生态环境学报 ›› 2025, Vol. 34 ›› Issue (6): 876-887.DOI: 10.16258/j.cnki.1674-5906.2025.06.005
收稿日期:
2024-12-11
出版日期:
2025-06-18
发布日期:
2025-06-11
通讯作者:
* 张虹, E-mail: 作者简介:
周瑞娇(1999年生),女,硕士研究生,研究方向为资源环境遥感应用。E-mail: 1732391765@qq.com
基金资助:
ZHOU Ruijiao1,2(), ZHANG Hong1,2,*(
), QIAN Min1,2
Received:
2024-12-11
Online:
2025-06-18
Published:
2025-06-11
摘要:
生态系统服务流是生态系统持续供给能力的重要表征,三峡库区是长江流域重要生态屏障,三峡工程建设使得土地利用变化,人口大规模流动,影响生态系统服务流量和流向。基于InVEST模型和功能价值法,计算1990-2022年三峡库区生态系统服务价值,并运用断裂点公式和场强模型量化区域生态服务流,确定服务流传输路径、流量,分析生态服务流的时空变化特征。结果表明,1)1990-2022年各类生态服务价值均增加,综合服务价值增幅为12.2%。水源涵养、土壤保持及固碳服务价值分别占生态系统服务价值63.1%、23.4%和13.5%左右,高值区集中在库区东北部,低值区集中在库区西南部。2)1990-2022年三峡库区生态系统服务流量先上升后下降,但整体流量增加,由8.07×109元增长至8.54×109元,流量增幅为5.8%。3)生态系统服务供给高值区集中在自然资源丰富的东北部,低值区集中在城市化发展水平高的西部地区。生态系统服务在相邻区域间流动,主导方向由高价值区流向低价值区。4)三峡库区生态系统服务价值的主要影响因素为高程、坡度等地形因子,可解释力q值分别为0.835、0.815。该研究旨在厘清区域生态系统服务流动方向和强度,为三峡库区生态保护与生态补偿提供科学依据。
中图分类号:
周瑞娇, 张虹, 钱敏. 近30年三峡库区生态系统服务流时空演变与影响因素研究[J]. 生态环境学报, 2025, 34(6): 876-887.
ZHOU Ruijiao, ZHANG Hong, QIAN Min. Spatial-Temporal Evolution of Ecosystem Service Flows in the Three Gorges Reservoir Area in the Past 30 Years and Influencing Factors[J]. Ecology and Environmental Sciences, 2025, 34(6): 876-887.
数据名称 | 来源 | 空间分辨率 |
---|---|---|
土地利用数据 | 国家冰川冻土沙漠科学数据中心( | 30 m |
潜在蒸散发 数据集 | 国家青藏高原科学数据中心( | 1 km |
中国土壤数据集(v1.1) | 国家青藏高原数据中心( | 1 km |
GDP空间分布公里网格数据 | 资源环境科学数据平台( | 1 km |
人口密度数据 | LandScan数据集( | 1 km |
NPP数据 | 美国国家航空航天局( | 500 m |
DEM高程数据 | 地理空间数据云( | 30 m |
NDVI数据 | MOD13A3数据集( | 1 km |
降水数据 | 国家青藏高原科学数据中心( | 1 km |
温度数据 | 国家青藏高原科学数据中心( | 1 km |
表1 数据名称及来源
Table 1 Names and sources of datasets
数据名称 | 来源 | 空间分辨率 |
---|---|---|
土地利用数据 | 国家冰川冻土沙漠科学数据中心( | 30 m |
潜在蒸散发 数据集 | 国家青藏高原科学数据中心( | 1 km |
中国土壤数据集(v1.1) | 国家青藏高原数据中心( | 1 km |
GDP空间分布公里网格数据 | 资源环境科学数据平台( | 1 km |
人口密度数据 | LandScan数据集( | 1 km |
NPP数据 | 美国国家航空航天局( | 500 m |
DEM高程数据 | 地理空间数据云( | 30 m |
NDVI数据 | MOD13A3数据集( | 1 km |
降水数据 | 国家青藏高原科学数据中心( | 1 km |
温度数据 | 国家青藏高原科学数据中心( | 1 km |
生态服务类型 | 物质量计算公式 | 价值量计算公式 |
---|---|---|
水源涵养服务 | 影子工程法: | |
土壤保持服务 | 替代成本法: | |
固碳服务 | 市场价值法: | |
综合服务 |
表2 生态系统服务物质量及价值量方法
Table 2 Ecosystem services quality and valuation methodology
生态服务类型 | 物质量计算公式 | 价值量计算公式 |
---|---|---|
水源涵养服务 | 影子工程法: | |
土壤保持服务 | 替代成本法: | |
固碳服务 | 市场价值法: | |
综合服务 |
生态服务分类 | 1990年 | 2003年 | 2013年 | 2022年 |
---|---|---|---|---|
水源涵养服务价值/108元 | 1316.04 | 1736.6 | 1511.41 | 1528.41 |
土壤保持服务价值/108元 | 505.09 | 648.6 | 560.34 | 545.99 |
固碳服务价值/108元 | 319.3 | 323.47 | 322.81 | 326.45 |
综合服务价值/108元 | 2140.43 | 2708.66 | 2394.56 | 2400.86 |
表3 三峡库区各类生态系统服务价值
Table 3 Value of various types of ecological services in the TGRA
生态服务分类 | 1990年 | 2003年 | 2013年 | 2022年 |
---|---|---|---|---|
水源涵养服务价值/108元 | 1316.04 | 1736.6 | 1511.41 | 1528.41 |
土壤保持服务价值/108元 | 505.09 | 648.6 | 560.34 | 545.99 |
固碳服务价值/108元 | 319.3 | 323.47 | 322.81 | 326.45 |
综合服务价值/108元 | 2140.43 | 2708.66 | 2394.56 | 2400.86 |
影响因子 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
水源涵养(q值) | 0.563 | 0.804 | 0.803 | 0.825 | 0.834 | 0.777 | 0.72 | 0.745 |
