生态环境学报 ›› 2024, Vol. 33 ›› Issue (4): 633-644.DOI: 10.16258/j.cnki.1674-5906.2024.04.014
收稿日期:
2023-09-15
出版日期:
2024-04-18
发布日期:
2024-05-31
通讯作者:
*高丽。E-mail: ligao117@126.com作者简介:
姜晓静(2000年生),女,硕士研究生,主要研究方向为滨海湿地生态与环境。E-mail: 3307260336@qq.com
基金资助:
JIANG Xiaojing(), XIE Jiahui, MA Kai, GAO Li*(
)
Received:
2023-09-15
Online:
2024-04-18
Published:
2024-05-31
摘要:
沉积物是维持有害藻华的重要营养来源,其中解磷菌对水体磷的循环起着关键的驱动作用,研究藻华暴发过程中解磷菌与沉积物磷释放的关系具有重要意义。为探讨解磷菌对瀉湖沉积物磷释放以及绿潮硬毛藻(Chaetomorpha sp.)生长的影响,以前期从天鹅湖分离的2株解有机磷细菌(OPB)(Geobacillus stearothermophilus,Bacillus pumilus)和藻华区沉积物为试材进行室内模拟试验,分析了不同OPB接种条件下上覆水总磷(TP)、可溶性磷(SRP)、硬毛藻生物量以及藻体磷含量等参数的差异,比较了试验前后沉积物碱性磷酸酶活性(APA)及磷赋存形态的变化。结果表明:试验期间不同处理水体TP和SRP含量的变幅分别为0.018-0.621 mg·L-1和0.004-0.376 mg·L-1,解磷菌接种明显促进了沉积物磷的释放。无藻条件下,菌液量对水体TP和SRP含量具有极显著影响;各接种组TP含量均表现为高菌量大于低菌量处理,SRP含量在G. stearothermophilus接种处理的高低菌量间差异较大。试验结束时,接种组沉积物中APA均高于未接种组(差值为0.01-0.81 μmol·g-1·h-1),表明OPB可通过分泌碱性磷酸酶等来促进沉积物磷的释放。在大多数处理中,沉积物NH4Cl-P和NaOH-P含量均较初始值有所降低。在G. stearothermophilus低菌量接种处理中,硬毛藻生长较好,藻体磷含量和磷富集量显著高于其余处理。研究表明,OPB接种能明显促进天鹅湖沉积物磷的释放以及硬毛藻生长,其中G. stearothermophilus具有较强的碱性磷酸酶分泌能力,且对藻华区沉积物具有较强的解磷能力。从沉积物、解磷菌和大型藻华之间的相互作用关系来看,解磷菌对于近海水体绿潮硬毛藻暴发的影响不容忽视。
中图分类号:
姜晓静, 谢嘉慧, 马凯, 高丽. 天鹅湖沉积物中解磷菌的解磷能力及其对硬毛藻生长的影响[J]. 生态环境学报, 2024, 33(4): 633-644.
JIANG Xiaojing, XIE Jiahui, MA Kai, GAO Li. Phosphate Solubilizing Ability of Phosphate-Solubilizing Bacteria in Sediments and Its Effects on the Growth of Chaetomorpha sp. in Swan Lagoon[J]. Ecology and Environment, 2024, 33(4): 633-644.
