生态环境学报 ›› 2024, Vol. 33 ›› Issue (1): 111-118.DOI: 10.16258/j.cnki.1674-5906.2024.01.012
林健晖1,2,3(), 李萍萍3, 刘敏1,2,3, 邓希3, 康子歆3, 杨涛3, 展舒悦3, 曾映旭1,2,3,*(
)
收稿日期:
2023-08-29
出版日期:
2024-01-18
发布日期:
2024-03-19
通讯作者:
*曾映旭。E-mail: zengyx@hntou.edu.cn作者简介:
林健晖(1999年生),男,硕士研究生,研究方向为海洋环境毒理学。E-mail: linjianhui1999@163.com
基金资助:
LIN Jianhui1,2,3(), LI Pingping3, LIU Min1,2,3, DENG Xi3, KANG Zixin3, YANG Tao3, ZHAN Shuyue3, ZENG Yingxu1,2,3,*(
)
Received:
2023-08-29
Online:
2024-01-18
Published:
2024-03-19
摘要:
近年来,微塑料在海洋环境中的广泛分布及其生物毒性效应与健康风险备受关注。天然海洋环境中,微塑料表面易被多种微生物定殖并形成生物膜,这可能影响微塑料的生物毒性,然而目前对其影响仍知之甚少。以海南典型双壳贝类文蛤(Meretrix lyrata)为受试动物,并以其重要的呼吸和滤食器官鳃为靶器官,研究生物膜对微塑料生物毒性的影响。通过将文蛤暴露在质量浓度为100 μg∙L−1的不同类型原始和生物膜附着的微塑料(聚苯乙烯PS、聚乙烯PE、聚对苯二甲酸乙二醇酯PET)环境中14 d,研究微塑料在文蛤鳃中的富集特征及其对鳃组织的病理损伤、抗氧化及免疫防御系统相关指标的影响。结果表明,原始和生物膜附着微塑料均能在文蛤鳃组织中富集,富集量随暴露时间延长而增加,且生物膜附着微塑料的生物富集效应更显著;微塑料富集导致鳃组织发生不同程度的机械损伤,出现鳃丝粘连、萎缩及断裂、鳃丝细胞坏死、纤毛脱落等病理现象,其中附着生物膜的微塑料比原始微塑料对鳃显微结构的损伤更为明显;微塑料胁迫造成超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和碱性磷酸酶(ALP)活性升高,谷胱甘肽(GSH)含量下降,丙二醛(MDA)含量无显著变化;不同类型原始和附着生物膜微塑料均诱导了文蛤鳃组织的氧化应激和免疫反应,但未产生脂质过氧化损伤。此外,实验结果表明生物膜附着的微塑料比微塑料单独作用对文蛤鳃的毒性效应更强。该研究为评价海洋环境中附着生物膜的微塑料对水生生物的毒性机制及健康风险提供科学依据。
中图分类号:
林健晖, 李萍萍, 刘敏, 邓希, 康子歆, 杨涛, 展舒悦, 曾映旭. 不同生物膜附着微塑料对文蛤鳃的毒性效应[J]. 生态环境学报, 2024, 33(1): 111-118.
LIN Jianhui, LI Pingping, LIU Min, DENG Xi, KANG Zixin, YANG Tao, ZHAN Shuyue, ZENG Yingxu. Biotoxicity of Different Biofilm-coated Microplastics in Gills of Clam Meretrix lyrata[J]. Ecology and Environment, 2024, 33(1): 111-118.
图2 不同类型微塑料在文蛤鳃组织中的富集量 n=3,不同字母表示同一时间段中各处理间差异显著(P<0.05),*表示同一实验组不同时间处理的差异显著(P<0.05)
Figure 2 Content of different types of microplastics in the gills of Meretrix lyrata
图3 不同类型微塑料暴露后文蛤鳃组织的显微结构特征 鳃丝粘连(AG);鳃丝断裂(DG);鳃肿大(BS);纤毛脱落(CS);?:血细胞浸润;?:鳃丝细胞坏死。比例尺30 μm
Figure 3 Microstructure features of gill of Meretrix lyrata after exposure to different types of microplastics
图4 不同类型微塑料暴露下文蛤鳃组织内生物标志物活性/含量变化 n=6,不同字母表示同一时间段中各处理间差异显著(P<0.05),*表示同一组不同时间处理的差异显著(P<0.05)
Figure 4 Changes in the activity/content of biomarkers in the gills of Meretrix lyrata under different types of microplastic exposure
[1] |
ALNAJAR N, JHA A N, TURNER A, et al., 2021. Impacts of microplastic fibres on the marine mussel, Mytilus galloprovinciallis[J]. Chemosphere, 262: 128290.