土壤保持(q值) | 0.513 | 0.711 | 0.765 | 0.763 | 0.798 | 0.726 | 0.643 | 0.723 |
固碳服务(q值) | 0.622 | 0.811 | 0.829 | 0.812 | 0.859 | 0.783 | 0.787 | 0.733 |
综合服务(q值) | 0.561 | 0.791 | 0.803 | 0.815 | 0.835 | 0.772 | 0.716 | 0.745 |
表4 影响因素分析
Table 4 Analysis of influencing factors
影响因子 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
---|---|---|---|---|---|---|---|---|
水源涵养(q值) | 0.563 | 0.804 | 0.803 | 0.825 | 0.834 | 0.777 | 0.72 | 0.745 |
土壤保持(q值) | 0.513 | 0.711 | 0.765 | 0.763 | 0.798 | 0.726 | 0.643 | 0.723 |
固碳服务(q值) | 0.622 | 0.811 | 0.829 | 0.812 | 0.859 | 0.783 | 0.787 | 0.733 |
综合服务(q值) | 0.561 | 0.791 | 0.803 | 0.815 | 0.835 | 0.772 | 0.716 | 0.745 |
[1] | BAGSTAD K J, SEMMENS D J, WINTHROP R, 2013. Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona[J]. Ecosystem Services, 5: 40-50. |
[2] | BAGSTAD K J, VILLA F, BATKER D, et al., 2014. From theoretical to actual ecosystem services: Mapping beneficiaries and spatial flows in ecosystem service assessments[J]. Ecology and Society, 19(2): 1-13. |
[3] | CHEN Y, LU Y N, MENG R L, et al., 2024. Multi-scale matching and simulating flows of ecosystem service supply and demand in the Wuhan metropolitan area, China[J]. Journal of Cleaner Production, 476: 143648. |
[4] | CHEN Z L, LIN J Y, HUANG J L, 2023. Linking ecosystem service flow to water-related ecological security pattern: A methodological approach applied to a coastal province of China[J]. Journal of Environmental Management, 345: 118725. |
[5] | COSTANZA R, D'ARGE R, GROOT R D, et al., 1997. The value of the world’s ecosystem services and natural capital[J]. Nature, 387: 253-260. |
[6] | DANG H, LI J, 2023. Supply-demand relationship and spatial flow of urban cultural ecosystem services: The case of Shenzhen, China[J]. Journal of Cleaner Production, 423: 138765. |
[7] | DU H Q, ZHAO L, ZHANG P T, et al., 2023. Ecological compensation in the Beijing-Tianjin-Hebei region based on ecosystem services flow[J]. Journal of Environmental Management, 331: 117230. |
[8] | GROOT R S D, WILSON M A, BOUMANS R M J, 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services[J]. Ecological Economics, 41(3): 393-408. |
[9] | JI Q L, FENG X M, SUN S Q, et al., 2024. Cross-scale coupling of ecosystem service flows and socio-ecological interactions in the Yellow River Basin[J]. Journal of Environmental Management, 367: 122071. |
[10] | LI Z Z, HU B A, QIN Y Y, et al., 2022. Drivers of spatiotemporal disparities in the supply-demand budget of ecosystem services: A case study in the Beijing-Tianjin-Hebei urban agglomeration, China[J]. Frontiers in Environmental Science, 10: 955876. |
[11] | MENG S T, HUANG Q X, ZHANG L, et al., 2020. Matches and mismatches between the supply of and demand for cultural ecosystem services in rapidly urbanizing watersheds: A case study in the Guanting Reservoir basin, China[J]. Ecosystem Services, 45: 101156. |
