生态环境学报 ›› 2023, Vol. 32 ›› Issue (3): 627-634.DOI: 10.16258/j.cnki.1674-5906.2023.03.020
收稿日期:
2022-12-29
出版日期:
2023-03-18
发布日期:
2023-06-02
通讯作者:
*曾清如,教授,博士,主要从事农田重金属污染修复方面的研究。E-mail: qrzeng@163.com作者简介:
杨耀东(1994年生)男,硕士研究生,研究方向为农田土壤重金属修复研究。E-mail: 375777498@qq.com
基金资助:
YANG Yaodong(), CHEN Yumei, TU Pengfei, ZENG Qingru*(
)
Received:
2022-12-29
Online:
2023-03-18
Published:
2023-06-02
摘要:
中国农田镉(Cd)污染严重且面积广大,选择适宜的经济作物对Cd污染农田进行边生产边修复至关重要。采用大田试验,在Cd轻度污染农田种植甜高粱(Sorghum dochna)、油葵(Helianthus annuus)、油菜(Brassica napus)、白芝麻(Sesamum indicum)和亚麻(Linum usitatissimum)5种高生物量经济作物,设置甜高粱-油菜、油葵-油菜和白芝麻-亚麻3种全年轮作模式,探究其对Cd污染土壤的修复潜力。结果表明,(1)3种轮作模式中作物各部位的富集系数大于1,对Cd的富集能力较强。其中,亚麻Cd富集能力最强,各部位富集系数为1.97-9.68。白芝麻、油葵茎Cd富集能力较强,甜高粱和油菜富集能力相对较弱。(2)5种经济作物均能在Cd轻度污染农田正常生长,总生物量依次为甜高粱>油葵>油菜>白芝麻>亚麻。(3)各作物均能有效提取农田中的Cd,提取总量依次为油葵>甜高粱>亚麻>白芝麻>油菜。(4)白芝麻-亚麻、油葵-油菜和甜高粱-油菜的Cd提取总量分别为32.18、30.05、28.32 g·hm-2,对土壤的修复效率分别为3.87%、3.61%和3.40%。轮作结束后,供试土壤总Cd含量接近土壤质量标准(GB 15618—2018)。(5)在3种轮作模式中,白芝麻-亚麻轮作模式修复效率最高,预期1.62个轮作周期能将试验农田Cd降至国家标准之下。油葵-油菜、甜高粱-油菜则能在1.73和1.84个轮作周期内达成修复目标。综上所述,3种轮作模式均对Cd污染农田表现出较强修复潜力。合理利用高生物量经济作物进行轮作,能够在有效修复污染土壤的同时提升植物修复经济效益,是治理Cd污染农田可行的新思路。
中图分类号:
杨耀东, 陈玉梅, 涂鹏飞, 曾清如. 经济作物轮作模式下镉污染农田修复潜力[J]. 生态环境学报, 2023, 32(3): 627-634.
YANG Yaodong, CHEN Yumei, TU Pengfei, ZENG Qingru. Phytoremediation Potential of Economic Crop Rotation Patterns for Cadmium-polluted Farmland[J]. Ecology and Environment, 2023, 32(3): 627-634.
