生态环境学报 ›› 2023, Vol. 32 ›› Issue (9): 1682-1691.DOI: 10.16258/j.cnki.1674-5906.2023.09.015
收稿日期:
2023-05-03
出版日期:
2023-09-18
发布日期:
2023-12-11
通讯作者:
*乔云发。E-mail: qiaoyunfa@163.com作者简介:
王兴来(1998年生),男,硕士研究生,主要研究方向为农业碳足迹。E-mail: 1396139418@qq.com
基金资助:
WANG Xinglai(), MIAO Shujie, QIAO Yunfa*(
)
Received:
2023-05-03
Online:
2023-09-18
Published:
2023-12-11
摘要:
分析基于本地化参数和国际参数计算的江苏省稻麦周年轮作系统碳足迹,对评估未来农业生态系统碳足迹具有重要意义。基于农户调研数据,采用本地化参数和国际参数计算了稻季和麦季生产系统的碳足迹,并对结果进行了比较分析。结果显示,1)不同排放参数下稻季和稻麦周年轮作系统的碳足迹存在显著差异(P<0.05),国际参数下的稻麦周年轮作碳足迹比本地化参数下的稻麦周年轮作碳足迹平均高出11.5%,但小麦碳足迹在不同的参数下差异不明显(P>0.05)。2)各项农业活动对碳足迹的贡献也不同,稻麦周年轮作碳足迹主要受到CH4、N2O和氮肥的影响,在本地化和国际参数下分别占比39.7%、7.23%、32.6%和46.4%、8.72%、27.8%。3)江苏稻麦周年轮作系统中,碳足迹与氮肥和柴油的相关度较高,且氮肥和柴油表现为极显著水平(P<0.001),种植规模与碳足迹呈现显著负相关关系(r= −0.69)。4)在稻麦周年轮作中不同种植规模碳足迹存在显著差异(P<0.05)。通过比对发现,在小麦种植中不同排放参数下平均碳足迹都是大规模最小,中规模次之,小规模最大。而在水稻种植中不同排放参数下平均碳足迹都是大规模最小,小规模次之,中规模最大。综上,采用国际排放参数对江苏省稻麦周年轮作碳足迹计算结果会高于本地化排放参数,且CH4和N2O的不同核算方法是影响差异的关键因素。因此,对中国农业生产系统进行碳足迹评估时,应当选择合适的排放参数和加强实地调查,从而为中国农业生产系统碳足迹的研究制定一套统一的评价体系,为最终构建低碳农业生产体系做支撑。
中图分类号:
王兴来, 苗淑杰, 乔云发. 基于江苏省本地化参数评价稻麦周年轮作系统碳足迹[J]. 生态环境学报, 2023, 32(9): 1682-1691.
WANG Xinglai, MIAO Shujie, QIAO Yunfa. Evaluating the Carbon Footprint of the Rice-Wheat Rotation System Based on Localized Parameters in Jiangsu Province[J]. Ecology and Environment, 2023, 32(9): 1682-1691.