[12] | PENG J, ZHANG Z M, LIN Y F, et al., 2024. Unveiling decoupled social-ecological networks of great lake basin: An ecosystem services approach[J]. Earth’s Future, 12(11): e2024EF004994. |
[13] | SUN J, 2023. Understanding ecosystem services in a metacoupled world[J]. Transactions in Earth, Environment, and Sustainability, 1(1): 46-54. |
[14] | SUN S Q, LÜ Y H, FENG X M, et al., 2025. Optimizing soil conservation through comprehensive benefit assessment in river basins[J]. Environmental Science and Ecotechnology, 23: 100496. |
[15] | WU C S, LU R R, ZHANG P, et al, 2024. Multilevel ecological compensation policy design based on ecosystem service flow: A case study of carbon sequestration services in the Qinghai-Tibet Plateau[J]. Science of The Total Environment, 921: 171093. |
[16] | WU J S, FAN X N, LI K Y, et al., 2023. Assessment of ecosystem service flow and optimization of spatial pattern of supply and demand matching in Pearl River Delta, China[J]. Ecological Indicators, 153: 110452. |
[17] | WU J S, FENG Z, ZHANG X W, et al., 2020. Delineating urban hinterland boundaries in the Pearl River Delta: An approach integrating toponym co-occurrence with field strength model[J]. Cities, 96: 102457. |
[18] | YU Y Y, LI J, HAN L Q, et al., 2023. Research on ecological compensation based on the supply and demand of ecosystem services in the Qinling-Daba Mountains[J]. Ecological Indicators, 154: 110687. |
[19] | ZHAI T L, WANG J, JIN Z F, et al., 2020. Did improvements of ecosystem services supply-demand imbalance change environmental spatial injustices?[J]. Ecological Indicators, 111: 106068. |
[20] | ZHANG J X, HE C Y, HUANG Q X, et al., 2023. Understanding ecosystem service flows through the metacoupling framework[J]. Ecological Indicators, 151: 110303. |
[21] | ZHANG X Q, YIN Q W, ZHENG Z W, et al., 2024. Dynamic changes and key drivers of ecosystem service values in populous zones on the Tibetan Plateau: A 35-Year analysis[J]. Ecological Indicators, 167: 112620. |
[22] | 安志英, 孙才志, 郝帅, 2024. 我国东北生态系统服务供需匹配关系——基于水-能源-粮食纽带视角[J]. 生态学报, 44(10): 4170-4186. |
AN Z Y, SUN C Z, HAO S, 2024. Matching relationship between supply and demand of ecosystem services from the perspective of water-energy-food nexus in northeast China[J]. Acta Ecologica Sinica, 44(10): 4170-4186. | |
[23] | 北京市质量技术监督局, 2014. 林业生态工程生态效益评价技术规程: DB11/T 1099—2014[S]. 北京: 北京市质量技术监督局: 10. |
Beijing Municipal Bureau of Quality and Technical Supervision, 2014. Technical regulation for the evaluation of ecological benefits of forestry ecological engineering: DB11/T 1099—2014[S]. Beijing: Beijing Municipal Bureau of Quality and Technical Supervision: 10. | |
[24] | 范莉, 叶钊, 祝好, 等, 2024. 三峡库区陆地生态系统净初级生产力时空演变及其影响因素[J]. 中国农业气象, 45(5): 493-505. |
FAN L, YE Z, ZHU H, et al., 2024. Spatio-temporal variation and its influence factors on net primary productivity of terrestrial ecosystems in the Three Gorges Reservoir Area[J]. Journal of Agrometeorology, 45(5): 493-505. | |
[25] |
勾蒙蒙, 刘常富, 李乐, 等, 2021. “三生空间” 视角下三峡库区土地利用转型的生态系统服务价值效应[J]. 应用生态学报, 32(11): 3933-3941.
