生态环境学报 ›› 2021, Vol. 30 ›› Issue (7): 1482-1491.DOI: 10.16258/j.cnki.1674-5906.2021.07.017
收稿日期:
2021-02-23
出版日期:
2021-07-18
发布日期:
2021-10-09
通讯作者:
*作者简介:
周丹(1989年生),男,工程师,主要从事专业气象预报服务研究。E-mail: www.zhoudan.6666@163.com
基金资助:
ZHOU Dan1(), ZHANG Juan2,*, LUO Jing3, GUO Guang1, LI Baohua1
Received:
2021-02-23
Online:
2021-07-18
Published:
2021-10-09
摘要:
青海湖是维系青藏高原东北部生态安全的重要屏障,其水位变化更是青藏高原气候和生态环境变化的指示器和调节器。利用1961—2020年下社水文站水位观测资料分析青海湖水位变化特征,基于青海湖流域气象观测资料揭示其水位变化成因,并结合水位回升期气象影响因素及未来气候变化预估数据,对青海湖2021—2050年水位变化进行了模拟预测,旨在为湖区生态环境保护规划与管理提供科学的依据和参考。主要结论,(1)1961—2020年青海湖年平均水位为3194.36 m。1961—2004年青海湖年平均水位呈显著下降趋势,下降变化率为0.76 m/10 a。从2005年开始,青海湖年平均水位止跌回升,上升变化率为2.01 m/10 a,2020年平均水位达3196.34 m。(2)青海湖水位变化主要受气候干湿交替因素控制,降水量是最主要的因素,2005年以来水位持续上升主要取决于全球增暖情形下夏季降水量和降水强度同时增加。地表径流和地下水补给也起着一定作用。此外,人类积极的环境保护活动对青海湖水位上升也十分有利。(3)温室气体中等排放情景下,预测2021—2050年青海湖水位呈持续增加趋势,其中2021—2030年增加1.63 m,2031—2040年增加1.86 m,2041—2050年增加2.02 m。2041年青海湖水位将达到3200.0 m,2050年将达到3201.85 m。
中图分类号:
周丹, 张娟, 罗静, 郭广, 李宝华. 青海湖水位变化成因分析及其未来趋势预估研究[J]. 生态环境学报, 2021, 30(7): 1482-1491.
ZHOU Dan, ZHANG Juan, LUO Jing, GUO Guang, LI Baohua. Analysis on the Causes of Qinghai Lake Water Level Changes and Prediction of Its Future Trends[J]. Ecology and Environment, 2021, 30(7): 1482-1491.
时段 Time period | 年降水量距平百分率 Percentage of annual precipitation anomaly/% | 年蒸发量距平百分率 Percentage of annual evaporation anomaly/% |
---|---|---|
2021-2030 | 0.9 | 5.9 |
2031-2040 | 6.3 | 6.3 |
2041-2050 | 10.6 | 7.4 |
2021-2050 | 5.9 | 6.5 |
表1 未来不同时间段内年降水量和年蒸发量距平百分率
Table 1 Anomaly percentages of annual precipitation and annual evaporation in different time periods in the future
时段 Time period | 年降水量距平百分率 Percentage of annual precipitation anomaly/% | 年蒸发量距平百分率 Percentage of annual evaporation anomaly/% |
---|---|---|
2021-2030 | 0.9 | 5.9 |
2031-2040 | 6.3 | 6.3 |
2041-2050 | 10.6 | 7.4 |
2021-2050 | 5.9 | 6.5 |
年份 Years | 变化水位 Changing water level/m | 年份 Years | 变化水位 Changing water level/m | 年份 Years | 变化水位 Changing water level/m |
---|---|---|---|---|---|
2021 | 0.18 | 2031 | 0.07 | 2041 | 0.25 |
2022 | 0.17 | 2032 | 0.19 | 2042 | 0.27 |
2023 | 0.10 | 2033 | 0.16 | 2043 | 0.14 |
2024 | 0.16 | 2034 | 0.16 | 2044 | 0.30 |
2025 | 0.18 | 2035 | 0.21 | 2045 | 0.08 |
2026 | 0.17 | 2036 | 0.34 | 2046 | 0.13 |
2027 | 0.12 | 2037 | 0.14 | 2047 | 0.13 |
2028 | 0.23 | 2038 | 0.18 | 2048 | 0.33 |
2029 | 0.16 | 2039 | 0.21 | 2049 | 0.23 |
2030 | 0.16 | 2040 | 0.20 | 2050 | 0.16 |
合计 Total | 1.63 | 1.86 | 2.02 |
表2 2021—2050年青海湖年水位预测变化表
Table 2 Annual water level forecast changes of Qinghai Lake from 2021 to 2050
年份 Years | 变化水位 Changing water level/m | 年份 Years | 变化水位 Changing water level/m | 年份 Years | 变化水位 Changing water level/m |
---|---|---|---|---|---|
2021 | 0.18 | 2031 | 0.07 | 2041 | 0.25 |
2022 | 0.17 | 2032 | 0.19 | 2042 | 0.27 |
2023 | 0.10 | 2033 | 0.16 | 2043 | 0.14 |
2024 | 0.16 | 2034 | 0.16 | 2044 | 0.30 |
2025 | 0.18 | 2035 | 0.21 | 2045 | 0.08 |
2026 | 0.17 | 2036 | 0.34 | 2046 | 0.13 |
2027 | 0.12 | 2037 | 0.14 | 2047 | 0.13 |
2028 | 0.23 | 2038 | 0.18 | 2048 | 0.33 |
2029 | 0.16 | 2039 | 0.21 | 2049 | 0.23 |
2030 | 0.16 | 2040 | 0.20 | 2050 | 0.16 |
合计 Total | 1.63 | 1.86 | 2.02 |
[1] |
CUI B L, LI X Y, 2016. The impact of climate changes on water level of Qinghai Lake in China over the past 50 years[J]. Hydrology Research, 47(2): 532-542.