碳源 | 单位 | 国际参数 | 本地化参数 | |||
---|---|---|---|---|---|---|
排放系数 | 数据来源 | 排放系数 | 数据来源 | |||
水稻种子 | kgkg−1 | 0.70 | IPCC | 0.78 | CPCD | |
小麦种子 | kgkg−1 | 0.58 | IPCC | 0.59 | CPCD | |
柴油 | kgkg−1 | 3.16 | IPCC | 3.82 | CPCD | |
灌溉用电 | kgkWh−1 | 0.88 | IPCC | 0.97 | CPCD | |
氮肥 | kgkg−1 | 11.4 | Ecoinvent | 10.63 | CPCD | |
磷肥 | kgkg−1 | 1.83 | Ecoinvent | 2.33 | CPCD | |
钾肥 | kgkg−1 | 0.45 | Ecoinvent | 0.66 | CPCD | |
除草剂 | kgkg−1 | 16.9 | Ecoinvent | 17.1 | 张国等, | |
杀虫剂 | kgkg−1 | 12.9 | Ecoinvent | 15.9 | 张国等, | |
杀菌剂 | kgkg−1 | 11.7 | Ecoinvent | 16.6 | 张国等, |
表1 各种农资投入的排放因子
Table 1 Emission factors of various agricultural inputs
碳源 | 单位 | 国际参数 | 本地化参数 | |||
---|---|---|---|---|---|---|
排放系数 | 数据来源 | 排放系数 | 数据来源 | |||
水稻种子 | kgkg−1 | 0.70 | IPCC | 0.78 | CPCD | |
小麦种子 | kgkg−1 | 0.58 | IPCC | 0.59 | CPCD | |
柴油 | kgkg−1 | 3.16 | IPCC | 3.82 | CPCD | |
灌溉用电 | kgkWh−1 | 0.88 | IPCC | 0.97 | CPCD | |
氮肥 | kgkg−1 | 11.4 | Ecoinvent | 10.63 | CPCD | |
磷肥 | kgkg−1 | 1.83 | Ecoinvent | 2.33 | CPCD | |
钾肥 | kgkg−1 | 0.45 | Ecoinvent | 0.66 | CPCD | |
除草剂 | kgkg−1 | 16.9 | Ecoinvent | 17.1 | 张国等, | |
杀虫剂 | kgkg−1 | 12.9 | Ecoinvent | 15.9 | 张国等, | |
杀菌剂 | kgkg−1 | 11.7 | Ecoinvent | 16.6 | 张国等, |
碳源 | 单位 | 排放系数 | 数据来源 |
---|---|---|---|
N2O直接排放 | kgkg−1 | 旱地: 0.01; 稻田: 0.003 | IPCC |
大气氨沉降 | kgkg−1 | 0.01 | IPCC |
氨淋溶径流 | kgkg−1 | 0.0075 | IPCC |
表2 氮肥投入引起N2O排放系数
Table 2 N2O emission coefficient caused by nitrogen fertilizer input
碳源 | 单位 | 排放系数 | 数据来源 |
---|---|---|---|
N2O直接排放 | kgkg−1 | 旱地: 0.01; 稻田: 0.003 | IPCC |
大气氨沉降 | kgkg−1 | 0.01 | IPCC |
氨淋溶径流 | kgkg−1 | 0.0075 | IPCC |
农作物 | fDr | fNrot | IHi | RRs | freturn |
---|---|---|---|---|---|
水稻 | 0.855 | 0.009 | 0.511 | 0.085 | 0.52 |
小麦 | 0.870 | 0.005 | 0.472 | 0.064 | 0.85 |
表3 作物参数
Table 3 Crop parameters
农作物 | fDr | fNrot | IHi | RRs | freturn |
---|---|---|---|---|---|
水稻 | 0.855 | 0.009 | 0.511 | 0.085 | 0.52 |
小麦 | 0.870 | 0.005 | 0.472 | 0.064 | 0.85 |
图2 不同排放参数下稻麦周年轮作稻麦碳足迹影响因素占比
Figure 2 Proportion of factors affecting carbon footprint of rice-wheat annual rotation under different emission parameters
种类 | 水稻碳足迹/(kghm−2) | 小麦碳足迹/(kghm−2) | 稻麦周年轮作碳足迹/(kghm−2) | |||||
---|---|---|---|---|---|---|---|---|
国际参数 | 本地化参数 | 国际参数 | 本地化参数 | 国际参数 | 本地化参数 | |||
种子 | 175.4±11.9 | 191.9±14.3 | 229.3±21.2 | 233.2±21.5 | 404.7±33.1 | 425.1±35.8 | ||
柴油 | 354.1±29.8 | 408.0±87.7 | 301.3±52.8 | 364.3±63.9 | 655.4±82.6 | 772.3±151.6 | ||
灌溉用电 | 1084.1±194.2 | 1069.4±261.0 | 724.7±48.1 | 657.5±258.0 | 1806.8.1±252.3 | 1726.9±519 | ||
氮肥 | 3578.8±454.8 | 3489.5±390.7 | 2711.1±483.4 | 2528.0±450.7 | 6289.9±938.2 | 6017.5±1328.9 | ||