指标 | 误差来源 | 自由度 | 均方 | F | p |
---|---|---|---|---|---|
TP | 菌株 | 1 | 0.001 | 1.73 | 0.213 |
菌液量 | 2 | 0.023 | 62.4 | 0.000 | |
菌株×菌液量 | 2 | 0.001 | 3.49 | 0.064 | |
误差 | 12 | 0.000 | ‒ | ‒ | |
SRP | 菌株 | 1 | 0.002 | 5.12 | 0.043 |
菌液量 | 2 | 0.007 | 18.1 | 0.000 | |
菌株×菌液量 | 2 | 0.001 | 2.23 | 0.150 | |
误差 | 12 | 0.000 | ‒ | ‒ |
表1 两因素方差分析检验菌株和菌液量对上覆水磷含量的影响(无藻条件)
Table 1 Two-way ANOVA for effects of OPB strain and bacteria amount on phosphorus concentration in overlying water under the conditions without algae
指标 | 误差来源 | 自由度 | 均方 | F | p |
---|---|---|---|---|---|
TP | 菌株 | 1 | 0.001 | 1.73 | 0.213 |
菌液量 | 2 | 0.023 | 62.4 | 0.000 | |
菌株×菌液量 | 2 | 0.001 | 3.49 | 0.064 | |
误差 | 12 | 0.000 | ‒ | ‒ | |
SRP | 菌株 | 1 | 0.002 | 5.12 | 0.043 |
菌液量 | 2 | 0.007 | 18.1 | 0.000 | |
菌株×菌液量 | 2 | 0.001 | 2.23 | 0.150 | |
误差 | 12 | 0.000 | ‒ | ‒ |
[1] | CAO X Y, SONG C L, ZHOU Y Y, 2010. Limitations of using extracellular alkaline phosphatase activities as a general indicator for describing P deficiency of phytoplankton in Chinese shallow lakes[J]. Journal of Applied Phycology, 22: 33-41. |
[2] | CAVALCANTE H, ARAÚJO F, NOYMA N P, et al., 2018. Phosphorus fractionation in sediments of tropical semiarid reservoirs[J]. Science of The Total Environment, 619-620: 1022-1029. |
[3] | CHEN Y C, CHEN Q, ZHANG D G, et al., 2022. Variation in sediment available-phosphorus in Dianchi Lake and its impacts on algal growth[J]. International Journal of Environmental Research and Public Health, 19(22): 14689. |
[4] | DING Y, WANG H, ZHANG Q, et al., 2022. Effects of dissolved oxygen on phosphorus transformation in reservoir sediments: Novel insights on bacterial community and functional genes[J]. Journal of Soils and Sediments, 22(7): 2094-2104. |
[5] |
DITTRICH M, CHESNYUK A, GUDIMOV A, et al., 2013. Phosphorus retention in a mesotrophic lake under transient loading conditions: Insights from a sediment phosphorus binding form study[J]. Water Research, 47(3): 1433-1447.
DOI PMID |
[6] | GAO L, ZHANG L H, HOU J Z, et al., 2013. Decomposition of macroalgal blooms influences phosphorus release from the sediments and implications for coastal restoration in Swan Lake, Shandong, China[J]. Ecological Engineering, 60: 19-28. |
[7] | GAO L, ZHANG L H, SHAO H B, 2014. Phosphorus bioavailability and release potential risk of the sediments in the coastal wetland: A case study of Rongcheng Swan Lake, Shandong, China[J]. CLEAN-Soil, Air, Water, 42(7): 963-972. |
[8] | GAO Y X, ZHU G W, PAERL H W, et al., 2020. A study of bioavailable phosphorus in the inflowing rivers of Lake Taihu, China[J]. Aquatic Sciences, 82(1): 1-10. |
[9] | HUANG W, CAO X, HUANG D Y, et al., 2019. Phosphorus characteristics and microbial community in the sediment-water-algal system during algal growth[J]. Environmental Science and Pollution Research, 26(30): 31414-31421. |
[10] |
HU C Y, YANG X L, DONG J Y, et al., 2018. Heavy metal concentrations and chemical fractions in sediment from Swan Lagoon, China: Their relation to the physiochemical properties of sediment[J]. Chemosphere, 209: 848-856.
DOI PMID |
[11] | JIN Z X, LIAO P, JAISI D P, et al., 2023. Suspended phosphorus sustains algal blooms in a dissolved phosphorus-depleted lake[J]. Water Research, 241: 120134. |
[12] |
KWON H K, OH S J, YANG H S, 2011. Ecological significance of alkaline phosphatase activity and phosphatase-hydrolyzed phosphorus in the northern part of Gamak Bay, Korea[J]. Marine Pollution Bulletin, 62(11): 2476-2482.