DOI |
GOU M M, LIU C F, LI L, et al., 2021. Ecosystem service value effects of the Three Gorges Reservoir Area land use transformation under the perspective of “production-living-ecological” space[J]. Chinese Journal of Applied Ecology, 32(11): 3933-3941. | |
[26] | 喇蕗梦, 勾蒙蒙, 李乐, 等, 2021. 三峡库区生态系统服务权衡时空动态与情景模拟: 以秭归县为例[J]. 生态与农村环境学报, 37(11): 1368-1377. |
LA L M, GOU M M, LI L, et al., 2021. Spatiotemporal Dynamics and Scenarios Analysis on Trade-offs between Ecosystem Service in Three Gorges Reservoir Area: A Case Study of Zigui County[J]. Journal of Ecology and Rural Environment, 37(11): 1368-1377. | |
[27] | 官冬杰, 张喻翔, 陈明珠, 等, 2024. 水源供给服务供需流空间不匹配特征识别及优化[J]. 生态学报, 44(12): 5070-5082. |
GUAN D J, ZHANG Y X, CHEN M Z, et al., 2024. Identification and optimization of spatial mismatch characteristics of supply and demand flows for water supply services[J]. Acta Ecologica Sinica, 44(12): 5070-5082. | |
[28] | 韩念龙, 李南恒, 黎兴强, 2024. 基于生态系统服务流的生态补偿核算研究: 以海南岛18市县为例[J/OL]. 生态与农村环境学报, 1-17 [2025-02-13]. https://doi.org/10.19741/j.issn.1673-4831. |
HAN N L, LI N H, LI X Q, 2024. Ecosystem services flow-based ecological compensation accounting research: A Case study of 18 cities and counties on Hainan Island[J/OL]. Journal of Ecology and Rural Environment, 1-17 [2025-02-13]. https://doi.org/10.19741/j.issn.1673-4831. | |
[29] |
胡艳茹, 梁丽娇, 何立平, 等, 2023. 三峡水库蓄水前后库区及周边区域降水变化及其影响因素[J]. 地理研究, 42(7): 1921-1940.
DOI |
HU Y R, LIANG L J, HE L P, et al., 2023. Precipitation change and its influencing factors in the Three Gorges Reservoir area and its surrounding areas before and after impoundment[J]. Geographical Research, 42(7): 1921-1940. | |
[30] |
刘慧敏, 范玉龙, 丁圣彦, 2016. 生态系统服务流研究进展[J]. 应用生态学报, 27(7): 2161-2171.