磷肥 | 161.3±8.1 | 197.4±44.7 | 126.5±28.2 | 161.0±35.9 | 287.8±36.3 | 358.4±80.6 | ||
钾肥 | 52.1±5.7 | 75.8±14.9 | 41.3±11.3 | 60.6±16.6 | 93.4±17.0 | 136.4±31.5 | ||
除草剂 | 73.0±4.3 | 71.8±5.8 | 87.9±7.6 | 88.7±7.6 | 160.9±11.9 | 160.5±13.4 | ||
杀虫剂 | 38.1±2.5 | 45.6±4.6 | 49.7±6.0 | 61.1±7.4 | 87.8±8.5 | 106.7±12.0 | ||
杀菌剂 | 46.5±3.3 | 66.3±5.4 | 58.8±5.1 | 83.6±7.3 | 105.3±8.4 | 149.9±12.7 | ||
GPW-CH4 | 9372.2±306.0 | 7448.8±1186.6 | 9372.2±306.0 | 7448.8±1186.6 | ||||
GPW-N2O | 676.7±75.8 | 525.1±63.5 | 1236.2±220.4 | 826.2±118.6 | 1912.9±296.2 | 1351.3±182.1 |
表4 不同参数下稻麦周年轮作碳足迹构成
Table 4 Composition of carbon footprint of annual rice-wheat rotation under different parameters
种类 | 水稻碳足迹/(kghm−2) | 小麦碳足迹/(kghm−2) | 稻麦周年轮作碳足迹/(kghm−2) | |||||
---|---|---|---|---|---|---|---|---|
国际参数 | 本地化参数 | 国际参数 | 本地化参数 | 国际参数 | 本地化参数 | |||
种子 | 175.4±11.9 | 191.9±14.3 | 229.3±21.2 | 233.2±21.5 | 404.7±33.1 | 425.1±35.8 | ||
柴油 | 354.1±29.8 | 408.0±87.7 | 301.3±52.8 | 364.3±63.9 | 655.4±82.6 | 772.3±151.6 | ||
灌溉用电 | 1084.1±194.2 | 1069.4±261.0 | 724.7±48.1 | 657.5±258.0 | 1806.8.1±252.3 | 1726.9±519 | ||
氮肥 | 3578.8±454.8 | 3489.5±390.7 | 2711.1±483.4 | 2528.0±450.7 | 6289.9±938.2 | 6017.5±1328.9 | ||
磷肥 | 161.3±8.1 | 197.4±44.7 | 126.5±28.2 | 161.0±35.9 | 287.8±36.3 | 358.4±80.6 | ||
钾肥 | 52.1±5.7 | 75.8±14.9 | 41.3±11.3 | 60.6±16.6 | 93.4±17.0 | 136.4±31.5 | ||
除草剂 | 73.0±4.3 | 71.8±5.8 | 87.9±7.6 | 88.7±7.6 | 160.9±11.9 | 160.5±13.4 | ||
杀虫剂 | 38.1±2.5 | 45.6±4.6 | 49.7±6.0 | 61.1±7.4 | 87.8±8.5 | 106.7±12.0 | ||
杀菌剂 | 46.5±3.3 | 66.3±5.4 | 58.8±5.1 | 83.6±7.3 | 105.3±8.4 | 149.9±12.7 | ||
GPW-CH4 | 9372.2±306.0 | 7448.8±1186.6 | 9372.2±306.0 | 7448.8±1186.6 | ||||
GPW-N2O | 676.7±75.8 | 525.1±63.5 | 1236.2±220.4 | 826.2±118.6 | 1912.9±296.2 | 1351.3±182.1 |
图4 不同排放参数下不同规模稻麦周年轮作生产系统碳足迹 数值后不同小写字母表示不同种植规模间的差异达显著水平(P<0.05)
Figure 4 Carbon footprint under different emission parameters with three planting scales in rice-wheat annual rotation production system
[1] | EPA, 2017. Inventory of us greenhouse gas emissions and sinks 1990-2015[R]. |
[2] | GIRIJAVENI V, SAMMI REDDY K, PRASAD J V N S, et al., 2023. Carbon Footprint and Sustainability of Different Agricultural Production Systems in Climate Change Scenario[M]. Handbook of Energy Management in Agriculture. Singapore: Springer Nature Singapore: 1-24. |
[3] |
GAN Y T, LIANG C, CAMPBELL C A, et al., 2012. Carbon footprint of spring wheat in response to fallow frequency and soil carbon changes over 25 years on the semiarid Canadian prairie[J]. European Journal of Agronomy, 43: 175-184.