DOI URL |
[2] |
CUI B L, BEI X, LI X Y, et al., 2017. Exploring the geomorphological processes of Qinghai Lake and surrounding lakes in the northeastern Tibetan Plateau, using Multi temporal Landsat Imagery (1973-2015)[J]. Global and Planetary Change, 152: 152-175.
DOI URL |
[3] | FAN C Y, SONG C Q, LI W K, et al., 2021. What drives the rapid water-level recovery of the largest lake (Qinghai Lake) of China over the past half century[J]. Journal of Hydrology, 593: 27-33. |
[4] | IPCC, 2013. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press. |
[5] |
JIANG S H, WANG M H, REN L L, et al., 2019. A framework for quantifying the impacts of climate change and human activities on hydrological drought in a semiarid basin of Northern China[J]. Hydrological Processes, 33(7): 1075-1088.
DOI URL |
[6] |
YU W S, YAO T D, TIAN L D, et al., 2016. Short-term variability in the dates of the India monsoon onset and retreat on the southern and northern slopes of the central Himalayas as determined by precipitation stable isotopes[J]. Climate Dynamics, 47(1): 159-172.
DOI URL |
[7] |
ZHAO L, WANG S Y S, JONATHAN M, 2017. Inter-decadal climate variations controlling the water level of Lake Qinghai over the Tibetan Plateau[J]. Journal of Hydrometeorology, 18(11): 3013-3025.
DOI URL |
[8] | ZHU H, XIONG X, AO H Y, et al., 2020. Cladophora reblooming after half a century: effect of climate change-induced increases in the water level of the largest lake in Tibetan Plateau[J]. Environmental Science and Pollution Research, 27: 4175-4281. |
[9] | 白爱娟, 黄融, 程志刚, 2014. 气候变暖情景下的青海湖水位变化[J]. 干旱区研究, 31(5): 792-797. |
BAI A J, HUANG R, CHENG Z G, 2014. Change of water level of the Qinghai Lake under climate warming[J]. Arid Zone Research, 31(5): 792-797. | |
[10] | 丛振涛, 倪广恒, 杨大文, 等, 2008. “蒸发悖论”在中国的规律分析[J]. 水科学进展, 19(2): 147-152. |
CONG Z T, NI G H, YANG D W, et al., 2008. Evaporation paradox in China[J]. Advances in Water Science, 19(2): 147-152. | |
[11] | 丁之勇, 鲁瑞洁, 刘畅, 等, 2018. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 33(3): 281-292. |
DING Z Y, LU R J, LIU C, et al., 2018. Temporal change characteristics of climatic and its relationships with atmospheric circulation patterns in Qinghai Lake Basin[J]. Advances in Earth Science, 33(3): 281-292. | |
[12] | 杜嘉妮, 李其江, 刘希胜, 等, 2020. 青海湖1956—2017年水文变化特征分析[J]. 水生态学杂志, 41(4): 27-33. |
DU J N, LI Q J, LIU X S, et al., 2020. Hydrological characteristics of Qinghai Lake, 1956-2017 [J]. Journal of Hydroecology, 41(4): 27-33. | |
[13] | 韩有香, 刘彩红, 李国山, 2019. 青海高原典型生态区域未来气候变化趋势预估[J]. 草业科学, 36(6):1518-1530. |
HAN Y X, LIU C H, LI G S, 2019. Forecast of future climate change trend in typical ecological regions of the Qinghai Plateau[J]. Pratacultural Science, 36(6): 1518-1530. | |
[14] | 侯威, 2020. 青海湖流域生态环境地质条件与生态环境地质问题研究[D]. 北京: 中国地质大学. |
