生态环境学报 ›› 2025, Vol. 34 ›› Issue (6): 863-875.DOI: 10.16258/j.cnki.1674-5906.2025.06.004
收稿日期:
2024-11-28
出版日期:
2025-06-18
发布日期:
2025-06-11
通讯作者:
* 王进欣, E-mail: 作者简介:
黄霄宇(2001年生),女,硕士研究生,研究方向为自然地理学。E-mail: huangxy2626@163.com
基金资助:
HUANG Xiaoyu(), LI Huanhuan, WANG Xinyu, WANG Jinxin*(
)
Received:
2024-11-28
Online:
2025-06-18
Published:
2025-06-11
摘要:
生态系统服务供需关系会随着人口流动和土地利用的变化而动态调整,生态系统服务流能够揭示生态系统服务供应与需求之间的联动特征,从而实现其供需关系更为准确的评估。然而,生态系统服务流动过程的定量描述仍有不足。考虑到长时间尺度上生态系统服务供需配置的差异性,运用生态系统生产总值、最小累积阻力模型和高斯距离衰减函数加权起始-目的地成本路径矩阵等方法,结合生态系统服务供需的现状和趋势指标提出了长期生态系统服务供需冲突识别方法。结果表明:生态系统服务流动前的供需赤字区主要分布在人类干预程度强烈的13市内部的中心区县,而供需盈余区围绕各市中心需求区分布;1990-2020年,供需盈余强度逐渐减弱,供需赤字强度呈先降后升趋势,2000年的供需匹配情况最优。流动后各年需求区的供需匹配状况均发生正向积极变化,大量供应区从盈余状态转变为平衡状态;然而,部分流动前的需求区在1990-2020年会发生供需比和强度上的逆转。近30年来黄泛区供需的高冲突区域主要包括郑州市和扬州市内部的9个县域,区域人口密集程度、城市化水平等因素是引起生态系统服务供需高冲突的重要因素。该研究通过构建综合价值流动模型为生态系统服务供需匹配特征研究提供了新思路,并通过识别长期供需冲突区域,为在快速城市化和区域动态演变背景下的生态系统服务管理提供了差异化的解决方案和科学指导。
中图分类号:
黄霄宇, 李欢欢, 王新宇, 王进欣. 中国黄泛区生态系统服务供需匹配特征及冲突识别[J]. 生态环境学报, 2025, 34(6): 863-875.
HUANG Xiaoyu, LI Huanhuan, WANG Xinyu, WANG Jinxin. Characteristics and Conflict Identification of Ecosystem Services Supply-Demand Matching in the Yellow River Floodplain of China[J]. Ecology and Environmental Sciences, 2025, 34(6): 863-875.
数据 | 数据来源 | 数据 | 数据来源 |
---|---|---|---|
土地利用/土地覆盖(LULC) | (Yang et al., | 夜间灯光 | 资源环境科学数据平台( |
潜在降水 | 国家地球系统科学数据中心( | 降水 | |
根系限制层深度 | ( | 归一化植被指数(NDVI) | |
植物可用含水量 | 世界土壤信息( | 流域 | |
数字高程模型(DEM) | 地理空间数据云( | 河流 | |
根深、土壤质地和有机碳含量 | 世界土壤数据库(HWSD) | 路网 | 开放街道地图( |
陆地卫星图像 | 谷歌地球引擎( | 用水量 | 中国统计年鉴( |
碳库 | 参考相关文献 | 粮食产量 | |
WY生物物理表 | 粮食和农业组织(FAO) | 人均粮食需求标准 |
表1 数据来源描述
Table 1 Description of data sources
数据 | 数据来源 | 数据 | 数据来源 |
---|---|---|---|
土地利用/土地覆盖(LULC) | (Yang et al., | 夜间灯光 | 资源环境科学数据平台( |
潜在降水 | 国家地球系统科学数据中心( | 降水 | |
根系限制层深度 | ( | 归一化植被指数(NDVI) | |
植物可用含水量 | 世界土壤信息( | 流域 | |
数字高程模型(DEM) | 地理空间数据云( | 河流 | |
根深、土壤质地和有机碳含量 | 世界土壤数据库(HWSD) | 路网 | 开放街道地图( |
陆地卫星图像 | 谷歌地球引擎( | 用水量 | 中国统计年鉴( |
碳库 | 参考相关文献 | 粮食产量 | |
WY生物物理表 | 粮食和农业组织(FAO) | 人均粮食需求标准 |
生态系统服务 | 供应量化具体公式 | 需求量化具体公式 |
---|---|---|
粮食生产服务 (FP) | 根据NDVI占比将黄泛区各市粮食产量分配至耕地栅格,具体的公式如下: 式中:Fi ——第i个像元的粮食产量;Fj ——黄泛区第j市主要农作物产品(小麦、玉米、豆类、块茎和油料作物)和主要畜产品(猪牛羊肉、家禽和蛋奶)的总产量(公斤);Ni ——单位像元内耕地的NDVI值;Nj ——第j市所有耕地的NDVI值之和 | 根据黄泛区人均粮食需求量和人口密度得到粮食生产需求,具体公式如下: Df, i=Aper×Ppop, i 式中:Df, i ——栅格粮食生产需求量;Aper——人均粮食需求;Ppop, i ——栅格人口密度 |
产水服务 (WY) | 根据水热平衡原理,将实际蒸散量和降水量之差视为每个栅格的WY,具体公式如下: 式中:Yij ——土地利用类型j中第i个像元的年产水量;Pi ——第 | 根据工业、农业和生活用水等三方面,采用水配额法得到产水服务需求,具体公式如下: Dw, i=Ppop, i×x+Gi×y+Ai×z 式中:Dw, i ——栅格产水服务需求量;Ppop, i ——栅格人口密度;Gi ——栅格万元GDP密度; Ai ——栅格耕地数据;x——人均生活用水量; y——每万元GDP用水量;z——公顷均灌溉用水量 |