DOI URL |
[2] |
BANDINI F, HCHAICHI I, ZITOUNI N, et al., 2021. Bacterial community profiling of floating plastics from South Mediterranean sites: First evidence of effects on mussels as possible vehicles of transmission[J]. Journal of Hazardous Materials, 411: 125079.
DOI URL |
[3] |
BRATE I L N, BLAZQUEZ M, BROOKS S J, et al., 2018. Weathering impacts the uptake of polyethylene microparticles from toothpaste in Mediterranean mussels (M. galloprovincialis)[J]. Science of the Total Environment, 626: 1310-1318.
DOI URL |
[4] |
BRINGER A, CACHOT J, DUBILLOT E, et al., 2022. Intergenerational effects of environmentally-aged microplastics on the Crassostrea gigas[J]. Environmental Pollution, 294: 118600.
DOI URL |
[5] |
DING J F, LI J X, SUN C J, et al., 2020. An examination of the occurrence and potential risks of microplastics across various shellfish[J]. Science of the Total Environment, 739: 139887.
DOI URL |
[6] |
FABRA M, WILLIAMS L, WATTS J E M, et al., 2021. The plastic Trojan horse: Biofilms increase microplastic uptake in marine filter feeders impacting microbial transfer and organism health[J]. Science of the Total Environment, 797(1): 149217.
DOI URL |
[7] |
FU L T, XI M, NICHOLAUS R, et al., 2022. Behaviors and biochemical responses of macroinvertebrate Corbicula fluminea to polystyrene microplastics[J]. Science of the Total Environment, 813: 152617.
DOI URL |
[8] |
HAMM T, LENZ M, 2021. Negative impacts of realistic doses of spherical and irregular microplastics emerged late during a 42 weeks-long exposure experiment with blue mussels[J]. Science of The Total Environment, 778: 146088.
DOI URL |
[9] |
HARRIS P T, 2020. The fate of microplastic in marine sedimentary environments: A review and synthesis[J]. Marine Pollution Bulletin, 158: 111398.
DOI URL |
[10] |
HU L H, ZHAO Y, XU H Y, 2022. Trojan horse in the intestine: A review on the biotoxicity of microplastics combined environmental contaminants[J]. Journal of Hazardous Materials, 439: 129652.
DOI URL |
[11] |
HUANG W, WANG X H, CHEN D Y, et al., 2021. Toxicity mechanisms of polystyrene microplastics in marine mussels revealed by high-coverage quantitative metabolomics using chemical isotope labeling liquid chromatography mass spectrometry[J]. Journal of Hazardous Materials, 417: 126003.
DOI URL |
[12] |
INOUE K, ONITSUKA Y, KOITO T, et al., 2021. Mussel biology: from the byssus to ecology and physiology, including microplastic ingestion and deep-sea adaptations[J]. Fisheries Science, 87(6): 761-771.
DOI |
[13] |
KHALID N, AQEEL M, NOMAN A, et al., 2021. Linking effects of microplastics to ecological impacts in marine environments[J]. Chemosphere, 264(Part 2): 128541.
DOI URL |
[14] |
KIM J H, YU Y B, CHOI J H, 2021. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review[J]. Journal of Hazardous Materials, 413: 125423.
DOI URL |
[15] |
LEITE I D P, SANDRINI-NETO L, SQUELLA F L, et al., 2021. Toxin accumulation, detoxification and oxidative stress in bivalve (Anomalocardia flexuosa) exposed to the dinoflagellate Prorocentrum lima[J]. Aquatic Toxicology, 232: 105738.
DOI URL |
[16] |
LI R X, NIE J J, QIU D G, et al., 2023. Toxic effect of chronic exposure to polyethylene nano/microplastics on oxidative stress, neurotoxicity and gut microbiota of adult zebrafish (Danio rerio)[J]. Chemosphere, 339: 139774.
DOI URL |
[17] |
LI Z L, FENG C H, WU Y H, et al., 2020. Impacts of nanoplastics on bivalve: Fluorescence tracing of organ accumulation, oxidative stress and damage[J]. Journal of Hazardous Materials, 392: 122418.
DOI URL |
[18] | LI Z Q, CHANG X Q, HU M H, et al., 2022. Is microplastic an oxidative stressor? Evidence from a meta-analysis on bivalves[J]. Journal of Hazardous Materials, 423(Part B): 127211. |
[19] |
MKUYE R, GONG S L, ZHAO L Q, et al., 2022. Effects of microplastics on physiological performance of marine bivalves, potential impacts, and enlightening the future based on a comparative study[J]. Science of the Total Environment, 838(Part 1): 155933.