DOI PMID |
[13] | LENZI M, LEPORATTI-PERSIANO M, GENNARO P, 2020. C, N, P, S content of the Chlorophyta Chaetomorpha linum (Müller) Kützing in a vast high density mat of a Mediterranean non-tidal lagoon[J]. Knowledge & Management of Aquatic Ecosystems, 421: 38. |
[14] | LI H F, LI Z J, QU J H, et al., 2018. Combined effects of phosphate- solubilizing bacterium XMT-5 (Rhizobium sp.) and submerged macrophyte Ceratophyllum demersum on phosphorus release in eutrophic lake sediments[J]. Environmental Science and Pollution Research, 25(19): 18990-19000. |
[15] | LI H, SONG C L, YANG L, et al., 2021. Phosphorus supply pathways and mechanisms in shallow lakes with different regime[J]. Water Research, 193: 116886. |
[16] | LI Y, ZHANG J J, ZHANG J Q, et al., 2019. Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a Eutrophic Lake[J]. International Journal of Environmental Research and Public Health, 16(12): 2141. |
[17] | LI Y, YU X T, ZHENG J R, et al., 2022. Diversity and phosphate solubilizing characteristics of cultivable organophosphorus-mineralizing bacteria in the sediments of Sancha Lake[J]. International Journal of Environmental Research and Public Health, 19(4): 2320. |
[18] | MAITRA N, MANNA S K, SAMANTA S, et al., 2015a. Ecological significance and phosphorus release potential of phosphate solubilizing bacteria in freshwater ecosystems[J]. Hydrobiologia, 745(1): 69-83. |
[19] | MAITRA N, BANDOPADHYAY C, SAMANTA S, et al., 2015b. Isolation, identification and efficacy of inorganic phosphate-solubilizing bacteria from oxbow lakes of West Bengal, India[J]. Geomicrobiology Journal, 32(8): 751-758. |
[20] |
MIRZA-ESMAEILI F, MORTAZAVI M S, DEHGHAN-BANADAKI A, et al., 2021. Algal blooms historical outbreaks in the northern coastal waters of the Persian Gulf and Oman Sea (1980-2015)[J]. Environmental Monitoring and Assessment, 193(10): 648.
DOI PMID |
[21] | QU J H, LI H F, CHEN N, et al., 2013. Biogeochemical function of phosphorus-solubilising bacteria on cycling of phosphorus at the water-sediment interface under laboratorial simulated conditions[J]. International Journal of Environment and Pollution, 52(1-2): 104-116. |
[22] | RAJ K D, MATHEWS G, OBURA D O, et al., 2020. Low oxygen levels caused by Noctiluca scintillans bloom kills corals in Gulf of Mannar, India[J]. Scientific Reports, 10(1): 22133. |
[23] | SAHA A, JESNA P K, RAMYA V L, et al., 2022. Phosphorus fractions in the sediment of a tropical reservoir, India: Implications for pollution source identification and eutrophication[J]. Environmental Geochemistry and Health, 44(3): 749-769. |
[24] | TENG Z D, CHEN Z P, ZHANG Q, et al., 2019. Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soils of the Yeyahu Wetland in Beijing, China[J]. Environmental Science and Pollution Research, 26: 33976-33987. |
[25] | TU L Y, JAROSCH K A, SCHNEIDER T, et al., 2019. Phosphorus fractions in sediments and their relevance for historical lake eutrophication in the Ponte Tresa basin (Lake Lugano, Switzerland) since 1959[J]. Science of the Total Environment, 685: 806-817. |
[26] | WANG S R, JIN X C, ZHAO H C, et al., 2006. Phosphorus fractions and its release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area in China[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 273(1-3): 109-116. |
[27] |
WANG S R, JIAO L X, YANG S W, et al., 2012. Effects of organic matter and submerged macrophytes on variations of alkaline phosphatase activity and phosphorus fractions in lake sediment[J]. Journal of Environmental Management, 113: 355-360.