固碳服务 (CS) | 根据不同土地利用类型中Cabove、Cbelow、Cdead和Csoil的平均碳密度乘以各地类的面积确定各碳库碳储量,其碳储量之和为Ctot,具体的公式如下: Ctot=Cabove+Cbelow+Csoil+Cdead 式中:Ctot——总碳储量;Cabove——地上碳储量;Cbelow——地下碳储量; Cdead——凋亡碳储量;Csoil——土壤碳储量。参照相关研究修正黄泛区各碳库碳密度(耿文亮, Cbelow——0.9、1.0、0.5、0.5、79.0、0、0(t·hm−2);Cdead——0.6、4.0、2.5、0.2、0、0、0(t·hm−2);Csoil——71.0、4.2、2.6、43.0、81.1、53.3、60.0(t·hm−2) | 根据夜间灯光数据和碳排放的高度相关性得到固碳服务需求,具体公式如下: 式中:Dc, i ——栅格固碳服务需求量;Li ——栅格夜间灯光指数;L——黄泛区夜间灯光指数总和;P——黄泛区碳排放总量 |
表2 生态系统服务供需量化方法
Table 2 Methods for quantifying ecosystem services supply-demand
生态系统服务 | 供应量化具体公式 | 需求量化具体公式 |
---|---|---|
粮食生产服务 (FP) | 根据NDVI占比将黄泛区各市粮食产量分配至耕地栅格,具体的公式如下: 式中:Fi ——第i个像元的粮食产量;Fj ——黄泛区第j市主要农作物产品(小麦、玉米、豆类、块茎和油料作物)和主要畜产品(猪牛羊肉、家禽和蛋奶)的总产量(公斤);Ni ——单位像元内耕地的NDVI值;Nj ——第j市所有耕地的NDVI值之和 | 根据黄泛区人均粮食需求量和人口密度得到粮食生产需求,具体公式如下: Df, i=Aper×Ppop, i 式中:Df, i ——栅格粮食生产需求量;Aper——人均粮食需求;Ppop, i ——栅格人口密度 |
产水服务 (WY) | 根据水热平衡原理,将实际蒸散量和降水量之差视为每个栅格的WY,具体公式如下: 式中:Yij ——土地利用类型j中第i个像元的年产水量;Pi ——第 | 根据工业、农业和生活用水等三方面,采用水配额法得到产水服务需求,具体公式如下: Dw, i=Ppop, i×x+Gi×y+Ai×z 式中:Dw, i ——栅格产水服务需求量;Ppop, i ——栅格人口密度;Gi ——栅格万元GDP密度; Ai ——栅格耕地数据;x——人均生活用水量; y——每万元GDP用水量;z——公顷均灌溉用水量 |
固碳服务 (CS) | 根据不同土地利用类型中Cabove、Cbelow、Cdead和Csoil的平均碳密度乘以各地类的面积确定各碳库碳储量,其碳储量之和为Ctot,具体的公式如下: Ctot=Cabove+Cbelow+Csoil+Cdead 式中:Ctot——总碳储量;Cabove——地上碳储量;Cbelow——地下碳储量; Cdead——凋亡碳储量;Csoil——土壤碳储量。参照相关研究修正黄泛区各碳库碳密度(耿文亮, Cbelow——0.9、1.0、0.5、0.5、79.0、0、0(t·hm−2);Cdead——0.6、4.0、2.5、0.2、0、0、0(t·hm−2);Csoil——71.0、4.2、2.6、43.0、81.1、53.3、60.0(t·hm−2) | 根据夜间灯光数据和碳排放的高度相关性得到固碳服务需求,具体公式如下: 式中:Dc, i ——栅格固碳服务需求量;Li ——栅格夜间灯光指数;L——黄泛区夜间灯光指数总和;P——黄泛区碳排放总量 |
阻力因子 | 路网 | 流序 | 大气运动距离 | DEM | 综合需求价值 |
---|---|---|---|---|---|
2020 | 0.150 | 0.167 | 0.068 | 0.407 | 0.208 |
2010 | 0.148 | 0.166 | 0.067 | 0.402 | 0.217 |
2000 | 0.154 | 0.172 | 0.069 | 0.418 | 0.187 |
1990 | 0.144 | 0.160 | 0.065 | 0.389 | 0.242 |
表3 阻力因子权重值
Table 3 Resistance factor weight value
阻力因子 | 路网 | 流序 | 大气运动距离 | DEM | 综合需求价值 |
---|---|---|---|---|---|
2020 | 0.150 | 0.167 | 0.068 | 0.407 | 0.208 |
2010 | 0.148 | 0.166 | 0.067 | 0.402 | 0.217 |
2000 | 0.154 | 0.172 | 0.069 | 0.418 | 0.187 |
1990 | 0.144 | 0.160 | 0.065 | 0.389 | 0.242 |
现状指数(2020) | 评价指标 | 冲突指数 | 解释性说明 | ||
---|---|---|---|---|---|
趋势指数(1990-2020) | |||||
RESF | ISDT | IST | IDT | ||
RESF≥0 | ISDT≥0 | IST≥0 | IDT<0 | 1 | 低冲突,冲突逐渐恶化 |
IST<0,IDT<0或IST≥0,IDT≥0 | 2 | ||||
IST<0 | IDT≥0 | 3 | |||
RESF≥0 | ISDT<0 | IST≥0 | IDT<0 | 4 | 较低冲突,冲突逐渐 改善 |
IST<0,IDT<0或IST≥0,IDT≥0 | 5 | ||||
IST<0 | IDT≥0 | 6 | |||
RESF<0 | ISDT≥0 | IST≥0 | IDT <0 | 7 | 较高冲突,冲突逐渐 改善 |
IST<0,IDT<0或IST≥0,IDT≥0 | 8 | ||||
IST<0 | IDT≥0 | 9 | |||
RESF<0 | ISDT <0 | IST≥0 | IDT<0 | 10 | 高冲突,冲突逐渐恶化 |
IST<0,IDT<0或IST≥0,IDT≥0 | 11 | ||||
IST<0 | IDT≥0 | 12 |
表4 冲突识别指标
Table 4 Conflict identification indicators
现状指数(2020) | 评价指标 | 冲突指数 | 解释性说明 | ||
---|---|---|---|---|---|
趋势指数(1990-2020) | |||||
RESF | ISDT | IST | IDT | ||
RESF≥0 | ISDT≥0 | IST≥0 | IDT<0 | 1 | 低冲突,冲突逐渐恶化 |
IST<0,IDT<0或IST≥0,IDT≥0 | 2 | ||||