DOI URL |
[4] |
HOU P F, FENG Y F, WANG N, et al., 2020. Application of sawdust-derived hydrochar in low fertility soil improves rice yield and reduces greenhouse gas emissions from agricultural ecosystems[J]. Science of The Total Environment, 748: 142457.
DOI URL |
[5] | IPCC, 2022. AR6 Climate Change 2022: Mitigation of Climate[R]. |
[6] | IPCC, 2021. AR6 Climate Change 2021: The Physical Science Basis[R]. |
[7] | KRUPNIK T J, SNAPP S S, TUSENIUS M, et al., 2017. Farmer perspectives on soil fertility management in maize-legume cropping systems of western Kenya[J]. Agriculture, Ecosystems and Environment, 236: 31-43. |
[8] |
LAN T, ZHANG H, HAN Y, et al., 2021. Regulating CH4, N2O, and NO emissions from an alkaline paddy field under rice-wheat rotation with controlled release N fertilizer[J]. Environmental Science and Pollution Research, 28(14): 18246-18259.
DOI |
[9] |
LIU G, YU H Y, ZHANG G B, et al., 2016. Combination of wet irrigation and nitrification inhibitor reduced nitrous oxide and methane emissions from a rice cropping system[J]. Environmental Science and Pollution Research, 23(17): 17426-17436.
DOI URL |
[10] |
LIU G, YU H Y, MA J, et al., 2015. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields[J]. Science of The Total Environment, 518-519: 209-216.
DOI URL |
[11] |
LIU Z, GUAN D B, WEI W, et al., 2015. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 524: 335-338.
DOI |
[12] |
MA L J, KONG F X, LÜ X B, et al., 2021. Responses of greenhouse gas emissions to different straw management methods with the same amount of carbon input in cotton field[J]. Soil and Tillage Research, 213: 105126.
DOI URL |
[13] |
MA Y C, KONG X W, YANG B, et al., 2013. Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management[J]. Agriculture, Ecosystems and Environment, 164: 209-219.
DOI URL |
[14] |
MIN H Z, HUANG X C, XU D Q, et al., 2022. Determining the effects of compost substitution on carbon sequestration, greenhouse gas emission, soil microbial community changes, and crop yield in a wheat field[J]. Life, 12(9): 1382.
DOI URL |
[15] |
REES W E, 1992. Ecological footprints and appropriated carrying capacity: what urban economics leaves out[J]. Environment and Urbanization, 4(2): 121-130
DOI URL |
[16] |
SHI W, BIAN R J, LI L Q, et al., 2021. Assessing the impacts of biochar-blended urea on nitrogen use efficiency and soil retention in wheat production[J]. GCB Bioenergy, 14(1): 65-83.
DOI URL |
[17] |
SUN L Y, MA Y C, LIU Y L, et al., 2019. The combined effects of nitrogen fertilizer, humic acid, and gypsum on yield-scaled greenhouse gas emissions from a coastal saline rice field[J]. Environmental Science and Pollution Research, 26(19): 19502-19511.
DOI |
[18] |
WANG Y, CHEN H, WANG S, et al., 2017. Carbon footprint of China's nitrogen fertilizer industry: Evidence from life cycle analysis[J]. Journal of Cleaner Production, 147: 442-449.
DOI URL |
[19] | WANG J Y, PAN X J, LIU Y L, et al., 2012. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production[J]. Plant & Soil, 360(1-2): 287-298. |
[20] | WRI, 2010. Product Accounting and Reporting Standard: Draft for Stakeholder Review[R]. |
[21] |
XIAO Y N, YANG S H, XU J Z, et al., 2018. Effect of biochar amendment on methane emissions from paddy field under water-saving irrigation[J]. Sustainability, 10(5): 1371.
DOI URL |
[22] |
XU F J, CHANG H Q, 2022. Soil greenhouse gas emissions and nitrogen change for wheat field application of composted sewage sludge[J]. Agronomy, 12(8): 1946.
DOI URL |
[23] |
XU P S, HAN Z Q, WU J, et al., 2022. Emissions of greenhouse gases and no from rice fields and a peach orchard as affected by N input and land-use conversion[J]. Agronomy, 12(8): 1850.