DOI |
LIU H M, FAN Y L, DING S Y, 2016. Research progress of ecosystem service flow[J]. Chinese Journal of Applied Ecology, 27(7): 2161-2171. | |
[31] | 李井浩, 柳书俊, 王志杰, 2024. 基于FLUS和InVEST模型的云贵高原土地利用与生态系统服务时空变化多情景模拟研究[J]. 水土保持研究, 31(3): 287-298. |
LI J H, LIU S J, WANG Z J, 2024. Multi-scenario simulation of spatiotemporal changes of land use pattern and ecosystem services in Yunnan-Guizhou Plateau based on FLUS and InVEST models[J]. Research of Soil and Water Conservation, 31(3): 287-298. | |
[32] | 黎永豪, 张安录, 张宇, 等, 2025. 生态系统服务流视角下武汉城市圈横向生态补偿研究[J]. 长江流域资源与环境, 34(1): 111-125. |
LI Y H, ZHANG A L, ZHANG Y, et al., 2025. Horizontal ecological compensation in Wuhan urban agglomeration from the perspective of ecosystem service flow[J]. Resources and Environment in the Yangtze Basin, 34(1): 111-125. | |
[33] | 毛永发, 周启刚, 王陶, 等, 2023. 耦合PLUS-InVEST-Geodector模型的三峡库区碳储量时空变化及其定量归因[J]. 长江流域资源与环境, 32(5): 1042-1057. |
MAO Y F, ZHOU Q G, WANG T, et al., 2023. Spatial-temporal variation of carbon storage and its quantitative attribution in the Three Gorges Reservoir Area: Coupled with the PLUS-InVEST and geodetector model[J]. Resources and Environment in the Yangtze Basin, 32(5): 1042-1057. | |
[34] | 田宇, 朱建华, 李奇, 等, 2020. 三峡库区土壤保持时空分布特征及其驱动力[J]. 生态学杂志, 39(4): 1164-1174. |
TIAN Y, ZHU J H, LI Q, et al., 2020. Spatial and temporal distribution of soil conservation and its driving forces in the Three Gorges Reservoir Area[J]. Chinese Journal of Ecology, 39(4): 1164-1174. | |
[35] |
王成武, 罗俊杰, 唐鸿湖, 2023. 基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J]. 生态环境学报, 32(2): 215-225.
DOI |
WANG C J, LUO J J, TANG H H, 2023. Analysis on the Driving Force of Spatial and Temporal Differentiation of Carbon Storage in the Taihang Mountains Based on InVEST Model[J]. Ecology and Environmental Sciences, 32(2): 215-225. | |
[36] |
王劲峰, 徐成东, 2017. 地理探测器: 原理与展望[J]. 地理学报, 72(1): 116-134.
DOI |
WANG J F, XU C D, 2017. Geodetector: Principles and prospects[J]. Acta Geographica Sinica, 72(1): 116-134. | |
[37] | 王嘉丽, 周伟奇, 2019. 生态系统服务流研究进展[J]. 生态学报, 39(12): 4213-4222. |
WANG J L, ZHOU W Q, 2019. Ecosystem service flows: Recent progress and future perspectives[J]. Acta Ecologica Sinica, 39(12): 4213-4222. | |
[38] | 王陶, 2023. 基于生态系统服务供需的三峡库区生态补偿研究[D]. 重庆: 重庆工商大学:67-69. |
WANG T, 2023. Research on ecological compensation in the three gorges reservoir area based on the supply and demand of ecosystem services[D]. Chongqing: Chongqing Technology and Business University:67-69. | |
[39] |
文尹娇, 邹福, 丁明军, 等, 2024. 基于粮食供应服务流视角的江西省耕地生态补偿标准[J]. 应用生态学报, 35(12): 3285-3294.
DOI |
WEN Y J, ZOU F, DING M J, et al., 2024. Ecological compensation standard of cultivated land in Jiangxi Province based on the perspective of food supply service flow[J]. Chinese Journal of Applied Ecology, 35(12): 3285-3294 | |
[40] |
夏沛, 彭建, 徐子涵, 等, 2024. 生态系统服务流概念内涵与量化方法[J]. 地理学报, 79(3): 584-599.
DOI |
XIA P, PENG J, XU Z H, et al., 2024. Conceptual connotation and quantification methods of ecosystem service flows[J]. Acta Geographica Sinica, 79(3): 584-599.
DOI |
|
[41] | 谢高地, 张彩霞, 张雷明, 等, 2015. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 30(8): 1243-1254. |
XIE G D, ZHANG C X, ZHANG L M, 2015. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 30(8): 1243-1254.