轮作模式 | 作物 | 地下部分 | 地上部分 | |||||
---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | |||
甜高粱-油菜 | 甜高粱 | 1.51±0.15c | 0.46±0.11a | 0.28±0.06a | - | - | - | |
油菜 | 0.47±0.04a | 0.29±0.09a | 1.40±0.10c | 0.48±0.06b | 0.18±0.03a | - | ||
油葵-油菜 | 油葵 | 0.93±0.16b | 1.04±0.06b | 1.10±0.14b | 0.34±0.07a | 0.99±0.20c | 0.90±0.10a | |
油菜 | 0.68±0.04ab | 0.35±0.04a | 1.19±0.09bc | 0.33±0.03a | 0.24±0.03a | - | ||
白芝麻-亚麻 | 白芝麻 | 1.55±0.32c | 1.21±0.12b | 1.13±0.09b | 0.87±0.06d | 0.69±0.10b | - | |
亚麻 | 2.37±0.27d | 1.14±0.17b | 3.08±0.26d | 0.71±0.08c | 0.86±0.05bc | 2.88±0.27b |
表1 3种轮作模式各部位Cd质量分数
Table 1 Cadmium content in various parts of three crop rotation patterns mg·kg-1
轮作模式 | 作物 | 地下部分 | 地上部分 | |||||
---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | |||
甜高粱-油菜 | 甜高粱 | 1.51±0.15c | 0.46±0.11a | 0.28±0.06a | - | - | - | |
油菜 | 0.47±0.04a | 0.29±0.09a | 1.40±0.10c | 0.48±0.06b | 0.18±0.03a | - | ||
油葵-油菜 | 油葵 | 0.93±0.16b | 1.04±0.06b | 1.10±0.14b | 0.34±0.07a | 0.99±0.20c | 0.90±0.10a | |
油菜 | 0.68±0.04ab | 0.35±0.04a | 1.19±0.09bc | 0.33±0.03a | 0.24±0.03a | - | ||
白芝麻-亚麻 | 白芝麻 | 1.55±0.32c | 1.21±0.12b | 1.13±0.09b | 0.87±0.06d | 0.69±0.10b | - | |
亚麻 | 2.37±0.27d | 1.14±0.17b | 3.08±0.26d | 0.71±0.08c | 0.86±0.05bc | 2.88±0.27b |
轮作模式 | 作物 | 地下部分 | 地上部分 | |||||
---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | |||
甜高粱-油菜 | 甜高粱 | 4.45±0.51c | 27.21±3.47b | 8.28±1.14c | - | - | - | |
油菜 | 1.09±0.17a | 7.04±0.83a | 0.85±0.09a | 4.54±0.52c | 4.12±0.46b | - | ||
油葵-油菜 | 油葵 | 2.43±0.24b | 7.60±0.58a | 2.24±0.29b | 1.74±0.17b | 4.95±0.62c | 5.69±0.71b | |
油菜 | 1.11±0.17a | 7.46±0.83a | 0.90±0.09a | 4.21±0.52c | 3.98±0.46b | - | ||
白芝麻-亚麻 | 白芝麻 | 0.86±0.13a | 5.84±0.72a | 3.09±0.40b | 1.68±0.21b | 1.17±0.13a | - | |
亚麻 | 0.83±0.09a | 8.00±0.97a | 0.54±0.06a | 0.26±0.04a | 0.88±0.12a | 1.50±0.18a |
表2 试验轮作中使用的经济作物的生物量
Table 2 Biomass of the economic crops used in the experimental rotation t·hm-2
轮作模式 | 作物 | 地下部分 | 地上部分 | |||||
---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | |||
甜高粱-油菜 | 甜高粱 | 4.45±0.51c | 27.21±3.47b | 8.28±1.14c | - | - | - | |
油菜 | 1.09±0.17a | 7.04±0.83a | 0.85±0.09a | 4.54±0.52c | 4.12±0.46b | - | ||
油葵-油菜 | 油葵 | 2.43±0.24b | 7.60±0.58a | 2.24±0.29b | 1.74±0.17b | 4.95±0.62c | 5.69±0.71b | |
油菜 | 1.11±0.17a | 7.46±0.83a | 0.90±0.09a | 4.21±0.52c | 3.98±0.46b | - | ||
白芝麻-亚麻 | 白芝麻 | 0.86±0.13a | 5.84±0.72a | 3.09±0.40b | 1.68±0.21b | 1.17±0.13a | - | |
亚麻 | 0.83±0.09a | 8.00±0.97a | 0.54±0.06a | 0.26±0.04a | 0.88±0.12a | 1.50±0.18a |
轮作模式 | 作物 | 地下部分 | 地上部分 | 合计 | |||||
---|---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | ||||