DOI PMID |
[28] | WANG Y, SHEN Z Y, 2011. Release of phosphorus in sediments from a tributary of the Three Gorges Reservoir (China) with phosphate- solubilising bacteria[J]. International Journal of Environment and Pollution, 45(1-3): 145-156. |
[29] | WU Y H, WEN Y J, ZHOU J X, et al., 2014. Phosphorus release from lake sediments: Effects of pH, temperature and dissolved oxygen[J]. KSCE Journal of Civil Engineering, 18(1): 323-329. |
[30] | XIE J H, SHAO X L, MA K, et al., 2024. Algal growth and alkaline phosphatase activity of ‘green tide’ Chaetomorpha linum in response to phosphorus stress[J]. Journal of Marine Systems, 241: 103912. |
[31] | XU J, YIN K D, LEE J H W, et al., 2010. Long-term and seasonal changes in nutrients, phytoplankton biomass, and dissolved oxygen in Deep Bay, Hong Kong[J]. Estuaries and Coasts, 33: 399-416. |
[32] |
YANG L, LIU Y Q, CAO X Y, et al., 2017. Community composition specificity and potential role of phosphorus solubilizing bacteria attached on the different bloom-forming cyanobacteria[J]. Microbiological Research, 205: 59-65.
DOI PMID |
[33] | YIN H B, YIN P, YANG Z, 2023. Seasonal sediment phosphorus release across sediment-water interface and its potential role in supporting algal blooms in a large shallow eutrophic lake (Lake Taihu, China)[J]. Science of The Total Environment, 896: 165252. |
[34] |
ZHANG R Y, WU F C, LIU C Q, et al., 2008. Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China[J]. Environmental Pollution, 152(2): 366-372.
PMID |
[35] | ZHANG T X, WANG J Y, ZHOU S Q, et al., 2023. Spatio-temporal dynamic diversity of bacterial alkaline phosphatase phoD gene and its environmental drivers in sediments during algal blooms: A case study of shallow Lake Taihu[J]. Journal of Environmental Management, 336: 117595. |
[36] | ZHANG X M, ZHOU Y, LIU P, et al., 2014. Temporal pattern in the bloom-forming macroalgae Chaetomorpha linum and Ulva pertusa in seagrass beds, Swan Lake lagoon, North China[J]. Marine Pollution Bulletin, 89(1-2): 229-238. |
[37] | ZHAO Y, WANG Z H, CHEN M Y, et al., 2023. Effects of nitrogen to phosphorus ratios on algal growth and arsenate metabolism by Microcystis aeruginosa with dissolved organic phosphorus and nitrate as nutrients[J]. Algal Research, 69: 102922. |
[38] | ZHOU C, SONG C L, HUANG D Z, et al., 2011. Isolation and characterization of organic phosphorus-mineralizing bacteria in sediment of a Chinese large shallow eutrophic lake (Lake Taihu)[J]. Geomicrobiology Journal, 28(8): 660-666. |
[39] | 池景良, 郝敏, 王志学, 等, 2021. 解磷微生物研究及应用进展[J]. 微生物学杂志, 41(1): 1-7. |