DOI URL |
[24] |
YAN M, CHENG K, LUO T, et al., 2015. Carbon footprint of grain crop production in China: Based on farm survey data[J]. Journal of Cleaner Production, 104: 130-138.
DOI URL |
[25] |
ZHANG A F, BIAN R J, LI L Q, et al., 2015. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy[J]. Environmental Science and Pollution Research, 22(23): 18977-18986.
DOI URL |
[26] |
ZHENG X H, LIU C Y, HAN S H, 2008. Description and application of amodel for simulating regional nitrogen cycling and calculating nitrogen flux[J]. Advances in Atmospheric Science, 25(2): 181-201.
DOI URL |
[27] |
ZHENG J F, ZHANG X H, LI L Q, et al., 2007. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil[J]. Agriculture, Ecosystems & Environment, 120(2-4): 129-138.
DOI URL |
[28] |
ZHENG X H, FU C B, XU X K, et al., 2002. The Asian nitrogen cycle case study[J]. AMBIO, 31(2): 79-87.
PMID |
[29] | 毕智超, 2017. 有机无机肥配施对菜地N2O和NO排放及温室效应的影响[D]. 南京: 南京农业大学. |
BI Z C, 2017. Effects of combined application of organic and inorganic fertilizers on N2O and NO emissions and greenhouse effect in vegetable fields[D]. Nanjing: Nanjing Agricultural University. | |
[30] | 陈亚娟, 廖晓琳, 阮宏华, 等, 2022. 生物炭与沼液混施对杨树人工林土壤温室气体排放的长期影响[J]. 土壤通报, 53(4): 828-838. |
CHEN Y J, LIAO X L, RUAN H H, et al., 2022. Long term effects of mixed application of biochar and biogas slurry on greenhouse gas emissions in soil of poplar plantations[J]. Soil Bulletin, 53(4): 828-838. | |
[31] | 陈中督, 徐春春, 纪龙, 等, 2023. 基于农户调查的长江流域双季稻生产碳、氮足迹分析——以江西和湖南为例[J]. 作物杂志 (2): 229-237. |
CHEN Z D, XU C C, JI L, et al., 2023. Carbon and nitrogen footprint analysis of double cropping rice production in the Yangtze River Basin based on household surveys: Taking Jiangxi and Hunan as examples[J]. Crop Journal (2): 229-237. | |
[32] | 陈中督, 李凤博, 冯金飞, 等, 2019. 长江下游地区稻麦轮作模式碳足迹研究——基于生命周期评价[J]. 中国农业资源与区划, 40(12): 81-90. |
CHEN Z D, LI F B, FENG J F, et al., 2019. Carbon footprint of rice wheat rotation models in the lower reaches of the Yangtze River: Based on life cycle assessment[J]. China Agricultural Resources and Regionalization, 40(12): 81-90. | |
[33] | 丁诚, 2021. 外源有机碳添加对滩涂盐碱地土壤温室气体排放及影响机制研究[D]. 扬州: 扬州大学. |
DING C, 2021. Study on the greenhouse gas emissions and impact mechanism of exogenous organic carbon addition on mudflat saline alkali soil[D]. Yangzhou: Yangzhou University. | |
[34] | 段春锋, 田红, 黄勇, 等, 2020. 淮河流域稻麦轮作农田生态系统CO2通量多时间尺度变化特征[J]. 气象科技进展, 10(5): 138-145. |
DUAN C F, TIAN H, HUANG Y, et al., 2020. Multi temporal scale changes in CO2 flux in rice wheat rotation farmland ecosystems in the Huaihe River Basin[J]. Progress in Meteorological Science and Technology, 10(5): 138-145. | |
[35] | 高晨曦, 卢秋萍, 欧年青, 等, 2022. “双碳” 目标下河南省农业碳排放影响因素及预测研究[J]. 中国生态农业学报(中英文), 30(11): 1842-1851. |