DOI URL |
[20] |
MAZORRA M T, RUBIO J A, BLASCO J, 2002. Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 131(2): 241-249.
DOI URL |
[21] |
PEDERSEN A F, GOPALAKRISHNAN K, BOEGEHOLD A G, et al., 2020. Microplastic ingestion by quagga mussels, Dreissena bugensis, and its effects on physiological processes[J]. Environmental Pollution, 260: 113964.
DOI URL |
[22] |
PENG L C, FU D D, QI H Y, et al., 2020. Micro- and nano-plastics in marine environment: Source, distribution and threats: A review[J]. Science of the Total Environment, 698: 134254.
DOI URL |
[23] |
PHUONG N N, FAUVELLE V, GRENZ C, et al., 2021. Highlights from a review of microplastics in marine sediments[J]. Science of The Total Environment, 777: 146225.
DOI URL |
[24] | RAMSPERGER A F R M, NARAYANA V K B, GROSS W, et al., 2020. Environmental exposure enhances the internalization of microplastic particles into cells[J]. Science Advances, 6(50): eabd1211. |
[25] |
REVEL M, LAGARDE F, PERREIN-ETTAJANI H, et al., 2019. Tissue- specific biomarker responses in the blue mussel mytilus spp. exposed to a mixture of microplastics at environmentally relevant concentrations[J]. Frontiers in Environmental Science, 7: 00033.
DOI URL |
[26] | RUMMEL C D, JAHNKE A, GOROKHOVA E, et al., 2017. Impacts of biofilm formation on the Fate and potential effects of microplastic in the aquatic environment[J]. Environmental Science & Technology Letters, 4(7): 258-267. |
[27] |
SANTANA M F M, MOREIRA F T, PEREIRA C D S, et al., 2018. Continuous exposure to microplastics does not cause physiological effects in the cultivated mussel Perna perna[J]. Archives of Environmental Contamination and Toxicology, 74(4): 594-604.
DOI |
[28] |
SIKDOKUR E, BELIVERMIS M, SEZER N, et al., 2020. Effects of microplastics and mercury on manila clam Ruditapes philippinarum: Feeding rate, immunomodulation, histopathology and oxidative stress[J]. Environmental Pollution 262: 114247.
DOI URL |
[29] |
SUN S G, SHI W, TANG Y, et al., 2020. Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms[J]. Science of the Total Environment, 728: 138852.
DOI URL |
[30] |
SUN X X, LI Q J, ZHU M L, et al., 2017. Ingestion of microplastics by natural zooplankton groups in the northern South China Sea[J]. Marine Pollution Bulletin, 115(1-2): 217-224.
DOI PMID |
[31] |
TENG J, ZHAO J M, ZHU X P, et al., 2021. Toxic effects of exposure to microplastics with environmentally relevant shapes and concentrations: Accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas[J]. Environmental Pollution, 269: 116169.
DOI URL |
[32] |
VROOM R J E, KOELMANS A A, BESSELING E, et al., 2017. Aging of microplastics promotes their ingestion by marine zooplankton[J]. Environmental Pollution, 231(Part 1): 987-996.
DOI URL |
[33] |
WANG S X, HU M H, ZHENG J H, et al., 2021. Ingestion of nano/micro plastic particles by the mussel Mytilus coruscus is size dependent[J]. Chemosphere, 263: 127957.
DOI URL |
[34] |
WEISS L, LUDWIG W, HEUSSNER S, et al., 2021. The missing ocean plastic sink: Gone with the rivers[J]. Science, 373(6550): 107-111.
DOI PMID |
[35] |
WRIGHT R J, ERNI-CASSOLA G, ZADJELOVIC V, et al., 2020. Marine plastic debris: A new surface for microbial colonization[J]. Environmental Science & Technology, 54(19): 11657-11672.
DOI URL |
[36] |
ZENG Y X, DENG B C, KANG Z X, et al., 2023. Tissue accumulation of polystyrene microplastics causes oxidative stress, hepatopancreatic injury and metabolome alterations in Litopenaeus vannamei[J]. Ecotoxicology and Environmental Safety, 256: 114871.
DOI URL |
[37] |
ZHANG Y K, YANG B K, ZHANG C N, et al., 2022. Effects of polystyrene microplastics acute exposure in the liver of swordtail fish (Xiphophorus helleri) revealed by LC-MS metabolomics[J]. Science of the Total Environment, 850: 157772.
DOI URL |
[38] |
ZHOU Y F, LI Y P, LAN W L, et al., 2022. Short-term exposure to MPs and DEHP disrupted gill functions in marine bivalves[J]. Nanomaterials, 12(22): 4077.