CHI J L, HAO M, WANG Z X, et al., 2021. Advances in research and application of phosphorus-solubilizing microorganism[J]. Journal of Microbiology, 41(1): 1-7. | |
[40] | 郭晨辉, 刘利军, 孙晓杰, 等, 2021. 表层沉积物中磷释放对水体水质影响[J]. 环境保护科学, 47(3): 164-170. |
GUO C H, LIU L J, SUN X J, et al., 2021. The influence of phosphorus release from surface sediments on water quality[J]. Environmental Protection Science, 47(3): 164-170. | |
[41] | 胡百文, 2014. 解磷菌的筛选及生态特性研究[D]. 大连: 大连海洋大学:11-15. |
HU B W, 2014. Research on screening of phosphate-solubilizing bacteria and their ecological characteristics[D]. Dalian: Dalian Ocean University:11-15. | |
[42] | 何力为, 周学进, 吉磊, 等, 2017. 洱海表层沉积物中磷形态分布及pH、DO影响的分析[J]. 环境保护科学, 43(3): 106-111. |
HE L W, ZHOU X J, JI L, et al., 2017. Analysis of phosphorus form distribution and influence by pH and DO in the surface sediment of Erhai Lake[J]. Environmental Protection Science, 43(3): 106-111. | |
[43] | 李莹杰, 2016. 长江中下游湖泊沉积物中磷的GIS分布特征及解磷菌的研究[D]. 武汉: 武汉理工大学:45-50. |
LI Y J, 2016. Studies on characteristics of phosphorus GIS distribution and phosphorus-dissolving microorganism in sediments of lakes in the middle and lower reaches of the Yangtze River[D]. Wuhan: Wuhan University of Technology:45-50. | |
[44] | 卢艳敏, 张靖天, 张新波, 等, 2020. 巢湖沉积物中有机磷的生物可利用性研究[J]. 环境工程技术学报, 10(2): 197-204. |
LU Y M, ZHANG J T, ZHANG X B, et al., 2020. Bioavailability of organic phosphorus in Lake Chaohu sediments[J]. Journal of Environmental Engineering Technology, 10(2): 197-204. | |
[45] | 马凯, 谢嘉慧, 魏烈群, 等, 2023. 有机解磷菌对天鹅湖沉积物中磷释放的影响[J]. 农业环境科学学报, 42(7): 1576-1584. |
MA K, XIE J H, WEI L Q, et al., 2023. Effect of organic phosphate-solubilizing bacteria on phosphorus release from sediments in Swan Lagoon[J]. Journal of Agro-Environment Science, 42(7): 1576-1584. | |
[46] | 邵雪琳, 孟祥森, 高丽, 等, 2015. 硬毛藻生长对水体和沉积物中碱性磷酸酶活性及磷含量的影响[J]. 环境科学研究, 28(6): 890-898. |
SHAO X L, MENG X S, GAO L, et al., 2015. Effects of Chaetomorpha growth on alkaline phosphatase activity and phosphorus concentrations in water and sediments[J]. Research of Environmental Sciences, 28(6): 890-898. | |
[47] | 王琛, 田欣欣, 曲凌云, 2013. 九龙江口解有机磷细菌的解磷特性[J]. 海洋环境科学, 32(5): 736-740. |
WANG C, TIAN X X, QU L Y, 2013. The phosphate-dissolving characteristics of organic phosphorus bacterium isolated from Jiulong River[J]. Marine Environmental Science, 32(5): 736-740. | |
[48] |
王福芳, 屈建航, 胡元森, 2012. 太湖水-沉积物界面磷、pH及碱性磷酸酶的时空特征及相关性[J]. 生态环境学报, 21(5): 907-912.
DOI |
WANG F F, QU J H, HU Y S, 2012. Spatio-temporal characteristics and correlation of phosphate, pH and alkaline phosphatase on water-sediment interface of Lake Taihu[J]. Ecology and Environmental Sciences, 21(5): 907-912. | |
[49] | 王效昌, 马凯, 谢嘉慧, 等, 2023. 无机解磷菌对天鹅湖瀉湖沉积物内源磷释放的影响[J]. 农业资源与环境学报, 40(1): 76-85. |