GAO C X, LU Q P, OU N Q, et al., 2022. Research on influencing factors and prediction of agricultural carbon emissions in Henan Province under the “double carbon” goal[J]. Journal of Chinese Ecological Agriculture (Chinese and English), 30(11): 1842-1851. | |
[36] | 高名姿, 孙玮, 曹蕾, 2022. 农业机械化、规模经营与农民增收——基于江苏省种植类家庭农场的抽样调查证据[J]. 中国农机化学报, 43(12): 206-214, 220. |
GAO M Z, SUN W, CAO L, et al., 2022. Agricultural mechanization, scale management, and farmers’ income increase: Evidence from a sampling survey of planting family farms in Jiangsu province[J]. China Journal of Agricultural Machinery Chemistry, 43(12): 206-214, 220. | |
[37] | 顾泽海, 2017. 周年不同秸秆还田方式对农田温室气体排放、土壤碳库、养分及作物产量的影响[D]. 南京: 南京农业大学. |
GU Z H, 2017. The impact of different straw returning methods on greenhouse gas emissions, soil carbon pool, nutrients, and crop yield in farmland during the anniversary[D]. Nanjing: Nanjing Agricultural University. | |
[38] | 韩云芳, 韩圣慧, 严平, 2015. 基于区域氮循环模型IAP-N的安徽省农用地N2O排放量估算[J]. 环境科学, 36(7): 2395-2404. |
HAN Y F, HAN S H, YAN P, 2015. Estimation of N2O emissions from agricultural land in Anhui Province based on the regional nitrogen cycle model IAP-N[J]. Environmental Science, 36(7): 2395-2404.
DOI URL |
|
[39] |
郝小雨, 王晓军, 高洪生, 等, 2022. 松嫩平原不同秸秆还田方式下农田温室气体排放及碳足迹估算[J]. 生态环境学报, 31(2): 318-325.
DOI |
HAO X Y, WANG X J, GAO H S, et al., 2022. Estimation of farmland greenhouse gas emissions and carbon footprint under different straw return methods in Songnen Plain[J]. Journal of Ecology and Environment, 31(2): 318-325. | |
[40] | 胡永浩, 张昆扬, 胡南燕, 等, 2023. 中国农业碳排放测算研究综述[J]. 中国生态农业学报(中英文), 31(2): 163-176. |
HU Y H, ZHANG K Y, HU N Y, et al., 2023. Review of research on carbon emission measurement in China’s agriculture[J]. Journal of Ecological Agriculture of China (Chinese and English), 31(2): 163-176. | |
[41] | 季国军, 纪洪亭, 程琨, 等, 2023. 江苏稻田轮作模式碳、氮足迹分析[J]. 南京农业大学学报, 46(3): 510-521. |
JI G J, JI H T, CHENG K, et al., 2023. Analysis of carbon and nitrogen footprint of rice field rotation model in Jiangsu[J]. Journal of Nanjing Agricultural University, 46(3): 510-521. | |
[42] | 贾俊香, 熊正琴, 马智勇, 等, 2020. 生物炭与有机肥配施对菜地温室气体强度的影响[J]. 应用与环境生物学报, 26(1): 74-80. |
JIA J X, XIONG Z Q, MA Z Y, et al., 2020. The effect of biochar combined with organic fertilizer on greenhouse gas intensity in vegetable fields[J]. Journal of Applied and Environmental Biology, 26(1): 74-80. | |
[43] | 李思宇, 2020. 稻田温室气体排放水稻品种间差异及其机理研究[D]. 扬州: 扬州大学. |
LI S Y, 2020. Research on the differences and mechanisms of greenhouse gas emissions among rice varieties in rice fields[D]. Yangzhou: Yangzhou University. | |
[44] | 刘田, 洪诚, 贾海飞, 等, 2022. 不同轮作制度下优化施肥对水稻产量的影响[J]. 农业科技通讯, 612(12): 92-96. |
LIU T, HONG C, JIA H F, et al., 2022. The effect of optimized fertilization on rice yield under different rotation systems[J]. Agricultural Science and Technology Communication, 612(12): 92-96. | |
[45] | 马林杰, 2020. 秸秆还田方式和还田量影响棉花产量形成与土壤有机碳库和温室气体排放的生态机制[D]. 南京: 南京农业大学. |