甜高粱-油菜 | 甜高粱 | 6.72±0.12d | 12.61±1.53d | 2.32±0.19c | - | - | - | 21.65±1.50d | |
油菜 | 0.51±0.06a | 2.05±0.32a | 1.18±0.07a | 2.17±0.18d | 0.75±0.11a | - | 6.67±0.69a | ||
油葵-油菜 | 油葵 | 2.25±0.29c | 7.88±0.58bc | 2.46±0.27c | 0.60±0.08b | 4.91±0.39b | 5.12±0.27b | 23.22±1.39d | |
油菜 | 0.75±0.13a | 2.64±0.26a | 1.07±0.18a | 1.40±0.13c | 0.96±0.10a | - | 6.83±0.59a | ||
白芝麻-亚麻 | 白芝麻 | 1.34±0.09b | 7.05±0.85b | 3.49±0.18d | 1.46±0.16c | 0.81±0.15a | - | 14.15±0.76b | |
亚麻 | 1.97±0.15c | 9.15±1.44c | 1.65±0.27b | 0.19±0.02a | 0.76±0.14a | 4.32±0.50a | 18.03±1.54c |
表3 各轮作模式中经济作物Cd提取总量
Table 3 Total cadmium extraction from economic crops in each crop rotation pattern g·hm-2
轮作模式 | 作物 | 地下部分 | 地上部分 | 合计 | |||||
---|---|---|---|---|---|---|---|---|---|
根 | 茎 | 叶 | 壳 | 果 | 花盘/纤维 | ||||
甜高粱-油菜 | 甜高粱 | 6.72±0.12d | 12.61±1.53d | 2.32±0.19c | - | - | - | 21.65±1.50d | |
油菜 | 0.51±0.06a | 2.05±0.32a | 1.18±0.07a | 2.17±0.18d | 0.75±0.11a | - | 6.67±0.69a | ||
油葵-油菜 | 油葵 | 2.25±0.29c | 7.88±0.58bc | 2.46±0.27c | 0.60±0.08b | 4.91±0.39b | 5.12±0.27b | 23.22±1.39d | |
油菜 | 0.75±0.13a | 2.64±0.26a | 1.07±0.18a | 1.40±0.13c | 0.96±0.10a | - | 6.83±0.59a | ||
白芝麻-亚麻 | 白芝麻 | 1.34±0.09b | 7.05±0.85b | 3.49±0.18d | 1.46±0.16c | 0.81±0.15a | - | 14.15±0.76b | |
亚麻 | 1.97±0.15c | 9.15±1.44c | 1.65±0.27b | 0.19±0.02a | 0.76±0.14a | 4.32±0.50a | 18.03±1.54c |
轮作模式 | 作物 | 地上部分 | 地下部分 | 全植株 |
---|---|---|---|---|
甜高粱-油菜 | 甜高粱 | 1.79 | 0.81 | 2.60 |
油菜 | 0.76 | 0.06 | 0.83 | |
油葵-油菜 | 油葵 | 2.52 | 0.27 | 2.79 |
油菜 | 0.76 | 0.09 | 0.85 | |
白芝麻-亚麻 | 白芝麻 | 1.54 | 0.16 | 1.70 |
亚麻 | 1.97 | 0.24 | 2.22 | |
甜高粱-油菜 | - | 2.53 | 0.87 | 3.40 |
油葵-油菜 | - | 3.25 | 0.36 | 3.61 |
白芝麻-亚麻 | - | 3.47 | 0.40 | 3.87 |
表4 轮作模式修复效率
Table 4 Phytoextraction efficiency of the crop rotation pattern %
轮作模式 | 作物 | 地上部分 | 地下部分 | 全植株 |
---|---|---|---|---|
甜高粱-油菜 | 甜高粱 | 1.79 | 0.81 | 2.60 |
油菜 | 0.76 | 0.06 | 0.83 | |
油葵-油菜 | 油葵 | 2.52 | 0.27 | 2.79 |
油菜 | 0.76 | 0.09 | 0.85 | |
白芝麻-亚麻 | 白芝麻 | 1.54 | 0.16 | 1.70 |
亚麻 | 1.97 | 0.24 | 2.22 | |
甜高粱-油菜 | - | 2.53 | 0.87 | 3.40 |
油葵-油菜 | - | 3.25 | 0.36 | 3.61 |
白芝麻-亚麻 | - | 3.47 | 0.40 | 3.87 |
土壤 | 总Cd |
---|---|
原始土 | 0.320±0.03a |
种植甜高粱后 | 0.310±0.02a |
种植甜高粱-油菜后 | 0.306±0.04a |
种植油葵后 | 0.308±0.03a |
种植油葵-油菜后 | 0.304±0.03a |
种植白芝麻后 | 0.313±0.04a |
种植白芝麻-亚麻后 | 0.303±0.02a |
表5 土壤总Cd质量分数
Table 5 Soil total Cd content mg·kg-1
土壤 | 总Cd |
---|---|
原始土 | 0.320±0.03a |
种植甜高粱后 | 0.310±0.02a |
种植甜高粱-油菜后 | 0.306±0.04a |
种植油葵后 | 0.308±0.03a |
种植油葵-油菜后 | 0.304±0.03a |
种植白芝麻后 | 0.313±0.04a |
种植白芝麻-亚麻后 | 0.303±0.02a |
[1] |
BROOKS R R, LEE J, REEVES R D, et al., 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration, 7: 49-57.