IST<0 | IDT≥0 | 3 | |||
RESF≥0 | ISDT<0 | IST≥0 | IDT<0 | 4 | 较低冲突,冲突逐渐 改善 |
IST<0,IDT<0或IST≥0,IDT≥0 | 5 | ||||
IST<0 | IDT≥0 | 6 | |||
RESF<0 | ISDT≥0 | IST≥0 | IDT <0 | 7 | 较高冲突,冲突逐渐 改善 |
IST<0,IDT<0或IST≥0,IDT≥0 | 8 | ||||
IST<0 | IDT≥0 | 9 | |||
RESF<0 | ISDT <0 | IST≥0 | IDT<0 | 10 | 高冲突,冲突逐渐恶化 |
IST<0,IDT<0或IST≥0,IDT≥0 | 11 | ||||
IST<0 | IDT≥0 | 12 |
图2 黄泛区3类生态系统服务供应和需求的时空分布 FP:粮食生产(Food production);WY:产水量(Water yield);CS:碳固存(Carbon sequestration)
Figure 2 Spatiotemporal distribution of supply, demand for 3 ESs in the Yellow River Floodplain area
图5 惠济区和其150 km范围内供应点之间的价值流路(1990-2020)及2020年流路验证
Figure 5 Value flow path between Huiji District and its supply points within a 150 km radius (1990-2020) and remote sensing image verification of basic flow path map
[1] | ANDERSSON E, MCPHEARSON T, KREMER P, et al., 2015. Scale and context dependence of ecosystem service providing units[J]. Ecosystem Services, 12: 157-164. |
[2] | BAGSTAD K J, JOHNSON G W, VOIGT B, et al., 2013. Spatial dynamics of ecosystem service flows: A comprehensive approach to quantifying actual services[J]. Ecosystem Services, 4: 117-125. |
[3] | BAGSTAD K J, VILLA F, BATKER D, et al., 2014. From theoretical to actual ecosystem services: Mapping beneficiaries and spatial flows in ecosystem service assessments[J]. Ecology and Society, 19(2): 64. |
[4] | BURKHARD B, KROLL F, NEDKOV S, et al., 2011. Mapping ecosystem service supply, demand and budgets[J]. Ecological Indicators, 21: 17-29. |
[5] | CHEN Z L, LIN J Y, HUANG J L, 2023. Linking ecosystem service flow to water-related ecological security pattern: A methodological approach applied to a coastal province of China[J]. Journal of Environmental Management, 345: 118725. |
[6] | COSTANZA R, DE GROOT R, BRAAT L, et al., 2017. Twenty years of ecosystem services: How far have we come and how far do we still need to go?[J]. Ecosystem Services, 28(Part A): 1-16. |
[7] | DAILY G C, 1997. Nature’s services: Societal dependence on natural ecosystemsM]. Washington, DC: Island Press. |
[8] | DENG H W, ZHOU X F, LIAO Z L, 2024. Ecological redline delineation based on the supply and demand of ecosystem services[J]. Land Use Policy, 140: 107109. |
[9] | FANG G J, SUN X, SUN R H, et al., 2024. Advancing the optimization of urban-rural ecosystem service supply-demand mismatches and trade-offs[J]. Landscape Ecology, 39: 32. |
[10] | GAO J, GONG J, LI Y, et al., 2024. Ecological network assessment in dynamic landscapes: Multi-scenario simulation and conservation priority analysis[J]. Land Use Policy, 139: 107059. |
[11] | HAN R, FENG C-C, XU N Y, et al., 2020. Spatial heterogeneous relationship between ecosystem services and human disturbances: A case study in Chuandong, China[J]. Science of The Total Environment, 721: 137818. |