MA L J, 2020. The ecological mechanism of the effect of straw returning method and amount on cotton yield formation, soil organic carbon pool, and greenhouse gas emissions[D]. Nanjing: Nanjing Agricultural University. | |
[46] | 马义虎, 2013. 有机肥对水稻根系生长和养分吸收及稻田温室气体排放的影响[D]. 扬州: 扬州大学. |
MA Y H, 2013. The effect of organic fertilizers on rice root growth, nutrient absorption, and greenhouse gas emissions from rice fields[D]. Yangzhou: Yangzhou University. | |
[47] | 宁运旺, 张辉, 戴娟, 等, 2019. 江苏省小麦化肥投入现状与影响因素分析——以苏州市和盐城市为例[J]. 江苏农业科学, 47(15): 269-273. |
NING Y W, ZHANG H, DAI J, et al., 2019. Analysis of the current situation and influencing factors of wheat fertilizer investment in Jiangsu Province: Taking Suzhou and Yancheng cities as examples[J]. Jiangsu Agricultural Science, 47(15): 269-273. | |
[48] | 涂保华, 胡茜, 张艺, 等, 2019. 基于不同类型秸秆制备的生物炭对稻田土壤温室气体排放的影响[J]. 江苏农业学报, 35(6): 1374-1380. |
TU B H, HU Q, ZHANG Y, et al., 2019. The effect of biochar prepared from different types of straw on greenhouse gas emissions from paddy soil[J]. Journal of Jiangsu Agriculture, 35(6): 1374-1380. | |
[49] | 谢婷, 张慧, 苗洁, 等, 2021. 湖北省农田生态系统温室气体排放特征与源/汇分析[J]. 农业资源与环境学报, 38(5): 839-848. |
XIE T, ZHANG H, MIAO J, et al., 2021. Characteristics and source/sink analysis of greenhouse gas emissions from agricultural ecosystems in Hubei province[J]. Journal of Agricultural Resources and Environment, 38(5): 839-848. | |
[50] | 许国春, 2017. 不同轮作系统和稻作模式对稻田温室气体排放及氮素平衡的影响[D]. 南京: 南京农业大学. |
XU G C, 2017. The effects of different rotation systems and rice cropping patterns on greenhouse gas emissions and nitrogen balance in rice fields[D]. Nanjing: Nanjing Agricultural University. | |
[51] | 王保君, 2017. 稻秆不同还田方式对稻麦轮作农田土壤养分、碳库及温室气体排放的影响[D]. 南京: 南京农业大学. |
WANG B J, 2017. Effects of different rice straw returning methods on soil nutrients, carbon pool, and greenhouse gas emissions in rice wheat rotation farmland[D]. Nanjing: Nanjing Agricultural University. | |
[52] | 吴文丽, 谢英添, 董晓鸣, 等, 2021. 塑料中棚番茄有机肥与化肥配施能耗与温室气体排放评估[J]. 江苏农业学报, 37(6): 1516-1525. |
WU W L, XIE Y T, DONG X M, et al., 2021. Evaluation of energy consumption and greenhouse gas emissions under combined application of organic fertilizer and chemical fertilizer in plastic greenhouse tomato production[J]. Jiangsu Agricultural Journal, 37(6): 1516-1525. | |
[53] | 徐越, 2021. 生物有机肥对控制灌溉稻田温室气体排放的影响及减排技术分析[D]. 扬州: 扬州大学. |
XU Y, 2021. Analysis of the impact of bioorganic fertilizer on controlling greenhouse gas emissions from irrigated rice fields and emission reduction techniques[D]. Yangzhou: Yangzhou University. | |
[54] | 杨帆, 孟远夺, 姜义, 等, 2015. 2013年我国种植业化肥施用状况分析[J]. 植物营养学报, 21(1): 217-225. |
YANG F, MENG Y D, JIANG Y, et al., 2015. Analysis of fertilizer application in China’s planting industry in 2013[J]. Journal of Plant Nutrition, 21(1): 217-225.
