[1] |
ANTONIO N, ALESSANDRO P, 2013. Molecular characterization of dissolved organic matter (DOM): A critical review[J]. Analytical and Bioanalytical Chemistry, 405(1): 109-124.
DOI
PMID
|
[2] |
BRUNNER T J, WICK P, MANSER P, et al., 2006. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility[J]. Environmental Science & Technology, 40(14): 4374-4381.
|
[3] |
CHEN J W, XIU Z M, LOWRY G V, et al., 2011. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron[J]. Water Research, 45(5): 1995-2001.
DOI
PMID
|
[4] |
COSTA C H D, PERREAULT F, OUKARROUM A, et al., 2016. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii[J]. Science of the Total Environment, 565: 951-960.
|
[5] |
CUI Y, KELES S, CHARBONNIER L-M, et al., 2020. Combined immunodeficiency caused by a loss-of-function mutation in DNA polymerase delta[J]. The Journal of Allergy and Clinical Immunology, 145(1): 391-401.
|
[6] |
FATIMA N, JULIA C, ISEULT L, 2020. Nanomaterials in the environment acquire an “eco-corona” impacting their toxicity to daphnia magna-a call for updating toxicity testing policies[J]. Proteomics, 20(9): e1800412.
|
[7] |
GNANAMUTHU S S, BISWANATH M, DARSHAN B, et al., 2019. Adsorption and desorption of chromium with humic acid coated iron oxide nanoparticles[J]. Environmental Science and Pollution Research International, 26(29): 30044-30054.
DOI
PMID
|
[8] |
GUO J H, MA Z H, PENG J L, et al., 2021. Transcriptomic analysis of Raphidocelis subcapitata exposed to erythromycin: The role of DNA replication in hormesis and growth inhibition[J]. Journal of Hazardous Materials, 402: 123512.
|
[9] |
ISHIMI Y, 1997. A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex[J]. The Journal of Biological Chemistry, 272(39): 24508-24513.
|
[10] |
KTEEBA S M, EL-ADAWI H I, EL-RAYIS O A, et al., 2017. Zinc oxide nanoparticle toxicity in embryonic zebrafish: Mitigation with different natural organic matter[J]. Environmental Pollution, 230: 1125-1140.
DOI
PMID
|
[11] |
KUMAR D, RAJESHWARI A, JADON P S, et al., 2015. Cytogenetic studies of Chromium(Ⅲ) oxide nanoparticles on Allium cepa root tip cells[J]. Journal of Environmental Sciences, 38(12): 150-157.
|
[12] |
LIN D H, JI J, LONG Z F, et al., 2012. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp[J]. Water Research, 46(14): 4477-4487.
|
[13] |
LIU H H, YANG L, LI X, et al., 2023. The ecotoxicological effects of chromium (III) oxide nanoparticles to Chlorella sp.: Perspective from the physiological and transcriptional responses[J]. Environmental Science and Pollution Research International, 30(19): 55079-55091.
|
[14] |
LIU X, JIN X, CAO B, et al., 2014. Bactericidal activity of silver nanoparticles in environmentally relevant freshwater matrices: Influences of organic matter and chelating agent[J]. Journal of Environmental Chemical Engineering, 2(1): 525-531.
|
[15] |
MATE J M, SEGURA J A, ALONSO F J, et al., 2006. Pathways from glutamine to apoptosis[J]. Frontiers in Bioscience: A Journal and Virtual Library, 11: 3164-3180.
|
[16] |
OCDE, 2006. Guideline for testing of chemicals test 201: Freshwater alga and cyanobacteria, growth inhibition test[M]. Organization for Economic Cooperation and Development (OECD). Paris: OECD: 1-1.
|
[17] |
PUERARI R C, DA COST C H, VICENTINI D S, et al., 2016. Synthesis, characterization and toxicological evaluation of Cr2O3 nanoparticles using Daphnia magna and Aliivibrio fischeri[J]. Ecotoxicology and Environmental Safety, 128: 36-43.
|
[18] |
QI J S, SONG C P, WANG B S, et al., 2018. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack[J]. Journal of Integrative Plant Biology, 60(9): 805-826.