[12] | HE L J, XIE Z Y, WU H Q, et al., 2024. Exploring the interrelations and driving factors among typical ecosystem services in the Yangtze river economic Belt, China[J]. Journal of Environmental Management, 351: 119794. |
[13] | HUANG Y T, CAO Y R, WU J Y, 2024. Evaluating the spatiotemporal dynamics of ecosystem service supply-demand risk from the perspective of service flow to support regional ecosystem management: A case study of yangtze river delta urban agglomeration[J]. Journal of Cleaner Production, 460: 142598. |
[14] | JIA Q Q, JIAO L M, LIAN X H, et al., 2023. Linking supply-demand balance of ecosystem services to identify ecological security patterns in urban agglomerations[J]. Sustainable Cities and Society, 92: 104497. |
[15] | LEE H, LAUTENBACH S, 2016. A quantitative review of relationships between ecosystem services[J]. Ecological Indicators, 66: 340-351. |
[16] | LI Q, BAO Y, WANG Z T, CHEN X T, et al., 2024. Trade-offs and synergies of ecosystem services in karst multi-mountainous cities[J]. Ecological Indicators, 159: 111637. |
[17] | LIU H M, FAN Y L, DING S Y, 2016. Research progress og ecosystem service flow[J]. Chinese Journal of Applied Ecology, 27(7): 2161-2171. |
[18] | LIU J Y, QIN K Y, XIE G D, et al., 2022a. Is the ‘water tower’ reassuring? Viewing water security of Qinghai-Tibet Plateau from the perspective of ecosystem services ‘supply-flow-demand’[J]. Environmental Research Letters, 17(9): 094043. |
[19] | LIU W, ZHAN J Y, ZHAO F, et al., 2022b. The tradeoffs between food supply and demand from the perspective of ecosystem service flows: A case study in the Pearl River Delta, China[J]. Journal of Environmental Management, 301: 113814. |
[20] | LORILLA R S, KALOGIROU S, POIRAZIDIS K, et al., 2019. Identifying spatial mismatches between the supply and demand of ecosystem services to achieve a sustainable management regime in the Ionian Islands (Western Greece)[J]. Land Use Policy, 88: 104171. |
[21] | LYU Y F, WU C F, 2023. Managing the supply-demand mismatches and potential flows of ecosystem services from the perspective of regional integration: A case study of Hangzhou, China[J]. Science of The Total Environment, 902: 165918. |
[22] | OUYANG Z Y, SONG C S, ZHENG H, et al., 2020. Using gross ecosystem product (GEP) to value nature in decision making[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(25): 13593-14601. |
[23] | SCHIRPKE U, CANDIAGO S, EGARTER VIGL L, et al., 2018. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services[J]. Science of the Total Environment, 651(Part 1): 928-941. |
[24] | SCHRÖTER M, KOELLNER T, ALKEMADE R, et al., 2018. Interregional flows of ecosystem services: Concepts, typology and four cases[J]. Ecosystem Services, 31(Part B): 231-241. |