DOI URL |
[2] |
BJELKOVÁ M, GENČUROVÁ V, GRIGA M, 2011. Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils[J]. Industrial Crops and Products, 33(3): 761-774.
DOI URL |
[3] |
BAZALUK O, HAVRYSH V, FEDORCHUK M, et al., 2021. Energy assessment of sorghum cultivation in Southern Ukraine[J]. Agriculture, 11(8): 695.
DOI URL |
[4] |
CARNE G, LECONTE S, SIROT V, et al., 2021. Mass balance approach to assess the impact of cadmium decrease in mineral phosphate fertilizers on health risk: The case-study of French agricultural soils[J]. Science of The Total Environment, 760: 143374.
DOI URL |
[5] |
DOUMETT S, LAMPERI L, CHECCHINI L, et al., 2008. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents[J]. Chemosphere, 72(10): 1481-1490.
DOI PMID |
[6] | EVANGELOU M W H, PAPAZOGLOU E G, ROBINSON B H, et al., 2015. Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land[M]// Phytoremediation. Springer, Cham: 115-132. |
[7] |
FRANCO-HERNANDEZ M O, VÁSQUEZ-MURRIETA M, PATIÑO- SICILIANO A, et al., 2010. Heavy metals concentration in plants growing on mine tailings in Central Mexico[J]. Bioresour Technol, 101(11): 3864-3869.
DOI URL |
[8] | GRIGA M, BJELKOVÁ M, 2013. Flax (Linum usitatissimum L.) and Hemp (Cannabis sativa L.) as fibre crops for phytoextraction of heavy metals: Biological, agro-technological and economical point of view[M]// Plant-based remediation processes. Berlin, Heidelberg: Springer Berlin Heidelberg: 199-237. |
[9] | KHEIRATI ROUNIZI S, AKRAMI MOHAJERI F, MOSHTAGHI BROUJENI H, et al., 2021. The chemical composition and heavy metal content of sesame oil produced by different methods: A risk assessment study[J]. Food Science & Nutrition, 9(6): 2886-2893. |
[10] |
LI J X, HUANG L D, ZHANG J, et al., 2019. Diversifying crop rotation improves system robustness[J]. Agronomy for Sustainable Development, 39(4): 38.
DOI |
[11] |
LIU Z Q, LI H L, ZENG X J, et al., 2020. Coupling phytoremediation of cadmium-contaminated soil with safe crop production based on a sorghum farming system[J]. Journal of Cleaner Production, 275: 123002.
DOI URL |
[12] |
MCGRATH S P, ZHAO F J, 2003. Phytoextraction of metals and metalloids from contaminated soils[J]. Current Opinion in Biotechnology, 14(3): 277-282.
DOI PMID |
[13] | MAHAR A, WANG P, ALI A, et al., 2016. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review[J]. Ecotoxicol Ecotoxicology and Environmental Safety, 126: 111-121. |
[14] |
NEHNEVAJOVA E, HERZIG R, FEDERER G, et al., 2005. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis[J]. International Journal of Phytoremediation, 7(4): 337-349.
PMID |
[15] | REDDY B V S, RAMESH S, REDDY P S, et al., 2005. Sweet sorghum-a potential alternate raw material for bio-ethanol and bio-energy[J]. International Sorghum and Millets Newsletter, 46: 79-86. |
[16] | SOLGI E, ESMAILI-SARI A, RIYAHI-BAKHTIARI A, et al., 2012. Soil contamination of metals in the three industrial estates, Arak, Iran[J]. Bulletin of Environmental Contamination & Toxicology, 88(4): 634-638. |
[17] | SARWAR N, IMRAN M, SHAHEEN M R et al., 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives[J]. Chemosphere Oxford, 171: 710-721. |
[18] |
TANG L, HAMID Y, ZEHRA A, et al., 2020. Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and argo-production in cadmium contaminated soil under oilseed rape-rice rotation system[J]. Science of The Total Environment, 748: 142481.
DOI URL |
[19] |
WILLIAMS C H, DAVID D J, 1976. The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants[J]. Soil Science, 121(2): 86-93.