DOI |
|
[42] | 许美娇, 2023. 黄河源区水源涵养服务价值时空变化及驱动因子研究[D]. 西安: 西安理工大学:43. |
XU M J, 2023. Study on Spatiotemporal Changes and Driving Factors of Water Conservation Service Value in the Source Area of the Yellow River[D]. Xi’an: Xi’an University of Technology:43. | |
[43] | 张欣蓉, 王晓峰, 程昌武, 等, 2021. 基于供需关系的西南喀斯特区生态系统服务空间流动研究[J]. 生态学报, 41(9): 3368-3380. |
ZHANG X R, WANG X F, CHENG C W, et al., 2021. Ecosystem service flows in Karst area of China based on the relationship between supply and demand[J]. Acta Ecologica Sinica, 41(9): 3368-3380. | |
[44] |
郑晓豪, 陈颖彪, 郑子豪, 等, 2023. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 32(1): 195-206.
DOI |
ZHENG X H, CHEN Y B, ZHENG Z H, et al., 2023. Dynamic changes of ecosystem service value and evolution of its influencing factors in Hubei province[J]. Ecology and Environmental Sciences, 32(1): 195-206. |
[1] | 黄霄宇, 李欢欢, 王新宇, 王进欣. 中国黄泛区生态系统服务供需匹配特征及冲突识别[J]. 生态环境学报, 2025, 34(6): 863-875. |
[2] | 张亚丽, 黄柱军, 田义超, 林俊良, 覃彩焕. 极端气候对西南地区植被覆盖度变化的时滞与累积效应[J]. 生态环境学报, 2025, 34(5): 665-677. |
[3] | 陈鹏, 马育军, 张梦雅, 陈婉婷, 江晓鹏. 基于kNDVI的广东省植被动态变化分析[J]. 生态环境学报, 2025, 34(4): 499-510. |
[4] | 戴晓爱, 马佳欣, 唐艺菱, 李为乐. 甘肃省植被时空动态变化及其归因分析[J]. 生态环境学报, 2024, 33(8): 1163-1173. |
[5] | 高文明, 宋芊, 张皓翔, 王士如. 基于生态系统服务功能和保护动物栖息地适宜性评价的优先保护区选取——以三江源地区为例[J]. 生态环境学报, 2024, 33(8): 1318-1328. |
[6] | 杨非凡, 何浩. 基于“EVI-ESV”伊犁河谷生态环境评估及生态分区构建[J]. 生态环境学报, 2024, 33(4): 655-664. |
[7] | 李荣杰, 李惠梅, 武非非, 赵明德, 王诗涵, 孙雪颖. 青海湖流域生态系统服务空间分异规律及驱动力研究[J]. 生态环境学报, 2024, 33(2): 301-309. |
[8] | 林馨, 徐伟铭, 廖云婷, 邵尔辉. 福建省耕地占补时空分异及其对生态系统服务价值的影响研究[J]. 生态环境学报, 2024, 33(12): 1837-1848. |
[9] | 梁茂厂, 郭晓华, 张影, 马雨萌, 陈弈铭, 龚复俊. 湖北省生态环境质量的时空演变特征及影响因素分析[J]. 生态环境学报, 2024, 33(10): 1634-1647. |
[10] | 张鐥文, 杨冉, 侯文星, 王丽丽, 刘爽, 宋汉扬, 赵文吉, 李令军. 生态补水前后永定河两岸植被覆盖度变化及驱动力分析[J]. 生态环境学报, 2023, 32(2): 264-273. |
[11] | 贾志峰, 刘鹏程, 刘宇, 吴博博, 陈丹姿, 张向飞. 气候变化和人类活动对松辽流域植被覆盖的影响[J]. 生态环境学报, 2023, 32(1): 1-10. |
[12] | 郑晓豪, 陈颖彪, 郑子豪, 郭城, 黄卓男, 周泳诗. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195-206. |
[13] | 苏泳松, 宋松, 陈叶, 叶子强, 钟润菲, 王昭尧. 珠江三角洲人类活动净氮输入时空特征及其影响因素[J]. 生态环境学报, 2022, 31(8): 1599-1609. |
[14] | 李登科, 王钊. 气候变化和人类活动对陕西省植被NPP影响的定量分析[J]. 生态环境学报, 2022, 31(6): 1071-1079. |
[15] | 刘香华, 王秀明, 刘谞承, 张音波, 刘飘. 基于外溢生态系统服务价值的广东省生态补偿机制研究[J]. 生态环境学报, 2022, 31(5): 1024-1031. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||