[25] | SHEN J, DU S Q, HUANG Q X, et al., 2019. Mapping the city-scale supply and demand of ecosystem flood regulation services: A case study in Shanghai[J]. Ecological Indicators, 106: 105544. |
[26] | SU D, CAO Y, DONG X Y, et al., 2024. Evaluation of ecosystem services budget based on ecosystem services flow: A case study of Hangzhou Bay area[J]. Applied Geography, 162: 103150. |
[27] | SUN R, JIN X B, HAN B, et al., 2022. Does scale matter? Analysis and measurement of ecosystem service supply and demand status based on ecological unit[J]. Environmental Impact Assessment Review, 95: 106785. |
[28] | WEI H J, WU J H, MA Y, et al., 2024. Identifying cross-regional ecological compensation based on ecosystem service supply, demand, and flow for landscape management[J]. Diversity, 16(9): 561. |
[29] | WU J S, FAN X N, LI K Y, et al., 2023. Assessment of ecosystem service flow and optimization of spatial pattern of supply and demand matching in Pearl River Delta, China[J]. Ecological Indicators, 153: 110452. |
[30] | WU J Y, HUANG Y T, JIANG W K, 2022. Spatial matching and value transfer assessment of ecosystem services supply and demand in urban agglomerations: A case study of the Guangdong-Hong Kong-Macao Greater Bay area in China[J]. Journal of Cleaner Production, 375: 134081. |
[31] | XU J, WANG S, XIAO Y, et al., 2021. Mapping the spatiotemporal heterogeneity of ecosystem service relationships and bundles in Ningxia, China[J]. Journal of Cleaner Production, 294: 126216. |
[32] | XU L Y, HANG Y, JIN F, 2023. Evaluating the supply-demand relationship for urban green parks in Beijing from an ecosystem service flow perspective[J]. Urban Forestry & Urban Greening, 85: 127974. |
[33] | YANG J, HUANG X, 2021. The 30 m annual land cover and its dynamics in China from 1990 to 2019[J]. Earth System Science Data Discussions, 13(8): 3907-3925. |
[34] | YU Y Y, LI J, HAN L Q, et al., 2023. Research on ecological compensation based on the supply and demand of ecosystem services in the Qinling-Daba Mountains[J]. Ecological Indicators, 154: 110687. |
[35] | YUAN Y, BAI Z K, ZHANG J J, et al., 2022. Investigating the trade-offs between the supply and demand for ecosystem services for regional spatial management[J]. Journal of Environmental Management, 325(Part A): 116591. |
[36] | ZHANG H J, FENG J, ZHANG Z C, et al., 2020. Regional spatial management based on supply-demand risk of ecosystem services: A case study of the Fenghe River Watershed[J]. International Journal of Environmental Research and Public Health, 17(11): 4112. |
[37] | ZHANG W F, XIONG K N, LI Y Y, et al., 2024a. Improving grassland ecosystem services for human wellbeing in the karst desertification control area: Anthropogenic factors become more important[J]. Science of the Total Environment, 946: 174199. |