DOI URL |
[20] | WALTER W, WENZEL, et al., 2003. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments[J]. Plant & Soil, 249(1): 83-96. |
[21] |
WEI S H, WANG S S, ZHOU Q X, et al., 2010. Potential of Taraxacum mongolicum Hand-Mazz for accelerating phytoextraction of cadmium in combination with eco-friendly amendments[J]. Journal of Hazardous Materials, 181(1-3): 480-484.
DOI URL |
[22] |
YANG Y, LI H L, PENG L, et al., 2016. Assessment of Pb and Cd in seed oils and meals and methodology of their extraction[J]. Food chemistry, 197(Part A): 482-488.
DOI PMID |
[23] |
YANG Y, ZHOU X H, TIE B Q, et al., 2017. Comparison of three types of oil crop rotation systems for effective use and remediation of heavy metal contaminated agricultural soil[J]. Chemosphere, 188: 148-156.
DOI PMID |
[24] |
YANG W J, GU J F, ZHOU H, et al., 2020. Effect of three Napier grass varieties on phytoextraction of Cd- and Zn-contaminated cultivated soil under mowing and their safe utilization[J]. Environmental Science and Pollution Research, 27(14): 16134-16144.
DOI |
[25] | ZHUANG P, YANG Q W, WANG H B, et al., 2007. Phytoextraction of heavy metals by eight plant species in the field[J]. Springer Netherlands, 184(1): 235-242. |
[26] |
ZHAO F J, MA Y, ZHU Y G, et al., 2015. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 49(2): 750-759.
DOI URL |
[27] |
ZEHRA A, SAHITO Z A, TONG W, et al., 2020. Identification of high cadmium-accumulating oilseed sunflower (Helianthus annuus) cultivars for phytoremediation of an Oxisol and an Inceptisol[J]. Ecotoxicology and Environmental Safety, 187: 109857.
DOI URL |
[28] | 窦春英, 2009. 施肥对东南景天吸收积累锌和镉的影响[D]. 杭州: 浙江林学院. |
DOU C Y, 2009. Effect of fertilizer application on soil heavy mental phytoremediation by Sedum Alfredii Hance[D]. Hangzhou: Zhejiang A & F University. | |
[29] | 樊霆, 叶文玲, 陈海燕, 等, 2013. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 22(10): 1727-1736. |
FAN T, YE W L, CHEN H Y, et al., 2013. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 22(10): 1727-1736. | |
[30] | 刘晓宏, 郝明德, 樊军, 2000. 黄土高原旱区长期不同轮作施肥对土壤供氮能力的影响[J]. 干旱地区农业研究, 18(3): 1-7. |
LIU X H, HAO M D, FAN J, 2000. Effects of long term rotation and fertilization on N supply by soil in dryland area on loess plateau[J]. Agricultural Reseach in the Arid Areas, 18(3): 1-7. | |
[31] | 鲁如坤, 2000. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社: 8-29. |
LU R K, 2000. Soil agriculture chemistry analysis methods[M]. Beijing: China Agriculture Press: 8-29. | |
[32] | 刘威, 束文圣, 蓝崇钰, 2003. 宝山堇菜 (Viola baoshanensis)——一种新的镉超富集植物[J]. 科学通报, 48(19): 2046-2049. |
LIU W, SHU W S, LAN C Y, 2003. Viola baoshanensis, a new cadmium hyperaccumulator[J]. Chinese Science Bulletin, 48(19): 2046-2049. | |
