022年夏季高温干旱对四川盆地污染物浓度变化的影响分析[J]. 生态环境学报, 2024, 33(1): 80-91. |
[12] | 袁茜, 傅开道, 陶雨晨, 张年, 杨丽莎. 澜沧江(云南段)水-气界面氧化亚氮释放通量时空分布特征及其影响因素研究[J]. 生态环境学报, 2024, 33(1): 54-61. |
[13] | 苗敬杰, 张开, 孟钰博, 王乃加, 李海楠, 郭康军, 张君, 高西宁, 王立为. 覆膜垄作对旱地雨养马铃薯田N2O排放的影响[J]. 生态环境学报, 2024, 33(1): 62-71. |
[14] | 李姝亭, 胡冠九, 罗小三. 大气环境中全(多)氟烷基化合物(PFASs)的来源、分布及健康风险研究进展[J]. 生态环境学报, 2023, 32(12): 2103-2114. |
[15] | 范清瑶, 夏卫生, 莫成鑫, 周浩. 基于“三生空间”的土地利用转型时空演变及其碳排放效应研究——以福建省为例[J]. 生态环境学报, 2023, 32(12): 2183-2193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||