[38] | ZHANG Z, WANG Q, FENG Y G, et al., 2024b. The spatio-temporal evolution of spatial structure and supply-demand relationships of the ecological network in the Yellow River Delta region of China[J]. Journal of Cleaner Production, 471: 143388. |
[39] | 白杨, 王敏, 李晖, 等, 2017. 生态系统服务供给与需求的理论与管理方法[J]. 生态学报, 37(17): 5846-5852. |
BAI Y, WANG M, LI H, et al., 2017. Ecosystem service supply and demand:Theory and management application[J]. Acta Ecologica Sinica, 37(17): 5846-5852. | |
[40] | 耿文亮, 2022. 区域生态系统服务评估及权衡/协同关系研究[D]. 郑州: 河南大学: 1-77. |
GENG W L, 2022. Regional ecosystem services assessment and research in trade-offs/synergistic relationships: A case study of the affected areas of the Lower Yellow river[D]. Zhengzhou: Henan Univerisity: 1-77. | |
[41] | 李杰, 2021. 城市化背景下郑州市河流景观廊道的时空演变与生态修复研究[D]. 郑州: 河南农业大学: 1-198. |
LI J, 2021. Research on trmporal-spatial evolution and ecological restoration of river landscape corridor in Zhengzhou under the background of urbanization[D]. Zhengzhou: Henan Agricultural Univerisity: 1-198. | |
[42] | 生态环境部, 2015. 生态保护红线划定技术指南[EB/OL]. [2015-4-30] https://www.mee.gov.cn/gkml/hbb/bwj/201505/W020150519635317083395.pdf. |
Ministry of Ecology and Environment of the People’s Republic of China, 2015. Technical guidelines for the delineation of ecological protection red Lines[EB/OL]. [2015-4-30] https://www.mee.gov.cn/gkml/hbb/bwj/201505/W020150519635317083395.pdf. | |
[43] |
陶宇, 欧维新, 孙晓, 2024. 生态系统服务供需关系评估的几点思考[J]. 应用生态学报, 35(9): 2423-2431.
DOI |
TAO Y, OU W X, SUN X, 2024. Some critical thinking on the integrative assesment of ecosystem servoce supply and demand relationships[J]. Chinese Journal of Applied Ecology, 35(9): 2423-2431.
DOI |
|
[44] |
夏沛, 彭建, 徐子涵, 等, 2024. 生态系统服务流概念内涵与量化方法[J]. 地理学报, 79(3): 584-599.
DOI |
XIA P, PENG J, XU Z H, et al., 2024. Conceptual connotation and quantification methods of ecosystem service flows[J]. Acta Geographica Sinica, 79(3): 584-599.
DOI |
|
[45] | 肖倩倩, 2023. 花园口黄河决堤对黄泛区生态环境的影响[J]. 中国历史地理论丛, 38(4): 24-35, 65. |
XIAO Q Q, 2023. The impat of the Yellow River’s dyke broke in 1938 on ecological environment in the flooded area[J]. Journal of Chinese Historical Geography, 38(4): 24-35, 65. | |
[46] | 许华, 2008. 近70年来黄泛区农业景观生态系统动态研究[D]. 郑州: 河南大学: 1-61 |
XU H, 2008. Research on landscape dynamics of agricutural ecosystems in the flooded area of the Yellow River from 1938 to 2002[D]. Zhengzhou: Henan Univerisity: 1-61. |
[1] | 程鹏, 孙明东, 宋晓伟. 中国灰水足迹时空动态演进及驱动因素研究[J]. 生态环境学报, 2024, 33(5): 745-756. |
[2] | 雷金睿, 陈宗铸, 陈毅青, 陈小花, 李苑菱, 吴庭天. 1990—2018年海南岛湿地景观格局演变及其驱动力分析[J]. 生态环境学报, 2020, 29(1): 59-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||