[1] |
ADELEKE R, NWANGBURUKA C, OBOIRIEN B, 2017. Origins, roles and fate of organic acids in soils: A review[J]. South African Journal of Botany, 108: 393-406.
|
[2] |
ALOZIE N, HEANEY N, LIN C, 2018. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids[J]. Science of the Total Environment, 630: 1188-1194.
|
[3] |
ASH C, TEJNECKÝ V, BORŮVKA L, et al., 2016. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil[J]. Journal of Contaminant Hydrology, 187: 18-30.
DOI
PMID
|
[4] |
BISWAS A, BESOLD J, SJÖSTEDT C, et al., 2019. Complexation of arsenite, arsenate, and monothioarsenate with oxygen-containing functional groups of natural organic matter: An XAS study[J]. Environmental Science & Technology, 53(18): 10723-10731.
|
[5] |
CHI Y H, PENG L, TAM N F-Y, et al., 2022. Effects of fly ash and steel slag on cadmium and arsenic accumulation in rice grains and soil health: A field study over four crop seasons in Guangdong, China[J]. Geoderma, 419: 115879.
|
[6] |
CAPORALE A, VIOLANTE A, 2016. Chemical processes affecting the mobility of heavy metals and metalloids in soil environments[J]. Current Pollution Reports, 2: 15-27.
|
[7] |
FENG Z J, FAN Z L, SONG H P, et al., 2021. Biochar induced changes of soil dissolved organic matter: The release and adsorption of dissolved organic matter by biochar and soil[J]. Science of the Total Environment, 783: 147091.
|
[8] |
HEANEY N, UKPONG E, LIN C X, 2020. Low-molecular-weight organic acids enable biochar to immobilize nitrate[J]. Chemosphere, 240: 124872.
|
[9] |
HUANG B, YUAN Z J, LI D Q, et al., 2020. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review[J]. Environmental Science: Processes & Impacts, 22(8): 1596-1615.
|
[10] |
HUANG Y T, WANG M, MAO X F, et al., 2015. Concentrations of inorganic arsenic in milled rice from China and associated dietary exposure assessment[J]. Journal of Agricultral and Food Chemistry, 63(50): 10838-10845.
|
[11] |
JIANG H, LI T Q, HAN X, et al., 2012. Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils[J]. Environmental Monitoring and Assessment, 184(10): 6325-6335.
DOI
PMID
|
[12] |
JIANG O Y, LI L Y, DUAN G L, et al., 2023. Root exudates increased arsenic mobility and altered microbial community in paddy soils[J]. Journal of Environmental Sciences, 127: 410-420.
DOI
PMID
|
[13] |
KAYA C, UĞURLAR F, ASHRAF M, et al., 2024. Microbial consortia-mediated arsenic bioremediation in agricultural soils: Current status, challenges, and solutions[J]. Science of The Total Environment, 917: 170297.
|
[14] |
KICIŃSKA A, POMYKAŁA R, IZQUIERDO‐DIAZ M, 2022. Changes in soil pH and mobility of heavy metals in contaminated soils[J]. European Journal of Soil Science, 73(1): e13203.
|
[15] |
LI G, KHAN S, IBRAHIM M, et al., 2018. Biochars induced modification of dissolved organic matter (DOM) in soil and its impact on mobility and bioaccumulation of arsenic and cadmium[J]. Journal of Hazardous Materials, 348: 100-108.
DOI
PMID
|
[16] |
LIANG M Y, GUO H M, XIU W, 2022. Effects of low molecular weight organic acids with different functional groups on arsenate adsorption on birnessite[J]. Journal of Hazardous Materials, 436: 129108.
|
[17] |
LIU Z Y, YANG R, XIANG X Y, et al., 2023. Enhancement of phytoextraction efficiency coupling Pteris vittata with low-dose biochar in arsenic-contaminated soil[J]. International Journal of Phytoremediation, 25(13): 1810-1818.
|
[18] |
LIU Z X, XU Z Y, XU L F, et al., 2022. Modified biochar: Synthesis and mechanism for removal of environmental heavy metals[J]. Carbon Research, 1: 8.
|
[19] |
MEI K, LIU J C, SHI R, et al., 2020. The migrated behavior and bioavailability of arsenic in mangrove sediments affected by pH and organic acids[J]. Marine Pollution Bulletin, 159: 111480.
|
[20] |
MENG F D, HUANG Q X, CAI Y B, et al., 2022. Effects of biowaste-derived biochar on the dynamic behavior of cadmium fractions in soils[J]. Environmental Science and Pollution Research, 29(39): 59043-59051.
|
[21] |
MENG F D, HUANG Q X, CAI Y B, et al., 2023. A comparative assessment of humic acid and biochar altering cadmium and arsenic fractions in a paddy soil[J]. Journal of Soils and Sediments, 23(2): 845-855.
|
[22] |
MENG F D, HUANG Q X, LARSON S L, et al., 2021. The adsorption characteristics of uranium (VI) from aqueous solution on leonardite and leonardite-derived humic acid: A comparative study[J]. Langmuir, 37(43): 12557-12567.
|
[23] |
ONIRETI O O, LIN C X, QIN J H, 2017. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils[J]. Chemosphere, 170: 161-168.
DOI
PMID
|
[24] |
PIGNA M, CAPORALE A G, CAVALCA L, et al., 2015. Arsenic in the soil environment: Mobility and phytoavailability[J]. Environmental Engineering Science, 32(7): 551-563.
|
[25] |
RAJU N J, 2022. Arsenic in the geo-environment: A review of sources, geochemical processes, toxicity and removal technologies[J]. Environmental Research, 203(14): 111782.
|
[26] |
ROCHA D R, BARBER X, JORDÁN-VIDAL M M, et al., 2022. Multivariate analysis with XRD sata as a fingerprinting technique to study burned soils[J]. Minerals, 12(11): 1402.
|
[27] |
ROKONUZZAMAN M, LI W C, MAN Y B, et al., 2022. Arsenic accumulation in rice: Sources, human health impact and probable mitigation approaches[J]. Rice Science, 29(4): 309-327.