[33] | 李凝玉, 卢焕萍, 李志安, 等, 2010. 籽粒苋对土壤中镉的耐性和积累特征[J]. 应用与环境生物学报, 16(1): 28-32. |
LI N Y, LU H P, LI Z A, et al., 2010. Tolerance and accumulation of cadmium in soil by Amaranthus hypochondriacus L.[J]. Chinese Journal of Applied & Environmental Biology, 16(1): 28-32. | |
[34] | 林昕, 2010. 利用油菜对镉, 铅污染农田土壤植物修复研究[D]. 昆明: 昆明理工大学. |
LIN X, 2010. Study on phytoremediation of cadmium and lead contaminated farmland soil by rape[D]. Kunming: Kunming University of Science and Technology. | |
[35] | 聂发辉, 2006. 镉超富集植物商陆及其富集效应[J]. 生态环境, 15(2): 303-306. |
NIE F H, 2006. Cd hyper-accumulator Phytolacca acinosa Roxb and Cd-accumulative characteristics[J]. Ecology and Environment, 15(2): 303-306. | |
[36] | 南帅帅, 王亚, 刘强, 等, 2018. 油菜对铅镉污染土壤的修复效果研究[J]. 环境研究与监测, 31(1): 5-8. |
NAN S S, WANG Y, LIU Q, et al., 2018. Study on remediation effect of rape on lead and cadmium contaminated soil[J]. Environmental Research and Monitoring, 31(1): 5-8. | |
[37] | 孙雷, 赵烨, 李强, 等, 2008. 北京东郊污水与清水灌区土壤中重金属含量的比较研究[J]. 安全与环境学报, 8(3): 29-33. |
SUN L, ZHAO Y, LI Q, et al., 2008. Comparative study of heavy metal contents in soil from irrigated areas of east suburb, Beijing[J]. Journal of Safety and Environment, 8(3): 29-33. | |
[38] | 涂鹏飞, 谭可夫, 陈璘涵, 等, 2020. 红叶甜菜-花生和油葵-花生轮作修复土壤Cd的能力[J]. 农业资源与环境学报, 37(4): 609-614. |
TU P F, TAN K F, CHEN L H, et al., 2020. Ability of red leaf beet-peanut and oil sunflower-peanut rotation patterns to remediate soil Cd[J]. Journal of Agricultural Resources and Environment, 37(4): 609-614. | |
[39] | 王艳秋, 朱翠云, 卢峰, 等, 2004. 甜高粱的用途及其发展前景[J]. 杂粮作物, 24(1): 55-56. |
WANG Y Q, ZHU C Y, LU F, et al., 2004. The use and development prospects of sweet sorghum[J]. Rain Fed Crops, 24(1): 55-56. | |
[40] | 魏树和, 周启星, 王新, 等, 2004. 一种新发现的镉超积累植物龙葵 (Solanum nigrum L.)[J]. 科学通报, 49(24): 2568-2573. |
WEI S H, ZHOU Q X, WANG X, et al., 2004. A newly discovered cadmium hyperaccumulator, Solanum nigrum L.[J]. Chinese Science Bulletin, 49(24): 2568-2573. | |
[41] | 魏树和, 周启星, 王新, 2005. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学, 26(3): 167-171. |
WEI S H, ZHOU Q X, WANG X, 2005. Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics[J]. Environmental Science, 26(3): 167-171. | |
[42] | 王林, 周启星, 2008. 农艺措施强化重金属污染土壤的植物修复[J]. 中国生态农业学报, 16(3): 772-777. |
WANG L, ZHOU Q X, 2008. Strengthening phytoremediation of heavy-metal contaminated soils by agronomic management practices[J]. Chinese Journal of Eco-Agriculture, 16(3): 772-777. | |
[43] | 杨勇, 王巍, 江荣风, 等, 2009. 超累积植物与高生物量植物提取镉效率的比较[J]. 生态学报, 29(5): 2732-2737. |