DOI URL |
[39] | 李大圳, 章宇晴, 付茜茜, 等, 2022. 海洋环境暴露下生物膜对微塑料的理化性质和环境行为影响研究进展[J]. 生态毒理学报, 17(3): 339-353. |
LI D Z, ZHANG Y Q, FU Q Q, et al., 2022. A review on effects of biofilm formation on physicochemical properties and environmental behavior of microplastics in marine environment[J]. Asian Journal of Ecotoxicology, 17(3): 339-353. | |
[40] | 康子歆, 林健晖, 杨涛, 等, 2023. 不同官能团纳米塑料在波纹巴非蛤体内的蓄积特征及毒性效应[J]. 海洋环境科学, 42(3): 362-368. |
KANG Z X, LIN J H, YANG T, et al., 2023. Accumulation characteristics and toxic effects of different functionalized nanoplastics in Paphia undulata[J]. Marine Environmental Science, 42(3): 362-368. |
[1] | 陈鸿展, 区晖, 叶四化, 张倩华, 周树杰, 麦磊. 珠江广州段水体微塑料的时空分布特征及生态风险评估[J]. 生态环境学报, 2023, 32(9): 1663-1672. |
[2] | 范婉仪, 涂晨, 王顺扬, 吴昕优, 李烜桢, 骆永明. 不同品种烟草对轻度污染耕地土壤中镉的累积特征与减量修复潜力[J]. 生态环境学报, 2023, 32(8): 1516-1524. |
[3] | 朱永乐, 汤家喜, 谭婷, 李玉, 向彪. 氟化工园区周边玉米中全氟/多氟化合物的污染特征[J]. 生态环境学报, 2023, 32(5): 1001-1006. |
[4] | 李海燕, 杨小琴, 简美鹏, 张晓然. 城市水体中微塑料的来源、赋存及其生态风险研究进展[J]. 生态环境学报, 2023, 32(2): 407-420. |
[5] | 何文宣, 李垒, 孙思宇, 李昌, 李久义, 田秀君. 北运河水体、沉积物和鱼类中微塑料的分布特征研究[J]. 生态环境学报, 2023, 32(11): 1901-1912. |
[6] | 李文菁, 黄月群, 黄亮亮, 李向通, 苏琼源, 孙扬言. 北部湾海洋鱼类微塑料污染特征及其风险评估[J]. 生态环境学报, 2023, 32(11): 1913-1921. |
[7] | 李成涛, 吴婉晴, 陈晨, 张勇, 张凯. 可生物降解PBAT微塑料对土壤理化性质及上海青生理指标的影响[J]. 生态环境学报, 2023, 32(11): 1964-1977. |
[8] | 刘安, 吴昊, 何贝贝. 陆地环境中纳米塑料毒性效应的研究进展[J]. 生态环境学报, 2023, 32(11): 2030-2040. |
[9] | 李双双, 蔡铭灿, 汪庆, 齐丽英, 魏贺红, 王纯. 淡水环境中微塑料与生物膜的相互作用及其生态效应研究进展[J]. 生态环境学报, 2023, 32(11): 2041-2049. |
[10] | 刘明宇, 郑旭, 强丽媛, 李鲁华, 张若宇, 王家平. 1994-2020年中国农用薄膜使用量变化与农膜微塑料污染现状分析[J]. 生态环境学报, 2023, 32(11): 2050-2061. |
[11] | 黄宏, 郑欣芸, 李迎东, 赵旭, 俞锦辰, 汪振华. 大陈岛海域不同年龄褐菖鲉对重金属富集作用研究[J]. 生态环境学报, 2022, 31(9): 1885-1891. |
[12] | 樊珂宇, 高原, 赖子尼, 曾艳艺, 刘乾甫, 李海燕, 麦永湛, 杨婉玲, 魏敬欣, 孙金辉, 王超. 珠三角河网鱼类微塑料污染特征研究[J]. 生态环境学报, 2022, 31(8): 1590-1598. |
[13] | 邓天乐, 谢立勇, 张凤哲, 赵洪亮, 蒋语童. CO2浓度升高条件下稗草与水稻生长空间竞争关系研究[J]. 生态环境学报, 2022, 31(8): 1566-1572. |
[14] | 罗松英, 李秋霞, 邱锦坤, 邓素炎, 李一锋, 陈碧珊. 南三岛土壤-红树植物系统中重金属形态特征及迁移转化规律[J]. 生态环境学报, 2022, 31(7): 1409-1416. |
[15] | 刘晓红, 刘柳青青, 栗敏, 刘强, 曹东东, 郑浩, 罗先香. 不同粒径的聚乙烯微塑料对玉米和黄瓜种子发芽和幼苗生长的影响[J]. 生态环境学报, 2022, 31(6): 1263-1271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||