WANG X C, MA K, XIE J H, et al., 2023. Effects of inorganic phosphate-solubilizing bacteria on phosphorus release from sediments in Swan Lagoon[J]. Journal of Agricultural Resources and Environment, 40(1): 76-85. | |
[50] | 魏烈群, 2021. 荣成天鹅湖解磷菌的分离筛选及其对沉积物磷释放的影响[D]. 烟台: 烟台大学:15-26. |
WEI L Q, 2021. Isolation and screening of phosphate-solubilizing bacteria and the effect on phosphorus release from the sediments in Rongcheng Swan Lake[D]. Yantai: Yantai University:15-26. | |
[51] | 魏权, 邵雪琳, 高丽, 2014. 硬毛藻生长的最适磷含量及磷素吸收动力学特征[J]. 海洋环境科学, 33(4): 514-519. |
WEI Q, SHAO X L, GAO L, 2014. Phosphorus uptake kinetics and optimum content of Chaetomorpha[J]. Marine Environmental Science, 33(4): 514-519. | |
[52] | 吴小龙, 林建伟, 张宏华, 等, 2019. 物理扰动对锆改性沸石改良底泥磷吸附和移动的影响[J]. 环境化学, 38(5): 1119-1127. |
WU X L, LIN J W, ZHANG H H, et al., 2019. Effect of physical disturbance on phosphorus sorption and immobilization onto/in zirconium-modified zeolite-amended sediments[J]. Environmental Chemistry, 38(5): 1119-1127. | |
[53] | 张友, 李干蓉, 方小宁, 等, 2019. 荣成天鹅湖水体有机磷的生物有效性和时空分布[J]. 地球与环境, 47(1): 10-15. |
ZHANG Y, LI G R, FANG X N, et al., 2019. Bioavailability and temporal-spatial variation of organic phosphorus in the water of Swan Lake, Rongcheng[J]. Earth and Environment, 47(1): 10-15. | |
[54] | 赵海超, 王圣瑞, 金相灿, 等, 2011. 狐尾藻对水体和沉积物中碱性磷酸酶动力学特征的影响[J]. 环境科学研究, 24(11): 1256-1262. |
ZHAO H C, WANG S R, JIN X C, et al., 2011. Effects of Myriophyllum spicatum on kinetic characteristics of alkaline phosphatase in water and sediments[J]. Research of Environmental Sciences, 24(11): 1256-1262. |
[1] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(8): 1487-1495. |
[2] | 童永杰, 汪毅, 华玉妹, 赵建伟, 刘广龙, 蒋永参. 有机电子供体影响下硝酸盐和铁对磷转化的驱动作用[J]. 生态环境学报, 2023, 32(7): 1263-1274. |
[3] | 张广毅, 张嘉涛, 王晓伟. 湖泊底泥微生物燃料电池中磷形态分布及释放研究[J]. 生态环境学报, 2023, 32(3): 590-598. |
[4] | 杨奇丽, 窦韦丽, 刘之文, 郭景, 吕刚. 正构烷烃示源的阜新细河河道石油烃类污染特征及其影响因素分析[J]. 生态环境学报, 2023, 32(3): 599-608. |
[5] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
[6] | 梁川, 杨艳芳, 俞姗姗, 周利, 张经纬, 张秀娟. 围网与围塘养鱼下沉积物微生物量和群落结构特征差异[J]. 生态环境学报, 2023, 32(10): 1802-1810. |
[7] | 吉冰静, 刘艺, 吴杨, 高淑涛, 曾祥英, 于志强. 长江口及邻近东海沉积物中多环芳烃和含氧多环芳烃的分布特征、来源及生态风险[J]. 生态环境学报, 2022, 31(7): 1400-1408. |
[8] | 包宇飞, 胡明明, 王殿常, 吴兴华, 王雨春, 李姗泽, 王启文, 温洁. 黄柏河梯级水库沉积物营养盐与重金属分布特征及污染评价[J]. 生态环境学报, 2021, 30(5): 1005-1016. |
[9] | 张凯, 郭紫微, 王倩, 韩雅, 李贶家, 张中帅. 华中地区水库型水源地抗生素抗性细菌的赋存特征研究[J]. 生态环境学报, 2021, 30(5): 1017-1022. |
[10] | 解旭东, 侯智昊, 李楠, 岳翠霞, 李雅, 杨方社. 中国胡焕庸线下方四区域沉积物和土壤中抗生素污染特征及生态风险评价[J]. 生态环境学报, 2021, 30(5): 1023-1033. |
[11] | 余楚, 李剑锋, 吕敦玉. 大兴安岭南段某矿区河流表层沉积物重金属污染及风险评价[J]. 生态环境学报, 2021, 30(11): 2223-2231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||