HOU W, 2020. Research on eco-environmental geological conditions and eco-environmental geological problems in Qinghai Lake Basin[D]. Beijing: China University of Geosciences. | |
[15] | 贾东于, 李开明, 杨丽薇, 等, 2020. CMIP5气候模式对未来30年太阳辐射变化的预估研究[J]. 太阳能学报, 41(3): 199-205. |
JIA D Y, LI K M, YANG L W, et al., 2020. Prediction of solar radiation variation in future by CMIP5 climate model[J]. Acta Energiae Solaris Sinica, 41(3): 199-205. | |
[16] | 李林, 申红艳, 刘彩红, 等, 2020. 青海湖水位波动对气候暖湿化情景的响应及其机理研究[J]. 气候变化研究进展, 16(5): 600-608. |
LI L, SHEN H Y, LIU C H, et al., 2020. Response of water level fluctuation to climate warming and wetting scenarios and its mechanism on Qinghai Lake[J]. Climate Change Research, 16(5): 600-608. | |
[17] | 李林, 时兴合, 申红艳, 等, 2011. 1960—2009年青海湖水位波动的气候成因探讨及其未来趋势预测[J]. 自然资源学报, 26(9): 1566-1574. |
LI L, SHI X H, SHEN H Y, et al., 2011. Cause and water level fluctuation in Qinghai Lake from 1960 to 2009 and its future trend forecasting[J]. Journal of Natural Resources, 26(9): 1566-1574. | |
[18] | 刘波, 马柱国, 冯锦明, 等, 2008. 1960年以来新疆地区蒸发皿蒸发与实际蒸发之间的关系[J]. 地理学报, 63(11): 1131-1139. |
LIU B, MA Z G, FENG J M, et al., 2008. The relationship between pan evaporation and actual evapotranspiration in Xinjiang since 1960 [J]. Acta Geographica Sinica, 63(11): 1131-1139. | |
[19] | 刘宝康, 2016. 气候变化背景下青海湖流域草地与湖泊时空变化特征研究[D]. 兰州: 兰州大学. |
LIU B K, 2016. Research on temporal and spatial changes of grassland and lakes in Qinghai Lake Basin under the background of climate change[D]. Lanzhou: Lanzhou University. | |
[20] | 刘义花, 马元仓, 杨延华, 等, 2020. 1961—2018年青海高原昼夜雨量时空变化特征分析[J]. 冰川冻土, 42(3): 996-1006. |
LIU Y H, MA Y C, YANG Y H, et al., 2020. Research of the spatio-temporal variation characteristics of daytime and nighttime precipitation in the Qinghai Plateau from 1961 to 2018 [J]. Journal of Glaciology and Geocryology, 42(3): 996-1006. | |
[21] | 潘蕊蕊, 李小雁, 胡广荣, 等, 2020. 青海湖流域季节性冻土区坡面土壤有机碳分布特征及其影响因素[J]. 生态学报, 40(18): 6374-6384. |
PAN R R, LI X Y, HU G R, et al., 2020. Characteristics of soil carbon distribution and its controlling factors on hillslope in seasonal frozen area of Qinghai Lake Basin[J]. Acta Ecologica Sinica, 40(18): 6374-6384. | |
[22] |
施雅风, 1990. 山地冰川与湖泊萎缩所指示的亚洲中部气候干暖化趋势与未来展望[J]. 地理学报, 45(1): 1-13.
DOI |
SHI Y F, 1990. Glacier recession and lake shrinkage indicating the climatic warming and drying trend in central Asia[J]. Acta Geographica Sinica, 45(1): 1-13. | |
[23] | 王政琪, 2017. CMIP5全球气候模式对东亚冬季气候特征模拟能力评估与未来变化预估[D]. 北京: 中国气象科学研究院. |
WANG Z Q, 2017. Evaluation and projection of the CMIP5 models in simulating the change of the East Asian winter monsoon[D]. Beijing: Chinese Academy of Meteorological Sciences. | |
[24] | 袁云, 李栋梁, 安迪, 2012. 青海湖水位变化对青藏高原气候变化的相应[J]. 高原气象, 31(1): 57-64. |
YUAN Y, LI D L, AN D, 2012. Respons of water level in Qinghai Lake to climate change in the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 31(1): 57-64. | |
[25] | 姚檀栋, 朴世龙, 沈妙根, 等, 2017. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J]. 中国科学院院刊, 32(9): 976-984. |