DOI
|
[19] |
SCHOEPPE R, BABL N, DECKING S-M, et al., 2023. Glutamine synthetase expression rescues human dendritic cell survival in a glutamine-deprived environment[J]. Frontiers in Oncology, 13: 1120194.
|
[20] |
TANG W W, ZENG G M, GONG J L, et al., 2014. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review[J]. Science of the Total Environment, 468-469: 1014-1027.
|
[21] |
TIMOFEYEV M A, SHATILINA Z M, BEDULINA D S, et al., 2007. Natural organic matter (NOM) has the potential to modify the multixenobiotic resistance (MXR) activity in freshwater amphipods Eulimnogammarus cyaneus and E. verrucosus[J]. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 146(4): 496-503.
|
[22] |
WANG Z Y, LI J, ZHAO J, et al., 2011. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter[J]. Environmental Science & Technology, 45(14): 6032-6040.
|
[23] |
XIE C J, MA Y H, ZHANG P, et al., 2021. Elucidating the origin of the toxicity of nano-CeO2 to Chlorella pyrenoidosa: The role of specific surface area and chemical composition[J]. Environmental Science-Nano, 8(6): 1701-1712.
|
[24] |
YANG Q, ZHANG R, WANG X W, et al., 2004. The mismatch DNA repair heterodimer, hMSH2/6, regulates BLM helicase[J]. Oncogene, 23(21): 3749-3756.
PMID
|
[25] |
YANG S P, BAR-ILAN O, PETERSON R E, et al., 2013. Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish[J]. Environmental Science & Technology, 47(9): 4718-4725.
|
[26] |
YIN J Y, FAN W H, DU J, et al., 2020. The toxicity of graphene oxide affected by algal physiological characteristics: A comparative study in cyanobacterial, green algae, diatom[J]. Environmental Pollution, 260: 113847.
|
[27] |
ZHANG L Q, LEI C, YANG K, et al., 2018. Cellular response of Chlorella pyrenoidosa to oxidized multi-walled carbon nanotubes[J]. Environmental Science: Nano, 5(10): 2415-2425.
|
[28] |
ZHAO S L, HE L, LU Y F, et al., 2017. The impact of modified nano-carbon black on the earthworm Eisenia fetida under turfgrass growing conditions: Assessment of survival, biomass, and antioxidant enzymatic activities[J]. Journal of Hazardous Materials, 338: 218-223.
DOI
PMID
|
[29] |
ZHENG X Y, XU Z X, ZHAO D M, et al., 2022. Double-dose responses of Scenedesmus capricornus microalgae exposed to humic acid[J]. Science of the Total Environment, 806(Part1): 150547-150547.
|
[30] |
ZHU J N, YU Z M, HE L Y, et al., 2018. Molecular mechanism of modified clay controlling the brown tide organism aureococcus anophagefferens revealed by transcriptome analysis[J]. Environmental Science & Technology, 52(12): 7006-7014.
|
[31] |
吉喜燕, 唐静懿, 叶璟, 等, 2021. 碳基纳米铜复合材料对普通小球藻胁迫作用的研究[J]. 生态环境学报, 30(3): 578-585.
DOI
|
|
JI X Y, TANG J Y, YE J, et al., 2021. Stressed effects of C-Cu2O nanoparticles on Chlorella vulgaris[J]. Ecology and Environmental Sciences, 30(3): 578-585.
|
[32] |
孟甜甜, 2018. 腐殖酸对石墨烯及其功能化衍生物微藻毒性的影响研究[D]. 大连: 大连理工大学:59.
|
|
MENG T T, 2018. Effects of humic acid on toxicity of graphene-family materials to alage[D]. Dalian: Dalian University of Technology:59.
|
[33] |
朱晓宇, 2006. 细胞周期调控基因与POLD1基因转录活性的相关性研究[D]. 北京: 北京师范大学:113.
|
|
ZHU X Y, 2006. Relationship between cell cycle regulatory genes and transcription of POLD1 gene[D]. Beijing: Beijing Normal University:113.
|