DOI
|
[28] |
VIOLANTE A, COZZOLINO V, PERELOMOV L, et al., 2010. Mobility and bioavailability of heavy metals and metalloids in soil environments[J]. Journal of Soil Science and Plant Nutrition, 10(3): 268-292.
|
[29] |
WANG P C, PENG H, LIU J L, et al., 2020. Effects of exogenous dissolved organic matter on the adsorption-desorption behaviors and bioavailabilities of Cd and Hg in a plant-soil system[J]. Science of the Total Environment, 728: 138252.
|
[30] |
WANG Z, HAN R X, MUHAMMAD A, et al., 2022. Correlative distribution of DOM and heavy metals in the soils of the Zhangxi watershed in Ningbo city, east of China[J]. Environmental Pollution, 299: 118811.
|
[31] |
XU W P, LIU C S, ZHU J M, et al., 2022. Adsorption of cadmium on clay-organic associations in different pH solutions: The effect of amphoteric organic matter[J]. Ecotoxicology and Environmental Safety, 236: 113509.
|
[32] |
XIAO L, WU J H, LI W H, et al., 2023. Mineral coating enhances the carbon sequestration capacity of biochar derived from Paulownia biowaste[J]. Agronomy, 13(9): 2361.
|
[33] |
ZHANG X F, ELSAYED I, NAVARATHNA C, et al., 2019. Biohybrid hydrogel and aerogel from self-assembled nanocellulose and nanochitin as a high-efficiency adsorbent for water purification[J]. ACS Applied Materials & Interfaces, 11(50): 46714-46725.
|
[34] |
关连珠, 周景景, 张昀, 等, 2013. 不同来源生物炭对砷在土壤中吸附与解吸的影响[J]. 应用生态学报, 24(10): 2941-2946.
|
|
GUAN L Z, ZHOU J J, ZHANG Y, et al., 2013. Effects of biochars produced from different sources on arsenic adsorption and desorption in soil[J]. Chinese Journal of Applied Ecology, 24(10): 2941-2946.
|
[35] |
剧永望, 马露冉, 毛佳璇, 等, 2023. 秸秆生物炭吸附/钝化土壤重金属的过程机理与影响因素[J]. 生态毒理学报, 18(5): 13-30.
|
|
JU Y W, MA L R, MAO J X, et al., 2023. Mechanisms and influencing factors for soil heavy metals adsorption/passivation by straw biochar[J]. Asian Journal of Ecotoxicology, 18(5): 13-30.
|
[36] |
李鸿博, 钟怡, 张昊楠, 等, 2020. 生物炭修复重金属污染农田土壤的机制及应用研究进展[J]. 农业工程学报, 36(13): 173-185.
|
|
LI H B, ZHONG Y, ZHANG H N, et al., 2020. Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(13): 173-185.
|
[37] |
李廷强, 杨肖娥, 2004. 土壤中水溶性有机质及其对重金属化学与生物行为的影响[J]. 应用生态学报, 15(6): 1083-1087.
|
|
LI T Q, YANG X E, 2004. Soil dissolved organic matter and its effect on chemical and biological behaviors of soil heavy metals[J]. Chinese Journal of Applied Ecology, 15(6): 1083-1087.
|
[38] |
生态环境部, 国家市场监督管理局, 2018. 土壤环境质量农用地土壤污染风险管控标准 (试行): GB 15618—2018[S]. 中国环境出版集团.
|
|
Ministry of Ecology and Environment, State Administration for Market Regulation, 2018. Soil environment quality risk control standard for soilcontamination of agriculture land: GB 15618—2018[S]. Beijing: China Environmental Science Press.
|
[39] |
杨帆, 徐洋, 崔勇, 等, 2017. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 54(5): 1047-1056.
|
|
YANG F, XU Y, CUI Y, et al., 2017. Variation of soil organic matter content in croplands of China over the last three decades[J]. Acta Pedologica Sinica, 54(5): 1047-1056.
|
[40] |
张鹏飞, 董颖博, 林海, 等, 2023. 江西某铜矿废石堆周边土壤对重金属的吸附-解吸行为[J]. 金属矿山, 52(2): 239-246.
|
|
ZHANG P F, DONG Y B, LIN H, et al., 2023. Adsorption and desorption behavior of heavy metals on soils around a copper mine waste dump in Jiangxi Province[J]. Metal Mine, 52(2): 239-246.
|
[41] |
张伟明, 修立群, 吴迪, 等, 2021. 生物炭的结构及其理化特性研究回顾与展望[J]. 作物学报, 47(1): 1-18.
DOI
|
|
ZHANG W M, XIU L Q, WU D, et al., 2021. Review of biochar structure and physicochemical properties[J]. Acta Agronomica Sinica, 47(1): 1-18.
|
[42] |
张晓峰, 方利平, 李芳柏, 等, 2020. 水稻全生育期内零价铁与生物炭钝化土壤镉砷的协同效应与机制[J]. 生态环境学报, 29(7): 1455-1465.
DOI
|
|
ZHANG X F, FANG L P, LI F B, et al., 2020. Synergistic passivating effects and mechanisms of zero valent iron and biochar on cadmium and arsenic in paddy soil over a whole growth period of rice[J]. Ecology and Environmental Sciences, 29(7): 1455-1465.
|