YANG Y, WANG W, JIANG R F, et al., 2009. Comparison of phytoextraction efficiency of Cd with the hyperaccumulator Thlaspi caerulescens and three high biomass species[J]. Acta Ecologica Sinica, 29(5): 2732-2737. | |
[44] | 杨德光, 吴玥, 宋秀丽, 等, 2019. 轮作对土壤肥力及玉米生长发育的影响[J]. 玉米科学, 27(4): 127-133. |
YANG D G, WU Y, SONG X L, et al., 2019. Effects of crop rotation on soil fertility and growth and development of maize[J]. Journal of Maize Sciences, 27(4): 127-133. | |
[45] | 周海霞, 单爱琴, 孙晓菲, 等, 2008. 甘蓝和油菜对镉污染土壤的修复研究[J]. 江苏环境科技, 21(1): 17-19. |
ZHOU H X, SHAN A Q, SUN X F, et al., 2008. The role of cabbage and rape in remediation of cadmium polluted soil[J]. Jiangsu Environmental Science and Technology, 21(1): 17-19. | |
[46] | 张璐, 2014. 产铁载体细菌强化甜高粱修复土壤重金属污染[J]. 环境科学与技术, 37(4): 74-79. |
ZHANG L, 2014. Bioaugmentation with siderophore-producing bacteria to enhance phytoremediation of heavy metal polluted soil by sweet sorghum[J]. Environmental Science & Technology, 37(4): 74-79. | |
[47] | 张云霞, 宋波, 宾娟, 等, 2019. 超富集植物藿香蓟 (Ageratum conyzoides L.)对镉污染农田的修复潜力[J]. 环境科学, 40(5): 2453-2459. |
ZHANG Y X, SONG B, BIN J, et al., 2019. Remediation potential of Ageratum conyzoides L. on cadmium contaminated farmland[J]. Environmental Science, 40(5): 2453-2459. |
[1] | 张露, 何雨霏, 陈坦, 杨婷, 张冰, 金军. 2011—2020年汾渭平原农田生态系统碳足迹的时空格局演变[J]. 生态环境学报, 2023, 32(6): 1149-1162. |
[2] | 赵良侠, 高坤, 黄婷婷, 高也, 琚唐丹, 蒋秋阳, 金珩, 熊蕾, 汤在琳, 高灿红. 玉米籽粒高/低镉积累自交系不同生育期的镉累积特性研究[J]. 生态环境学报, 2023, 32(4): 766-775. |
[3] | 刘抗旱, 郑刘根, 张理群, 丁丹, 单士锋. 复合型植物源活化剂强化蜈蚣草修复砷污染土壤的效应研究[J]. 生态环境学报, 2023, 32(3): 635-642. |
[4] | 肖国举, 李秀静, 郭占强, 胡延斌, 王静. 贺兰山东麓土壤有机碳对玉米生长发育及水分利用的影响[J]. 生态环境学报, 2022, 31(9): 1754-1764. |
[5] | 郝贝贝, 王楠, 吴昊平, 周智鑫, 张思毅, 贺斌. 生态沟渠对珠三角稻田径流污染的削减功能研究[J]. 生态环境学报, 2022, 31(9): 1856-1864. |
[6] | 李秀华, 赵玲, 滕应, 骆永明, 黄标, 刘冲, 刘本乐, 赵其国. 贵州汞矿区周边农田土壤汞镉复合污染特征空间分布及风险评估[J]. 生态环境学报, 2022, 31(8): 1629-1636. |
[7] | 姜超强, 李晨, 朱启法, 徐海清, 刘炎红, 沈嘉, 阎轶峰, 余飞, 祖朝龙. 皖南不同种植模式碳汇效应及经济效益评价[J]. 生态环境学报, 2022, 31(7): 1285-1292. |
[8] | 李成伟, 刘章勇, 龚松玲, 杨伟, 李绍秋, 朱波. 稻作模式改变对稻田CH4和N2O排放的影响[J]. 生态环境学报, 2022, 31(5): 961-968. |
[9] | 上官宇先, 尹宏亮, 徐懿, 钟红梅, 何明江, 秦鱼生, 郭松, 喻华. 不同钝化剂对水稻小麦籽粒镉吸收的影响[J]. 生态环境学报, 2022, 31(2): 370-379. |
[10] | 伍德, 彭鸥, 刘玉玲, 张朴心, 尹雪斐, 黄薪铭, 铁柏清. 螯合剂及组配对伴矿景天修复两种镉污染土壤的影响[J]. 生态环境学报, 2022, 31(12): 2414-2421. |
[11] | 俞龙生, 李卫, 许铭宇, 林泽帆. 赤霉素浸种对2种矿区修复先锋植物种子萌发和幼苗生长的影响[J]. 生态环境学报, 2022, 31(11): 2225-2233. |
[12] | 周椿富, 于锐, 王翔, 闯绍闯, 杨洪杏, 谢越. 抗生素对不同土壤中酶活性的影响[J]. 生态环境学报, 2022, 31(11): 2234-2241. |
[13] | 刘畅, 罗艳丽, 刘晨通, 郑玉红, 晁博, 董乐乐. 奎屯河下游区域地下水和农田土壤砷的空间分布特征[J]. 生态环境学报, 2022, 31(10): 2070-2078. |
[14] | 王飞, 赵颖. 太原市污灌区农田土壤中多环芳烃污染特征及生态风险评价[J]. 生态环境学报, 2022, 31(1): 160-169. |
[15] | 李欣, 陈小华, 顾海蓉, 钱晓雍, 沈根祥, 赵庆节, 白玉杰. 典型农田土壤酶活性分布特征及影响因素分析[J]. 生态环境学报, 2021, 30(8): 1634-1641. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||