DOI URL |
|
[55] | 张国, 逯非, 黄志刚, 等, 2016. 我国主粮作物的化学农药用量及其温室气体排放估算[J]. 应用生态学报, 27(9): 2875-2883. |
ZHANG G, LU F, HUANG Z G, et al., 2016. Estimation of chemical pesticide use and greenhouse gas emissions of staple food crops in China[J]. Chinese Journal of Applied Ecology, 27(9): 2875-2883. | |
[56] | 张广斌, 马静, 徐华, 等, 2023. 中国农田非CO2温室气体减排的研究现状与建议[J]. 中国科学院院刊, 38(3): 504-517. |
ZHANG G B, MA J, XU H, et al., 2023. Research status and suggestions on the reduction of non-CO2 greenhouse gas emissions from farmland in China[J]. Chinese Academy of Sciences, 38(3): 504-517. | |
[57] | 张萍, 2012. 土壤管理对农田温室气体排放的效应研究[D]. 扬州: 扬州大学. |
ZHANG P, 2012. Research on the effect of soil management on greenhouse gas emissions from farmland[D]. Yangzhou: Yangzhou University. | |
[58] | 张强, 巨晓棠, 张福锁, 2010. 应用修正的IPCC2006方法对中国农田N2O排放量重新估算[J]. 中国生态农业学报, 18(1): 7-13. |
ZHANG Q, JU X T, ZHANG S F, 2010. Re-estimation of N2O emissions from farmland in China by using the modified IPCC2006 method[J]. Chinese Journal of Ecological Agriculture, 18(1): 7-13. | |
[59] | 中华人民共和国生态环境部, 2019. 中华人民共和国气候变化第二次两年更新报告[R]. |
Ministry of Ecology and Environment of the People’s Republic of China, 2019. Second Biennial Update Report on Climate Change in the People’s Republic of China[R]. | |
[60] | 朱子慧, 2022. 小麦秸秆覆盖对土壤改良、温室气体排放和蔬菜产量的效应[D]. 扬州: 扬州大学. |
ZHU Z H, 2022. The effect of wheat straw mulching on soil improvement, greenhouse gas emissions, and vegetable yield[D]. Yangzhou: Yangzhou University. |
[1] | 梁鑫, 韩亚峰, 郑柯, 王旭刚, 陈志怀, 杜鹃. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
[2] | 王金明, 秦晓波, 万运帆, 周盛, 张志伟. 中国水稻食物系统碳足迹结构组成和地区差异[J]. 生态环境学报, 2023, 32(8): 1405-1418. |
[3] | 王家一, 孙亭亭, 沙润钰, 谌婷红, 邢冉, 秦伯强, 施文卿. 富营养化湖泊蓝藻打捞减污降碳效果模拟研究[J]. 生态环境学报, 2023, 32(6): 1108-1114. |
[4] | 张露, 何雨霏, 陈坦, 杨婷, 张冰, 金军. 2011—2020年汾渭平原农田生态系统碳足迹的时空格局演变[J]. 生态环境学报, 2023, 32(6): 1149-1162. |
[5] | 吴昊平, 秦红杰, 贺斌, 尤毅, 陈金峰, 邹春萍, 杨思雨, 郝贝贝. 基于碳中和的农业面源污染治理模式发展态势刍议[J]. 生态环境学报, 2022, 31(9): 1919-1926. |
[6] | 姜超强, 李晨, 朱启法, 徐海清, 刘炎红, 沈嘉, 阎轶峰, 余飞, 祖朝龙. 皖南不同种植模式碳汇效应及经济效益评价[J]. 生态环境学报, 2022, 31(7): 1285-1292. |
[7] | 张涵, 唐常源, 禤映雪, 江涛, 黄品怡, 杨秋, 曹英杰. 珠江口红树林土壤甲烷和二氧化碳通量特征及其影响因素研究[J]. 生态环境学报, 2022, 31(5): 939-948. |
[8] | 梁蕾, 马秀枝, 韩晓荣, 李长生, 张志杰. 模拟增温下凋落物对大青山油松人工林土壤温室气体通量的影响[J]. 生态环境学报, 2022, 31(3): 478-486. |
[9] | 郝小雨, 王晓军, 高洪生, 毛明艳, 孙磊, 马星竹, 周宝库, 迟凤琴, 李伟群. 松嫩平原不同秸秆还田方式下农田温室气体排放及碳足迹估算[J]. 生态环境学报, 2022, 31(2): 318-325. |
[10] | 陈思, 王灿, 李想, 李明锐, 湛方栋, 李元, 祖艳群, 何永美. 不同UV-B辐射增幅对稻田土壤酶活性、活性有机碳含量及温室气体排放的影响[J]. 生态环境学报, 2021, 30(6): 1260-1268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||