YAO T D, PIAO S L, SHEN M G, et al., 2017. Chained impacts on modern environment of interaction between Westerlies and Indian Monsoon on Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences, 32(9): 976-984. | |
[26] | 朱延龙, 韩昆, 王芳, 2012. 青海湖流域气候变化特点及水文生态响应[J]. 中国水利水电科学研究院学报, 10(4): 260-266. |
ZHU Y L, HAN K, WANG F, 2012. Climate change and responses of hydro-ecology in Qinghai Lake Watershed[J]. Journal of China Institute of Water Resources and Hydropower Research, 10(4): 260-266. | |
[27] | 金章东, 张飞, 王红丽, 等, 2013. 2005年以来青海湖水位持续回升的原因分析[J]. 地球环境学报, 4(3): 1355-1362. |
JIN Z D, ZHANG F, WANG H L, et al., 2013. The reasons of rising water level in Lake Qinghai since 2005 [J]. Journal of Earth Environment, 4(3): 1355-1362. | |
[28] | 张洪源, 2018. 基于遥感的青藏高原湖泊水文要素变化分析及其对气候变化的响应研究[D]. 聊城: 聊城大学. |
ZHANG H Y, 2018. Analysis of lake hydrological changes in Qinghai-Tibet Plateau based on remote sensing and its response to climate change[D]. Liaocheng: Liaocheng University. | |
[29] | 周文翀, 韩振宇, 2018. CMIP5全球气候模式对中国黄河流域气候模拟能力的评估[J]. 气象与环境学报, 34(6): 42-55. |
ZHOU W C, HAN Z Y, 2018. Assessing CMIP5 climate simulations and objective selection of models over the Yellow River basin[J]. Journal of Meteorology and Environment, 34(6): 42-55. |
[1] | 郝蕾, 翟涌光, 戚文超, 兰穹穹. 2001-2020年内蒙古植被碳源/碳汇时空动态及对气候因子的响应[J]. 生态环境学报, 2023, 32(5): 825-834. |
[2] | 陈俊芳, 吴宪, 刘啸林, 刘娟, 杨佳绒, 刘宇. 不同土壤水分下元素化学计量对微生物多样性的塑造特征[J]. 生态环境学报, 2023, 32(5): 898-909. |
[3] | 李晖, 李必龙, 葛黎黎, 韩琛惠, 杨倩, 张岳军. 2000-2021年汾河流域植被时空演变特征及地形效应[J]. 生态环境学报, 2023, 32(3): 439-449. |
[4] | 贾志峰, 刘鹏程, 刘宇, 吴博博, 陈丹姿, 张向飞. 气候变化和人类活动对松辽流域植被覆盖的影响[J]. 生态环境学报, 2023, 32(1): 1-10. |
[5] | 齐月, 张强, 胡淑娟, 蔡迪花, 赵福年, 陈斐, 张凯, 王鹤龄, 王润元. 黄土高原地区气候变化及其对冬小麦生产潜力的影响[J]. 生态环境学报, 2022, 31(8): 1521-1529. |
[6] | 邓天乐, 谢立勇, 张凤哲, 赵洪亮, 蒋语童. CO2浓度升高条件下稗草与水稻生长空间竞争关系研究[J]. 生态环境学报, 2022, 31(8): 1566-1572. |
[7] | 卢燕宇, 孙维, 方砚秋, 唐为安, 邓汗青, 何冬燕. 基于种植结构的安徽省气候生产潜力估算及粮食安全气候承载力分析[J]. 生态环境学报, 2022, 31(7): 1293-1305. |
[8] | 朱丽, 闫怀忠, 孙友敏, 范晶, 刘光辉, 张桂芹. 山东典型重工业区降尘污染特征及成因分析[J]. 生态环境学报, 2022, 31(7): 1393-1399. |
[9] | 李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31(6): 1071-1079. |
[10] | 曹晓云, 祝存兄, 陈国茜, 孙树娇, 赵慧芳, 朱文彬, 周秉荣. 2000—2021年柴达木盆地地表绿度变化及地形分异研究[J]. 生态环境学报, 2022, 31(6): 1080-1090. |
[11] | 朱锦福, 黄瑞灵, 董志强, 毛晓宁, 周华坤. 青海湖高寒湿地土壤细菌群落对氮添加的响应[J]. 生态环境学报, 2022, 31(6): 1101-1109. |
[12] | 石智宇, 王雅婷, 赵清, 张连蓬, 朱长明. 2001-2020年中国植被净初级生产力时空变化及其驱动机制分析[J]. 生态环境学报, 2022, 31(11): 2111-2123. |
[13] | 刘秉儒. 土壤微生物呼吸热适应性与微生物群落及多样性对全球气候变化响应研究[J]. 生态环境学报, 2022, 31(1): 181-186. |
[14] | 张静, 杜加强, 盛芝露, 张杨成思, 吴金华, 刘博. 1982—2015年黄河流域植被NDVI时空变化及影响因素分析[J]. 生态环境学报, 2021, 30(5): 929-937. |
[15] | 黄栋, 李鹏, 董南. 近20 a环渤海地区GS_NDVI时空分异及其对气候变化和LUCC的响应[J]. 生态环境学报, 2021, 30(12): 2275-2284. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 476
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 677
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||